当前位置:文档之家› 地铁列车控制模式

地铁列车控制模式

地铁列车控制模式
地铁列车控制模式

摘要:随着全国各大城市开始大力建设公共交通系统,尤其是具有大容量、高速度和高效率特点的城市轨道交通系统得到了充分的重视和长足的发展。地铁列车控制系统以安全为核心,以保证和提高列车运行效率为目标。系统在保证列车和乘客安全的前提下,通过调节列车运行间隔和运行时分,实现列车运行的高效和指挥管理的有序。

关键词:地铁列车控制系统;地铁列车控制模式

1.正常控制模式

1.1 列车进路控制

列车进路控制的原则:以联锁表为依据,输出进路控制命令。正常情况下atc系统根据列车运行时刻表进行正线进路的中心ats自动控制或设备集中站车站储存了当日时刻表的车站ats自动控制。必要时中心调度员可介入进行人工控制。在运营需要时中心与设备集中站经过一定的授与权和接受权手续后实现车站人工控制。当车站发现有危及行车安全的情况时,车站值班员可以采取措施,强行进入车站人工控制。运行需要或ats通道设备故障或中心故障时可降级为车站自动控制。

车站ats分机可以根据时刻表或接近列车的车次号及目的地号等信息进行列车进路的车站自动控制。通过联锁设备可以办理列车自动进路和自动折返进路。车辆段值班员人工办理进路因轨道空闲检测设备故障而不能办理进路时,可由车站值班员办理引导进路控制列车运行,此时的列车运行安全由司机来保证。

1.2 列车运行调整

ats子系统根据列车运行状态及车地通信设备提供的信息,实时对在线列车进行车次号更新、加车、减车等操作。列车运行偏离运行图时,应能自动对列车进行运行调整或提示调度员对在线列车实施运行调整,其中自动调整的主要手段为ato站间运行时分及atp/ato模式下的站停时分的调整。当因列车发生故障等原因造成运行大规模紊乱时,ats子系统应能提示调度员进行人工调整。人工调整主要包括:站停时分调整;增、减列车;列车始发、终到站变更等。ats子系统故障后,在恢复行车指挥功能的过程中,系统具有自动或辅助调度员使系统尽快投入运用的能力,包括在线列车检测与恢复、时刻表建立、列车跟踪恢复及进路控制恢复等处理。

1.3 列车站间运行及车站定点停车

系统根据线路条件、道岔状态、前方列车位置,控制列车以系统确定的安全速度运行或在必须停车的地点前方停车。由于系统判断列车在区间运行,因此由atp限制不能打开车门。若车门误打开,则atp报警并强迫列车停车。ato的停车控制功能可保证列车停在区间分界点前方一定位置或在前方列车或目标地点前方的安全防护距离以外停车。区间停车后,在atp 允许列车运行时,ato自动控制列车启动。列车依靠车站定位装置精确测定运行停车位置,ato控制列车制动,使其精确、平稳地停在设定的停车位置。在atc系统控制列车运行的情况下,列车在站台停稳、并进入规定的停车范围、欲开启车门的方位正确时,atp子系统发送开安全门和允许ato子系统向列车发送开左或右侧车门指令,ato子系统控制允许相应的车门自动打开或向司机提示应该开启的车门。无论是区间停车还是进站定点停车,ato均应保证控制的舒适度、停车过程的快速性。

1.4 车站发车

车站停车时间结束时,发车表示器显示0秒,指示司机发车。此时,可由司机控制关闭车门,车门、安全门全部关闭后,ato发车指示灯点亮,司机按压ato启动按钮后,列车自动由车站出发,列车进入区间后,发车表示器熄灭。若车门或安全门没有关闭,按压ato启动按钮动作无效,列车不能启动,发车命令无效。

