当前位置:文档之家› 导数综合

导数综合

导数综合
导数综合

第六讲 导数的综合应用(解答题型)

[做考题 体验高考]

1.设定义在(0,+∞)上的函数f (x )=ax +1

ax +b (a >0).

(1)求f (x )的最小值;

(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =3

2x ,求a ,b 的值.

解:(1)f (x )=ax+

+b ≥2

+b=b+2当且仅当ax=1(x=)时,

f (x )的最小值为b+2;

(2)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为y=

,可得:f (1)=,

∴a++b=① f'(x )=a ﹣,

∴f ′(1)=a ﹣=② 由①②得:a=2,b=-1。 2.设函数f (x )=e x -ax -2. (1)求f (x )的单调区间;

(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值.

3.设00},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B.

(1)求集合D(用区间表示);

(2)求函数f(x)=2x3-3(1+a)x2+6ax在D内的极值点.

[析考情把脉高考]

第一课时利用导数研究函数的单调性、极值与最值问题

[例1]已知函数f(

(1)若a=1,b=-1,求函数f(x)的极值;

(2)若a+b=-2,讨论函数f(x)的单调性.

——————————————————

1.利用导数研究函数单调性的步骤

第一步:确定函数f(x)的定义域;

第二步:求f′(x);

第三步:解方程f′(x)=0在定义域内的所有实数根;

第四步:将函数f(x)的间断点(即f(x)的无定义点)的横坐标和各实数根按从小到大的顺序排列起来,分成若干个小区间;

第五步:确定f ′(x )在各小区间内的符号,由此确定每个区间的单调性. 2.根据函数的单调性求参数取值范围的思路 (1)求f ′(x );

(2)将单调性转化为导数f ′(x )在该区间上满足的不等式,再求解.

——————————————————————————————————————

1.已知函数f (x )=(ax 2-x )ln x -1

2ax 2+x (a ∈R ).

(1)当a =0时,求曲线y =f (x )在(e ,f (e))处的切线方程; (2)求函数f (x )的单调区间.

[例2] =1,f (1)=0. (1)求a 的取值范围;

(2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值.

—————

—————————————

(1)对含参数的函数解析式在求最值时,常常分类讨论,分类的原则是极值点在给定区间的内部还是外部,从而根据单调性求出最值.

(2)求极值和最值时,为直观易懂,常常列出x 的取值范围与y ′的符号及y 的单调区间、极值的对应表格.

——————————————————————————————————————

2.已知函数f (x )=x ln x . (1)求函数f (x )的极值点;

(2)若直线l 过点(0,-1),并且与曲线y =f (x )相切,求直线l 的方程;

(3)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间[1,e]上的最小值.(其中e 为自然对数的底数)

[例3] ABCD 和分别以AD ,BC 为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.

(1)设半圆的半径OA =r (米),试建立塑胶跑道面积S 与r 的函数关系S (r ); (2)由于条件限制r ∈[30,40],问当r 取何值时,运动场造价最低?(π取3.14)

—————

—————————————

(1)解决实际问题的关键在于建立数学模型和目标函数,把“问题情境”转化为数学语言,抽象为数学问题,选择合适的方法求解.而最值问题的应用题,写出目标函数利用导数求最值是首选的方法,若函数在定义域内只有一个极值点,则该极值点即为函数的最值点.

(2)在本例(2)中,由于函数f (r )在[30,40]内是单调的,所以不能应用均值不等式. ——————————————————————————————————————

3.某工厂生产某种产品,每日的成本C (单位:元)与日产量x (单位:吨)满足函数关系式C =10 000+20x ,每日的销售额R (单位:元)与日产量x 满足函数关系式

R =?????

-130x 3+ax 2+290x ,0

20 400,x ≥120.

已知每日的利润y =R -C ,且当x =30时,y =-100. (1)求a 的值;

(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.

(1)求解切线问题时要注意求的是曲线上某点处的切线问题,还是曲线的过某个点的切线问题. (2)函数的单调性是使用导数研究函数问题的根本,函数的单调递增区间和单调递减区间的分界点就是函数的极值点,在含有字母参数的函数中讨论函数的单调性就是根据函数的极值点把函数的定义域区间进行分段,在各个段上研究函数导数的符号,确定函数的单调性,也确定函数的极值点.

(3)利用导数解决优化问题的步骤:

①审题设未知数;②结合题意列出函数关系式;③确定函数的定义域;④在定义域内求极值、最值;⑤下结论.