1.5 行车交路折返站折返

列车自动折返由ato自动控制,并接受atp监控。列车在站停时间结束,发车表示器显示0秒时,司机控制关闭车门,车门、安全门全部关闭后,ato发车指示灯点亮,司机按压ato启动按钮后,列车自动启动,系统在保证安全的条件下,ato控制列车以线路允许的最高速度驶入折返线并在预定的停车点停车。停车后由司机进行列车换向操作。在联锁系统建立了折返进路、车载设备收到有效的atp信息后ato发车指示灯点亮,此时,司机按压ato启动按钮后,列车自动由折返线驶入新站台线并在预定的停车点停车,完成折返作业。

2.故障情况下控制模式

信号系统具有高的安全性和可靠性,凡涉及行车安全的设备必须满足故障-安全的原则,主要行车设备的计算机系统应采用多重冗余技术。当主用设备故障时能够自动切换至备用设备,并给出相应的报警信息,各设备之间的转换应确保系统的连续性(包括控制与显示)。

2.1 ats子系统故障下的控制方式

系统正常情况下为控制中心ats自动控制,各调度员工作站相互冗余,一台故障,可在其它调度员台上进行操作。如果控制中心的ats子系统或两个中心至车站的通信通道完全故障,系统自动降级为车站自动控制。在车站自动控制方式下,车站ats分机可以根据时刻表或接近列车的车次号及目的地号等信息进行列车进路的车站自动控制。

2.2 atp/ato子系统故障下的控制方式

(1)轨旁atp/ato计算机故障

轨旁atp/ato计算机故障,其管辖范围内(故障区域)的列车不能按照ato和atp模式按移动闭塞方式运行,列车按非限制人工驾驶模式或atp切除模式人工驾驶运行。

(2)车载设备故障

车载ato设备发生故障,列车应按atp模式运行;车载atp设备发生故障,列车应按非限制人工驾驶模式或atp切除模式。故障列车应尽快退出运营,回段检修。

(3)站间闭塞控制方式

信号在车站计算机联锁设备功能中增加了车站控制下可以办理自动站间闭塞的功能,作为轨旁atp/ato计算机故障、车载atc设备故障及非atc列车的区间运行方式。

2.3 计算机联锁子系统故障下的控制方式(1)车站联锁设备故障

车站计算机联锁设备通常采用多重冗余结构,可靠性高,一台设备故障时不影响系统正常运行。如果多台设备同时故障。其控制范围内将丧失进路控制、联锁和atp,at0功能。此时列车的安全完全由人工保证。

(2)车辆段联锁设备故障

车辆段采用计算机联锁设备,当联锁设备故障时,仅能利用人工引导列车运行,此时行车安全由行车组织保证。

3 列车驾驶模式

atc系统具有四种驾驶模式:ato模式(自动运行驾驶模式)、atp模式(atp速度监控下的人工驾驶模式)、限速人工驾驶模式、非限制人工驾驶模式。列车在正线、折返线按正常运行方向进行追踪或折返作业时,应以ato模式为常用模式,当ato设备故障或其它原因需要时,可以改为atp模式,这两种驾驶模式均为正常运行模式,而限速人工驾驶模式和非限制人工驾驶模式均为非正常运行模式。

(1)ato模式

该模式下,ato子系统根据atp提供的地面速度限制信息、目标速度、目标距离、列车位置等信息,实现区间的列车停车后的自动启动及自动运行、车站定点停车、行车交路折返站或固定小交路折返站的有人监督下的自动折返。

(2)atp模式

该模式下,由司机根据列车目标速度、目标距离指示驾驶列车,atp子系统监督列车的

实际运行速度,一旦超速,将有报警,并采取必要的安全制动措施,以保证列车运行的安全。

(3)限制人工驾驶模式

该模式用于无atp地面速度信息的地点(如车辆段)及正线atp地面设备故障时的超速防护,由司机人工驾驶列车,其运行速度不能超过规定的速度,一旦超速,车载atp将实施安全性停车控制使列车停车。