(4)在求实际问题中的最大值和最小值时,一般先找出自变量和因变量,建立函数的关系式,并确定其定义域,然后利用导数求解相关最值问题,注意实际问题的意义,不符合的解要舍去.

限时:40分钟 满分:56分

1.(满分14分)设f (x )=e x 1+ax 2,其中a 为正实数.

(1)当a =4

3

时,求f (x )的极值点;

(2)若f (x )为R 上的单调函数,求a 的取值范围.

2.(满分14分)(2012·深圳模拟)已知函数f (x )=x 3+ax 2+bx +c (实数a ,b ,c 为常数)的图像过原点,且在x =1处的切线为直线y =-12

.

(1)求函数f (x )的解析式;

(2)若常数m >0,求函数f (x )在区间[-m ,m ]上的最大值.

3.(满分14分)设函数f (x )=a ln x +ax 2

2-2x ,a ∈R .

(1)当a =1时,试求函数f (x )在区间[1,e]上的最大值; (2)当a ≥0时,试求函数f (x )的单调区间.

4.已知函数f (x )=1

3x 3+1-a 2x 2-ax -a ,x ∈R ,其中a >0.

(1)求函数f (x )的单调区间;

(2)若函数f (x )在区间(-2,0)内恰有两个零点,求a 的取值范围;

(3)当a =1时,设函数f (x )在区间[t ,t +3]上的最大值为M (t ),最小值为m (t ),记g (t )=M (t )-m (t ),求函数g (t )在区间[-3,-1]上的最小值.

第二课时 利用导数解决不等式、方程解的问题

[例1]设函数f (x (1)求函数f (x )的极值点;

(2)当p >0时,若对任意的x >0,恒有f (x )≤0,求p 的取值范围. ——————————————————

利用导数解决不等式恒成立问题的常用思想方法及步骤

(1)分离参数法:

第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;

第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法:

第一步:将不等式转化为某含待求参数的函数的最值问题;第二步:利用导数求该函数的极值(最值);第三步:构建不等式求解.

——————————————————————————————————————

1.已知函数f (x )=x 3+ax 2+bx +c (x ∈[-1,2]),且函数f (x )在x =1和x =-2

3处都取得极值.

(1)求a 与b 的值;

(2)求函数f (x )的单调递增区间;

(3)若对任意x ∈[-1,2],f (x )

[例2] 已知函数f (x )(1)求函数f (x )的单调区间;

(2)当a =-1时,证明:在(1,+∞)上,f (x )+2>0; (3)求证:ln 22·ln 33·ln 44·…·ln n n <1

n

(n ≥2,n ∈N *).

第一步:根据待证不等式的结构特征,定义域以及不等式的性质,将待证不等式化为简单的不等式; 第二步:构造函数;

第三步:利用导数研究该函数的单调性或最值; 第四步:根据单调性或极值得到待证不等式.

——————————————————————————————————————

2.已知函数f (x )=e x (ax 2+x +1). (1)设a >0,讨论f (x )的单调性;

(2)设a =-1,证明:对任意的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<2.

[例3] 已知f (x )=x 2+3x +1,g (x )=a -1

x -1+x .

(1)a =2时,求f (x )和g (x )的公共点个数;

(2)a 为何值时,f (x )和g (x )的公共点个数恰为两个.

—————

—————————————

1.利用导数研究高次式、分式、指数式、对数式方程解的个数问题的一般思路

(1)将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y =k )在该区间上交点问题; (2)利用导数研究出该函数在该区间上单调性、极值(最值)、端点值等性质,进而画出其图像; (3)结合图像求解.

2.证明复杂方程在某区间上有且仅有一解的步骤 第一步:利用导数证明该函数在该区间上单调; 第二步:证明端点值异号.

——————————————————————————————————————

3.已知函数f (x )=x (x 2-ax -3).

(1)若f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =-1

3

是f (x )的极值点,求f (x )在区间[1,4]上的最大值;

(3)在(2)的条件下,是否存在实数b ,使得函数g (x )=bx 的图像与函数f (x )的图像恰有3个交点?若存在,请求出实数b 的取值范围;若不存在,请说明理由.

(1)利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参数不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数最值问题.

(2)使用导数的方法研究不等式问题的基本方法是构造函数,通过导数的方法研究这个函数的单调性、极值,利用特殊点的函数值和整个区间上的函数值的比较得到不等式,注意在一些问题中对函数的解析式进行适当的变换再构造函数.

(3)使用导数的方法研究方程的根的分布,其基本思想是构造函数后,使用数形结合方法,即先通过“数”的计算得到函数的单调区间和极值,再使用“形”的直观性得到方程根的分布情况.

限时:40分钟 满分:56分

1.(满分14分)设a ≥0,函数f (x )=[x 2+(a -3)x -2a +3]e x ,g (x )=2-a -x -4x +1

. (1)当a ≥1时,求f (x )的最小值;

(2)假设存在x 1,x 2∈(0,+∞),使得|f (x 1)-g (x 2)|<1成立,求a 的取值范围.

2.(满分14分)已知函数f (x )=1

2x 2+a ln x (a ∈R ).

(1)若a =-1,求f (x )的单调递增区间;

(2)当x >1时,f (x )>ln x 恒成立,求实数a 的取值范围.

3.已知函数f (x )=ln x +k

e x

(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的

切线与x 轴平行.

(1)求k 的值; (2)求f (x )的单调区间;

(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数.证明:对任意x >0,g (x )<1+e -

2.

4.(满分14分)已知定义在区间[-2,t ](t >-2)上的函数f (x )=(x 2-3x +3)e x . (1)当t >1时,求函数y =f (x )的单调区间; (2)设m =f (-2),n =f (t ),试证明m

(3)设g (x )=f (x )+(x -2)e x ,当x >1时,试判断方程g (x )=x 的根的个数.

高中数学函数与导数综合复习

高二数学函数与导数综合复习 一、知识梳理: 1.基本初等函数的导数公式和导数的四则运算法则: 常用函数导数公式:='x ; =')(2 x ;=')(3 x ;=')1 (x ; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ; =')(x a ; =')(x e ;=')(log x a ;=')(ln x ; 导数运算法则:(1)/ [()()]f x g x ±= ;(2))]'()([x g x f ?= ; (3)/ ()[ ]() f x g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________; (2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间 4. 利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二.巩固练习: 1.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时 速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒 2. 在0000()() ()lim x f x x f x f x x ?→+?-'=?中,x ?不可能 ( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 3. 已知曲线3 2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( ) A .2 B .4 C .6+6x ?+2(x ?)2 D .6 4. 设)(x f y =存在导函数,且满足12) 21()1(lim 0 -=??--→?x x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线 斜率为( ) A .2 B .-1 C .1 D .-2

导数的综合应用教学设计(正式版)

导数的综合应用 一、教材分析 我们在复习过程中,发现学生对于导数能够运用,但在具体运用过程中,问题比较多的是如何运用导数去解决问题的手段或解决问题的途径不够宽,或解法不是很灵活。因此,我通过本堂课进一步巩固这部分内容,利于学生进一步地掌握导数知识的运用:确定单调性、求极值、求最值、求切线的斜率从而解决恒成立与不等式问题应用。二、学情分析 根据教材结构与内容分析,结合高考考纲要求,立足学生的认知水平,制定如下教学目标和重、难点。 三、教学目标 知识与技能: 通过高考中涉及到导数的常见题型,在学生掌握求曲线斜率,判断函数单调性,及如何求极值,最值的基础上,总结出两种常见题型。 过程与方法: 通过动手计算培养学生观察、分析、比较和归纳能力。 通过问题的探究体会数形结合,分离变量,构造函数的数学思想。 情感、态度与价值观: 通过常见题型的常见解决方法,是学生认识到解决有关导数的综合问题并不复杂,从而激发学生的学习兴趣。 四、教学重点、难点 教学重点:利用导数判断函数单调性,极值,最值。 教学难点:以导数为工具处理恒成立问题,及证明不等式。 教学过程 本节课教学过程主要分为:知识回顾,典例示范,知识小结,考点测评,高考赏析五个板块 【知识回顾】(重在对知识的进一步理解和掌握。有利于构建知识网络,回归教材而高于教材) 1.导数定义,判断函数单调性,求极值,最值的方法。 【注】由学生自己来归纳,目的是加强学生的印象。