(4)非限制人工驾驶模式

该模式为atp切除状态。用于自动站间闭塞方式行车或其它特殊运营情况,该模式列车运行无超速防护功能,列车的运行安全由司机负责。

(5)列车折返作业的驾驶方式

在折返站控制列车折返可以有三种方式:有人驾驶折返方式、有人监督下的自动折返及无人驾驶自动折返方式。有人驾驶折返方式是在ato模式和atp模式下,有司机参与下的列车折返作业。有人监督下的自动折返是在ato模式下,列车可在有人监督的情况下,从到达的站台自动驶入折返线,并自动从折返线掉头驶出,进入准备发车的站台自动停车。

无人驾驶自动折返是在朋的模式下,列车到达站台,在规定的站停后,司机关闭车门,下车后按压设置在站台上的自动折返按钮,列车在无人驾驶的情况下,从到达站台自动驶入折返线,并自动从折返线掉头驶出,进入准备发车的站台,自动打开车门。

结论

地铁列车控制系统以安全为核心,以保证和提高列车运行效率为目标。本文研究了地铁列车的正常模式、故障模式以及列车的驾驶模式,为实现地铁列车的运行指挥管理提供理论依据。

地铁列车控制模式

摘要:随着全国各大城市开始大力建设公共交通系统,尤其是具有大容量、高速度和高效率特点的城市轨道交通系统得到了充分的重视和长足的发展。地铁列车控制系统以安全为核心,以保证和提高列车运行效率为目标。系统在保证列车和乘客安全的前提下,通过调节列车运行间隔和运行时分,实现列车运行的高效和指挥管理的有序。 关键词:地铁列车控制系统;地铁列车控制模式 1.正常控制模式 1.1 列车进路控制 列车进路控制的原则:以联锁表为依据,输出进路控制命令。正常情况下atc系统根据列车运行时刻表进行正线进路的中心ats自动控制或设备集中站车站储存了当日时刻表的车站ats自动控制。必要时中心调度员可介入进行人工控制。在运营需要时中心与设备集中站经过一定的授与权和接受权手续后实现车站人工控制。当车站发现有危及行车安全的情况时,车站值班员可以采取措施,强行进入车站人工控制。运行需要或ats通道设备故障或中心故障时可降级为车站自动控制。 车站ats分机可以根据时刻表或接近列车的车次号及目的地号等信息进行列车进路的车站自动控制。通过联锁设备可以办理列车自动进路和自动折返进路。车辆段值班员人工办理进路因轨道空闲检测设备故障而不能办理进路时,可由车站值班员办理引导进路控制列车运行,此时的列车运行安全由司机来保证。 1.2 列车运行调整 ats子系统根据列车运行状态及车地通信设备提供的信息,实时对在线列车进行车次号更新、加车、减车等操作。列车运行偏离运行图时,应能自动对列车进行运行调整或提示调度员对在线列车实施运行调整,其中自动调整的主要手段为ato站间运行时分及atp/ato模式下的站停时分的调整。当因列车发生故障等原因造成运行大规模紊乱时,ats子系统应能提示调度员进行人工调整。人工调整主要包括:站停时分调整;增、减列车;列车始发、终到站变更等。ats子系统故障后,在恢复行车指挥功能的过程中,系统具有自动或辅助调度员使系统尽快投入运用的能力,包括在线列车检测与恢复、时刻表建立、列车跟踪恢复及进路控制恢复等处理。 1.3 列车站间运行及车站定点停车 系统根据线路条件、道岔状态、前方列车位置,控制列车以系统确定的安全速度运行或在必须停车的地点前方停车。由于系统判断列车在区间运行,因此由atp限制不能打开车门。若车门误打开,则atp报警并强迫列车停车。ato的停车控制功能可保证列车停在区间分界点前方一定位置或在前方列车或目标地点前方的安全防护距离以外停车。区间停车后,在atp 允许列车运行时,ato自动控制列车启动。列车依靠车站定位装置精确测定运行停车位置,ato控制列车制动,使其精确、平稳地停在设定的停车位置。在atc系统控制列车运行的情况下,列车在站台停稳、并进入规定的停车范围、欲开启车门的方位正确时,atp子系统发送开安全门和允许ato子系统向列车发送开左或右侧车门指令,ato子系统控制允许相应的车门自动打开或向司机提示应该开启的车门。无论是区间停车还是进站定点停车,ato均应保证控制的舒适度、停车过程的快速性。 1.4 车站发车 车站停车时间结束时,发车表示器显示0秒,指示司机发车。此时,可由司机控制关闭车门,车门、安全门全部关闭后,ato发车指示灯点亮,司机按压ato启动按钮后,列车自动由车站出发,列车进入区间后,发车表示器熄灭。若车门或安全门没有关闭,按压ato启动按钮动作无效,列车不能启动,发车命令无效。 1.5 行车交路折返站折返