2.课前热身: (1)已知直线 ax-by-2=0 与曲线 在点(1,1)处的切线互相垂直,则 = , (2)函数 , 在 上的最大值和最小值分别为 【注】(1)学生阅读并回顾知识要点,巩固基础。 (2)导数的几何意义,考察函数的单调区间、极值、最值等性质。这是导数运用过程中最常用的。 (3)注意极值不一定是最值,要考虑函数区间的开闭及单调性。 【典例示范】 例一:已知函数 (1)求f(x)的最小值。 (2)若对所有x 1都有 ,求实数a 的取值范围。 解析:需先求出定义域 【注】在求最值之前须讨论函数的定义域,利用分离变量的方法解决恒成立问题。这也是本节课的重点。 【注】当某区间只有一个极大(小)值时,该值就是最大(小)值 例二:已知向量 若函数在区间 上是增函数,求t 的取值范围。 解析: 由f(x)在(-1,1)上单调递增,可知 恒成立,即 移项有 令 只须求g(x)在 的最大值 . 3 y x =a b 32 23125y x x x =--+[]0,3()ln f x x x =≥()1f x ax ≥-'''min 10110,11()()()()()e e e x f e e f x f x f x f ><==- 且=lnx+1,令,则x>,则00,可知g(x)在1,+单调递增,所以g(x)(1)=1,得a 1g

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

导数的综合应用

导数的综合应用 ★★★高考在考什么 【考题回放】 1.(06江西卷)对于R 上可导的任意函数f (x ),若满足(x -1) f ' (x ) ≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2) ≤2f (1) C. f (0)+f (2) ≥2f (1) D. f (0)+f (2) >2f (1) 解:依题意,当x ≥1时,f ' (x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f ' (x )≤0,f (x )在(-∞, 1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C 2.(06全国II )过点(-1,0)作抛物线y=x 2+x +1的切线,则其中一条切线为 (A )2x+y +2=0 (B )3x-y +3=0 (C )x+y+1=0 (D )x-y+1=0 解:y '=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 02+x 0+1 于是切线方程为y -(x 02+x 0+1)=(2x 0+1)(x-x 0),因为点(-1,0)在切线上,可解得 x 0=0或-4,代入可验正D 正确。选D 3.(06四川卷)曲线y =4x-x 3在点(-1,-3)处的切线方程是D (A )y=7x+4 (B )y=7x+2 (C )y=x-4 (D )y=x-2 解:曲线y =4x-x 3,导数y '=4-3x 2,在点(-1,-3)处的切线的斜率为k=1,所以切线方程是y=x-2,选D. 4.(06天津卷)函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,则函数f (x )在开区间(a,b )内有极小值点( ) A .1个 B .2个 C .3个 D . 4个 解析:函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,函数f (x )在开区间(a,b )内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A. 5.(浙江卷)f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是 (A)-2 (B)0 (C)2 (D)4 解:f ' (x )=3x 2-6x =3x (x -2),令f ' (x )=0可得x =0或2(2舍去),当-1≤x <0时,f ' (x )>0,当0

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

导数的综合应用题型及解法(可编辑修改word版)

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 x 2 处有极大值,则常数c= 6 ; 1.已知函数y f (x ) x(x c)2 个 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线y x 3 x 2 1在P(-1,1)处的切线;(2)曲线y x2 过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 f (x) =x3+ax 2+bx +c, 过曲线y = f (x)上的点P(1, f (1)) 的切线方程为 3.已知函数 y=3x+1 f (x)在x =-2 处有极值,求f (x) 的表达式; (Ⅰ)若函数 y =f (x) 在[-3,1]上的最大值; (Ⅱ)在(Ⅰ)的条件下,求函数 y =f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围(Ⅲ)若函数 4.已知三次函数f (x) =x3+ax2+bx +c 在x =1 和x =-1 时取极值,且f (-2) =-4 . (1)求函数y =f (x) 的表达式; (2)求函数y =f (x) 的单调区间和极值; 5.设函数f (x) =x(x -a)(x -b) . f(x)的图象与直线5x -y - 8 = 0 相切,切点横坐标为2,且f(x)在x = 1 处取极值,(1)若 a, b 的值; 求实数 f (x) 总有两个不同的极值 (2)当b=1 时,试证明:不论 a 取何实数,函数 点.题型四:利用导数研究函数的图象 f / ( x) 的图象如右图所示,则 f(x)的图象只可能是( 6.如右图:是 f(x)的导函数, D )

3 (A ) (B ) (C ) (D ) y 1 x 3 4x 1个个个个 7. 函数 3 ( A ) 6 4 2 -4 -2 y o 2 4 -2 -4 6 4 2 x -4 -2 y o 2 4 -2 -4 x -4 6 y 6 y 4 4 2 2 y 2 4 x o x -2 -2 -2 2 4 -4 -4 8.方程 2x 3 6x 2 7 0个 (0,2)个个个个个个 ( B ) A 、0 B 、1 C 、2 D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围 f (x ) = - 1 x 3 + 2ax 2 - 3a 2 x + b ,0 < a < 1. 9. 设函数 3 (1)求函数 f (x ) 的单调区间、极值. (2)若当 x ∈[a + 1, a + 2] 时,恒有| f ' (x ) |≤ a ,试确定 a 的取值范围. 2 10. 已知函数 f (x )=x3+ax2+bx +c 在 x =- 3 与 x =1 时都取得极值(1)求 a 、b 的值与函数 f (x )的单调区间 (2)若对 x ∈〔-1,2〕,不等式 f (x ) 0,函数f (x ) = x 3 - ax 在[1,+∞) 上是单调函数. (1)求实数 a 的取值范围; (2)设 x 0 ≥1, f (x ) ≥1,且 f ( f (x 0 )) = x 0 ,求证: f (x 0 ) = x 0 .

导数综合讲义(教师版).pdf

导数综合讲义 第1讲导数的计算与几何意义 (3) 第2讲函数图像 (4) 第3讲三次函数 (7) 第4讲导数与单调性 (8) 第5讲导数与极最值 (9) 第6讲导数与零点 (10) 第7讲导数中的恒成立与存在性问题 (11) 第8讲原函数导函数混合还原(构造函数解不等式) (13) 第9讲导数中的距离问题 (17) 第10讲导数解答题 (18) 10.1 导数基础练习题 (21) 10.2 分离参数类 (24) 10.3 构造新函数类 (26) 10.4 导数中的函数不等式放缩 (29) 10.5 导数中的卡根思想 (30) 10.6 洛必达法则应用 (32) 10.7 先构造,再赋值,证明和式或积式不等式 (33) 10.8 极值点偏移问题 (35) 10.9 多元变量消元思想 (37) 10.10 导数解决含有ln x与e x的证明题(凹凸反转) (39) 10.11 导数解决含三角函数式的证明 (40) 10.12 隐零点问题 (42) 10.13 端点效应 (44) 10.14 其它省市高考导数真题研究 (45)

导数 【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应引起考生注意。 【基础知识整合】 1、导数的定义: f ' (x ) = lim f (x 0 + ?x ) - f (x 0 ) , f ' (x ) = lim f (x + ?x ) - f (x ) 0 ?x →0 ?x ?x →0 ?x 2、导数的几何意义:导数值 f ' (x ) 是曲线 y = f (x ) 上点 (x , f (x )) 处切线的斜率 3、常见函数的导数: C ' = 0 ; (x n )' = nx n -1 ; (sin x )' = cos x ; (cos x )' = -sin x ; (ln x )' = 1x ; (log a x )' = x ln 1 a ; (e x )' = e x ; (a x )' = a x ln a 4、导数的四则运算: (u ± v )' = u ' ± v ' ;; (u ?v )' = u ' v + v ' u ; (u )' = u 'v -2 v 'u v v 5、复合函数的单调性: f ' x (g (x )) = f ' (u )g ' (x ) 6、导函数与单调性:求增区间,解 f ' (x ) > 0 ;求减区间,解 f ' (x ) < 0 若函数在 f (x ) 在区间 (a , b ) 上是增函数 ? f ' (x ) ≥ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上是减函数 ? f ' (x ) ≤ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在增区间 ? f ' (x ) > 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在减区间 ? f ' (x ) < 0 在 (a , b ) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法

导数综合应用答案

11.导数的综合应用(含答案)(高二) 1.(15理科)已知函数()1ln 1x f x x +=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈, 时,()323x f x x ?? >+ ?? ?; (Ⅲ)设实数k 使得()33x f x k x ?? >+ ??? 对()01x ∈, 恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=, (Ⅱ)证明见解析,(Ⅲ)k 的最大值为2. 试题解析:(Ⅰ) 2 12 ()ln ,(1,1),(),(0)2,(0)011x f x x f x f f x x +''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y - =; (Ⅱ)当()01x ∈, 时,()323x f x x ?? >+ ??? ,即不等式3 ()2()03x f x x -+>,对(0,1)x ?∈成立,设 33 1()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则 4 2 2()1x F x x '=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ?∈,