城市轨道交通列车驾驶 模块8 习题答案

模块8 课后习题参考答案 1.简述非正常情况下行车的基本原则和方法 答:非正常情况下行车组织是相对于正常情况行车组织而言的,主要是由于设备故障、火灾、接触网停电、恶劣天气等原因不能继续采用正常情况下行车组织方法组织轨道交通行车。城市轨道交通一般都采用先进的设备,自动化程度较高,正常情况时行车组织作业主要是利用设备监控列车运行。目前的城市轨道交通系统广泛的投入使用先进的设备,故障的概率很小,因此一旦出现故障,就是考验各级行车人员的事故处理能力及应变能力的时刻。 城市轨道交通列车在非正常情况行车的基本原则主要有以下两点: ①车辆设备故障时,驾驶员应在第一时间了解判明故障,及时处理并报行车调度员。如需到客室处理故障,驾驶员离开驾驶室前应报行车调度员,得到同意后再到客室处理。 ②其他设备情况影响列车运行时,驾驶员应立即报告行车调度员,听从行车调度员指挥,列车在区间应尽量维持进站,在车站应及时打开屏蔽门、车门,必要时要求车站协助。在非正常情况下,驾驶员要保持沉着冷静,按照操作流程处理,防止事态的进一步扩大2.简述城市轨道交通列车在非正常情况下行车时应注意的薄弱环节。 答: 城市轨道交通列车驾驶员在非正常情况下行车时应注意的薄弱环节主要有以下几个 1.正线采用降级模式:SM-C、SM-I、RM、或NRM驾驶列车 2.车辆段调车及转线作业 3.试车线调试 4.驾驶员协助工程车驾驶员调动列车作业 5.旁路开关使用措施 6.终点站折返作业 7.站台作业 8.开关屏蔽门、车门作业 9.人工折返 3.简述特殊情况下行车应注意的事项。 答:列车反方向运行。正常情况下,列车按正方向运行,但在特殊情况下,可组织列车反方向运行。所谓列车反方向运行是指下行列车在上行线运行或上行列车在下行线运行的情形。列车反方向运行,应按规定程序进行审批,以行车调度员的调度命令下达执行。行车调度员应对反方向运行列车重点监控,确保行车安全。 切除ATP采用URM模式运行 ATP设备故障需切除ATP采用URM模式(或NRM模式)运营时司机必须得到行调命令后方可切除ATP,严禁自行切除ATP。 检修施工时列车运行 除了必须中断列车运行的设备抢修和必须利用列车间隔来排除设备故障外,城市轨道交通的检修施工作业原则上安排在非运营时间进行。在确认进行夜间检修施工时,行车调度员既要根据检修施工计划的安排,保证检修施工作业能顺利完成,又要确保次日运营能正常进行。 封锁区间的列车开行 所谓的封锁区间是指由于施工原因或者其他原因在指定的区间,指定的时间内禁止列车

地铁屏蔽门结构工程分析

地铁屏蔽门结构工程分析 发表时间:2018-12-17T16:48:00.323Z 来源:《基层建设》2018年第33期作者:顾雷 [导读] 摘要:地铁屏蔽门系统是一项集土建、机械、钢化玻璃、电子和信息等学科于一体的高科技产品,具有保护乘客安全、节约能耗、改善候车环境的功能。 苏州市轨道交通集团有限公司运营分公司 摘要:地铁屏蔽门系统是一项集土建、机械、钢化玻璃、电子和信息等学科于一体的高科技产品,具有保护乘客安全、节约能耗、改善候车环境的功能。随着城市轨道交通建设的发展,屏蔽门系统逐渐成为地铁建设中不可或缺的重要设备之一。本文着重阐述了屏蔽门系统结构组成、功能及其社会、经济效益,并指出不同城市要根据不同的线路与车站进行分析定位,以确定选择加装不同结构形式的屏蔽门系统。 关键词:地铁屏蔽门系统;全高屏蔽门;半高屏蔽门;安全 地铁屏蔽门系统是一项集土建、机械、钢化玻璃、电子和信息等学科于一体的高科技产品,安装于地铁站台边缘,将站台和隧道区间隔开,设有与列车门相对应,可多级控制开启与关闭滑动门的连续屏障。地铁屏蔽门分为全封闭式屏蔽门、开式全高屏蔽门和开式半高屏蔽门。 除了保障了列车、乘客进出站时的安全之外,屏蔽门还可以有效减少空气对流造成的站台冷热气的流失,降低列车运行产生的噪音对候车环境的影响。地铁屏蔽门系统的应用,能够使空调设备的负荷减少35%以上,减少车站空调系统的年运行费用30%,有明显的节能效果。 地铁通风与空调系统应结合地铁的运输能力、当地的气候条件、人员舒适性要求和运行及管理费用等因素进行技术综合比较,作为确定车站是否设置屏蔽门的依据。 1.地铁屏蔽门系统介绍 1.1地铁屏蔽门系统分类 地铁屏蔽门系统按照其结构形式的不同,分为全封闭式屏蔽门、开式全高屏蔽门和开式半高屏蔽门。全封闭式屏蔽门可以较好地减少空气对流造成的站台冷热气的流失,一般用于有空 调节能要求的地下站台;全高屏蔽门与屏蔽门结构形式相似,只是其上部不封闭,门体下部可以根据需要设置通风口,通过借助地铁活塞风对站台进行空气置换;半高屏蔽门主要应用于地面站、高架站及旧线改造加装,具有设备自重轻、安装接口少、维护方便等特点。 1.2地铁屏蔽门系统结构组成 屏蔽门系统结构包括门体结构和门机系统;门体结构由承重结构、顶箱、滑动门、固定门、应急门、端门及门槛等组成。承重结构包括底部支承部件、门机梁、立柱、顶部自动伸缩装置等部分,能够承受屏蔽门的垂直载荷、通风系统产生的风压、活塞风形成的正负方向水平载荷、乘客挤压力和地震、震动等载荷。顶箱由铰接前盖板、后盖板及门楣等组成,内部装设门机系统等部件。前盖板上设有盖板锁,盖板周边有橡胶密封条,当盖板关闭锁紧后,形成完整的封闭腔体,有效防护顶箱内电气设备。滑动门由玻璃、门框、门吊挂连接板、门导靴、手动解锁装置等组成。正常情况下,滑动门是乘客上下列车的通道,也是紧急情况下,列车到站后乘客的疏散逃生通道。固定门由玻璃和门框等组成。