3 ()2()3 x f x x >+ 成立; (Ⅲ)使()33x f x k x ?? >+ ??? 成立,()01x ∈, ,等价于3 1()ln ()013x x F x k x x +=-+>-,()01x ∈, ; 42 22 22()(1)11kx k F x k x x x +-'=-+=--, 当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意; 当2k >时,令4 02 ()0,(0,1)k F x x k -' == ∈, ()(0)F x F <,显然不成立, 综上所述可知:k 的最大值为2. 考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论. 2.(15年理科)设函数2 ()f x x ax b =-+. (1)讨论函数(sin )22 f x ππ 在(-,)的单调性并判断有无极值,有极值时求出极值; (2)记2 0000(),(sin )(sin )f x x a x b f x f x =-+-求函数在22 ππ (-,)上的最大值D ; (3)在(2)中,取2 000,D 14 a a b z b ===- ≤求满足时的最大值。 【答案】(Ⅰ)极小值为2 4 a b -;(Ⅱ)00||||D a a b b =-+-;(Ⅲ)1.

考点06 函数与导数的综合运用(1)(解析版)

考点06 函数与导数的综合应用(1) 【知识框图】 【自主热身,归纳提炼】 1、(2016南京学情调研)已知函数f (x )=1 3x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值 范围为________. 【答案】???? 32,4 【解析】因为函数f (x )在(1,2)上有极值,则需函数f (x ) 在(1,2)上有极值点. 解法 1 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1?(1,2),因此则需10,解得3 2

5章培优2 导数与零点、不等式的综合运用(精讲)(原卷版)

5章培优2导数与零点、不等式的综合运用 考点一零点问题 1.(2020·河南高三月考(文))已知函数()32 2312f x x x x m =--+.(1)若1m =,求曲线()y f x =在()() 1,1f 处的切线方程; (2)若函数()f x 有3个零点,求实数m 的取值范围.【一隅三反】 1.(2020·山西运城·)已知函数()()ln 21f x x ax a =-+∈R . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.

2.(2020·陕西安康·高三三模(理))已知函数()ln()(0)x a f x e x a a -=-+>. (1)证明:函数()'f x 在(0,)+∞上存在唯一的零点; (2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值. 3. (2020·甘肃武威)设函()()1f x x a nx x a =+-+,a R ∈.(1)设()()g x f x =',求函数()g x 的极值; (2)若1e a ,试研究函数()()1f x x a nx x a =+-+的零点个数.考点二导数与不等式 【例2】.(2021·湖南湘潭·月考(理))已知函数ln 1()x x f x e += .(1)求()f x 的最大值; (2)当1≥x 时,2(ln 1)x ax x e +<恒成立,求a 的取值范围.不等式恒成立求解参数范围的方法: (1)分离参数并构造函数解决问题; (2)采用分类讨论的方式解决问题.

【一隅三反】 1.(2019·广东湛江·高二期末(文))已知函数()(1)ln ()a f x x a x a R x =- -+∈.(1)当01a <≤时,求函数()f x 的单调区间; (2)是否存在实数a ,使()f x x ≤恒成立,若存在,求出实数a 的取值范围;若不存在,说明理由.2.(2020·黑龙江萨尔图·大庆实验中学高二期末(文))已知函数()ln (0)f x x x x =>. (1)求()f x 的单调区间和极值; (2)若对任意23(0,),()2 x mx x f x -+-∈+∞≥恒成立,求实数m 的最大值.3.(2020·安徽省含山中学月考(理))已知函数211()ln (,0)22 f x x a x a R a =--∈≠.(1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间; (3)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围. 5章培优2导数与零点、不等式的综合运用