通过螺栓连接在结构立柱上,固定门不可开启是站台与列车运行区域隔离的屏障之一。应急门由玻璃、门框、转动铰轴、推杆锁等组成。应急门是紧急情况下故障列车进站后,列车车门无法对准滑动门时,乘客进出列车的疏散逃生通道。门体中部装有推杆解锁装置,乘客可以推压推杆将门打开;在站台侧,工作人员也可以使用专用钥匙解锁开门。端门由玻璃、门框、闭门器、门锁和手动解锁装置等组成。端门设置在站台两端屏蔽门与站台设备房外墙之间,作为站台到区间隧道和设备房区域的进出通道,也是紧急情况下,乘客从隧道逃生疏散到站台的通道。门槛包括固定门门槛和滑动门门槛,表面设有防滑齿槽,具有防滑及耐磨的功能。门槛结构中设有滑动导槽,与滑动门导靴配合辅助导向。门机系统由电机及减速箱、传动装置组成,采用直流无刷电机,电机轴与减速箱为一体化设计防护等级高、免维护,减速箱输出轴装有同步驱动带轮。 传动装置由皮带和滚轮挂板等组成,皮带选用重载齿形阻燃橡胶皮带,确保两扇门运动同步、稳定;滑动门通过滚轮挂板悬挂在导轨上,沿导轨水平滑动开启和关闭。 2.地铁屏蔽门系统功能探讨 2.1安全性 地铁屏蔽门安装于地铁站台的边缘,将站台与隧道区间完全隔离。当列车到达站台时,列车车门与屏蔽门的滑动门正好对齐并同时开启,乘客上下列车后,列车车门与屏蔽门的滑动门又同时关闭,屏蔽门重新形成一道完全封闭的屏障将站台与隧道区间隔离,列车开动驶离站台。因此地铁屏蔽门可以有效防止乘客跌落轨道而发生危险,同时也防止乘客物品掉落轨道影响地铁列车的正常运营。另外,地铁屏蔽门系统可根据需求加装障碍物探测传感器,在滑动门关闭后传感器启动检测,一旦有障碍物存在于列车与屏蔽门之间的缝隙,屏蔽门系统障碍物探测功能开启,传感器将发出的信息给信号系统阻止列车驶离站台,同时系统将控制滑动门反向开启,可以有效地减少了夹人夹物的安全隐患。 2.2节能性 由于地下车站和隧道区间是长条形的地下土建,只有车站的出入口、通风亭和隧道洞口与室外相通,因此需要安装环控系统来确保乘客安全、舒适以及设备使用安全。设置屏蔽门后,车站候车区与隧道区间完全隔开,避免了环控系统空调冷气流入隧道,同时减少隧道区间的热量进入候车区,并且减少站台出入口由于列车活塞作用吸入大量新风所带来的负荷。既降低了能量损耗,又减少了环控设备的容量和数量。据2012年地铁行业运营报告显示,使用屏蔽门系统可降低环控系统的空调能耗约35%以上,减少车站空调系统的年运行费用30%,并且减少空气污染,有效保护环境。 2.3降低日常运营成本 地铁屏蔽门系统是现代化地铁工程的必备设施,乘客跳下轨道捡拾物品或不小心从站台跌落轨道的险情也时有发生,为保证乘客安全,应该沿地铁站台边缘设置,将列车与地铁站台候车室隔离。地铁安装屏蔽门系统后,不仅可以防止乘客跌落或跳下轨道而发生危险,让乘客安全、舒适地乘坐地铁,而且屏蔽门系统作为一种高科技产品所具有的节能、环保和安全功能,减少了站台区与轨行区之间冷热气