函数与导数的综合应用

函数与导数的综合应用 命题动向:函数与导数的解答题大多以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,并与数学思想方法紧密结合进行深入考查,体现了能力立意的命题原则. 这几年,函数与导数的解答题一直作为“把关题”出现,是每年高考的必考内容,虽然是“把关题”,但是同其他解答题一样,一般都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难.从近几年的高考情况看,命题的方向主要集中在导数在研究函数、方程、不等式等问题中的综合应用. 题型1利用导数研究函数性质综合问题 例1 [2016·山东高考]设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ), 求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 解题视点 (1)求出g (x )的导数,就a 的不同取值,讨论导数的符号;(2)f ′(x )=ln x -2a (x -1),使用数形结合方法确定a 的取值,使得在x <1附近f ′(x )>0,即ln x >2a (x -1),在x >1附近ln x <2a (x -1). 解 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).则g ′(x )=1 x -2a =1-2ax x . 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x ) 单调递增; 当a >0时,x ∈??? ?0,1 2a 时,g ′(x )>0,函数g (x )单调递增, x ∈????12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为????0,12a ,单调减区间为??? ?1 2a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意. ②当01,由(1) 知f ′(x )在????0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,x ∈????1,1 2a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在??? ?1,1 2a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,1 2a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<1 2a <1,当x ∈????12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )在x =1处取得极大值,符合题意. 综上可知,实数a 的取值范围为????12,+∞. 冲关策略 函数性质综合问题的难点是函数单调性和极值、最值的分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 题型2利用导数研究方程的根(或函数的零点) 例2 [2017·全国卷Ⅰ]已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解题视点 (1)先求函数f (x )的定义域,再求f ′(x ),对参数a 进行分类讨论,由f ′(x )>0(f ′(x )<0),得函数f (x )的单调递增(减)区间,从而判断f (x )的单调性;(2)利用(1)的结论,并利用函数的零点去分类讨论,即可求出参数a 的取值范围. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a .

2019年高三一轮复习热点题型3.2课时3:导数与函数的综合问题(1)

例1设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有<0恒成立,则 解析x>0时?x?′<0,∴φ(x)= x 则F′(x)=cos x- 2 当x∈(0,)时,F′(x)>0,F(x)在[0,]上是增函数; 当x∈(,1)时,F′(x)<0,F(x)在[,1]上是减函数. 即sin x≥2 x. 课时3导数与函数的综合问题 题型一用导数解决与不等式有关的问题 命题点1解不等式 xf′(x)-f(x) x2 不等式x2f(x)>0的解集是() A.(-2,0)∪(2,+∞) C.(-∞,-2)∪(2,+∞)答案D B.(-2,0)∪(0,2) D.(-∞,-2)∪(0,2) ?f(x)?f(x) 为减函数,又φ(2)=0,∴当且仅当00, 此时x2f(x)>0. 又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数. 故x2f(x)>0的解集为(-∞,-2)∪(0,2). 命题点2证明不等式 例2证明:当x∈[0,1]时, 2 2x≤sin x≤x. 证明记F(x)=sin x- . 2 2 2x, ππ 44 ππ 44 又F(0)=0,F(1)>0,所以当x∈[0,1]时,F(x)≥0,2 记H(x)=sin x-x, 则当x∈(0,1)时,H′(x)=cos x-1<0, 所以H(x)在[0,1]上是减函数,

例 3 已知定义在正实数集上的函数 f(x)= x 2 +2ax ,g (x)=3a 2ln x +b ,其中 a>0.设两曲线 y ?2 3a x + 2a = .? x x 0 即有 b = a 2+2a 2-3a 2ln a = a 2-3a 2ln a. 令 h (t)= t 2 -3t 2ln t(t>0),则 h ′(t)=2t(1-3ln t). 于是当 t(1-3ln t)>0,即 00; 当 t(1-3ln t)<0,即 t >e 时,h ′(t)<0. 故 h (t)在(0,e )上为增函数,在(e ,+∞)上为减函数, 于是 h (t)在(0,+∞)上的最大值为 h (e )= e , 即 b 的最大值为 e 3 . (2)证明 设 F(x)=f(x)-g (x)= x 2 +2ax -3a 2ln x -b (x>0), 综上, 2 x ≤sin x ≤x ,x ∈[0,1] f ′(x)=x +2a , g ′(x)= , 则 F ′(x)=x +2a - = (x>0). 则 H(x)≤H(0)=0,即 sin x ≤x. 2 命题点 3 不等式恒成立问题 1 2 =f(x),y =g (x)有公共点,且在该点处的切线相同. (1)用 a 表示 b ,并求 b 的最大值; (2)求证:f(x)≥g (x)(x>0). (1)解 设两曲线的公共点为(x 0,y 0), 3a 2 x 由题意知 f(x 0)=g (x 0),f ′(x 0)=g ′(x 0), ?1x 2+2ax =3a 2 ln x +b , 即 2 0 0 3a 2 由 x 0+2a = ,得 x 0=a 或 x 0=-3a(舍去). 1 5 2 2 5 2 1 3 1 3 1 1 3 3 1 3 2 3 2 3 3 2 2 1 2 3a 2 (x -a )(x +3a ) x x

相关主题
相关文档 最新文档