现代地铁屏蔽门电气控制系统

现代地铁屏蔽门电气控制系统 引言:地铁屏蔽门系统是典型的现代化地铁工程必备机电一体化高科技产品设施,沿地铁站台边缘都必须有它的设置。它的功能是将列车与地铁站台候车室隔离,降低车站空调通风系统的运行能耗、减少了列车运行噪音与活塞风对车站的影响。同时在设计上对乘客跌落或跳下轨道而发生危险也要做到充分考虑,达到让乘客乘坐地铁安全、舒适的目的。屏蔽门系统要求节能、环保和安全功能,本文主要阐述了地铁屏蔽门控制系统的构成和功能、对现场总线技术在其系统中的应用、屏蔽门系统与其他相关专业接口问题。 关键词:构成、功能、继承集成、现场总线、接口。 1现代地铁屏蔽门电气控制系统构成 地铁屏蔽门电气控制系统主要由主控机或称中央接口盘(PSC)、站台端头控制盒与就地控制盘(PSL)、门机控制器或称门控单元(DCU)、以及操作指示盘(PSA)、声光告警装置、站台控制开关(PCS)、总线网络等组成。其中主控机(PSC)是由主监视系统(MMS)、两个单元控制器(PEDC)、接线端子、接口设备及控制配电回路组成。典型站的配置一般有一个中央接口盘(PSC)与两个就地控制盘(PSL)以及每扇滑动门一个门控单元(DCU)组成的。 2现代地铁屏蔽门电气控制系统系统功能 2.1、具有控制功能。 系统级控制(SIG)、站台级控制(PSL)、手动操作控制以及火灾模式(IBP)组成屏蔽门控制系统控制功能。其中手动操作控制是优先级最高的,但是系统级是最低的。进行低级别的操作,必须只先执行完优先级的操作。由信号系统(SIG)直接对屏蔽门进行控制的方式称为系统级控制;在站台,列车驾驶员或者站务人员通过就地控制盘(PSL)对屏蔽门进行“开/关门”的控制方式称为站台级控制(PSL);站台人员或乘客对屏蔽门进行的操作称为手动操作控制;为避免发生火灾时,车站环控系统还有执行火灾模式控制。 2.2具有监视功能。中央接口盘(PSC)核心部分是主监视系统(MMS),主监视系统(MMS)通过监视单元控制器(PEDC)、门控单元(DCU)、电源系统、主控系统(MCS)与系统维修终端(SMT)的通讯来完成每侧屏蔽门单元相关信息的集成来完成收集PSC,PSL,IBP 以及屏蔽门电源的信息、通过内部屏蔽门网络收集全部DCU信息、提供维修数据、容许对DCU参数进行修改、容许下载新的DCU软件、把屏蔽门数据通过光纤送到MCS、屏蔽门故障警报储存,屏蔽门正常系统运行记录、MMS的储存采用硬盘。储存量满足信息储存要求、打印数据、MMS能储存DCU的故障诊断信息、MMS从MCS下载GPS时钟等十几种功能。

成都地铁线路图最新版

成都地铁线路图最新版

————————————————————————————————作者:————————————————————————————————日期:

成都地铁线路图最新版 成都地铁是中国四川省成都市的城市轨道交通系统。于2005年12月正式开工建设,预计2010年地铁1号线一期工程建成通车。 成都地铁是中国四川省成都市的城市轨道交通系统。于2005年12月正式开工建设,预计2010年地铁1号线一期工程建成通车。成都是中国西部第1座开工建设地铁的城市。成都地铁由成都地铁有限责任公司负责建设与管理。成都地铁的标识由“急驰的列车、弯曲的隧道、飞扬的蜀锦、连绵的蜀山、柔美的蜀水”等意象演变而来,目前的宣传口号为:“成都地铁,生活一脉”。 成都地铁线路图最新版

成都地铁1号线大丰-友谊村-凤凰山-北三环-红花堰-火车北站-人民北路-文武路-骡马市-天府广场-锦江宾馆-小天竺-省体育馆-倪家桥-桐梓林-火车南站-南三环-新益州-孵化园-世纪城-科技园-府河站-华阳广都 全长31.6km,设23座车站。其中,地下线长约22.44km,地上线长约9.16km;高架车站5座,地下车站18座 成都地铁2号线郫县客运中心-郫县北大街-红光镇-犀浦恒山路-犀浦兴业街-万福村-金卉路-蜀汉路西-黄忠小区-蜀汉路东-白果林-中医附院-通惠门-人民公园-天府广场-春熙路-东门大桥-牛王庙-牛市口-五福桥-沙河堡-洪河-大面-龙泉书房村-龙泉音乐广场 线路全长为50.65km,设26座车站。其中,地下线长约为17.45km,地上线长约为33.2km;高架车站11座,地下车站15座 成都地铁3号线新都红星站-新都电子路-天回镇-陆军总医院-动物园-驷马桥-李家沱-游乐园-红星路-春熙路-新南门-省体育馆-衣冠庙-高升桥-红牌楼-太平园-武兴路-金兴路-接待寺-棠湖公园-双流环城路-双流板桥 线路全长为49.28km,设车站22座。其中,地下线长约15.59km,地上线长约33.69km;高架站11座、地下站11座 成都地铁4号线温江杨柳河-温江花博园-涌泉-康河-红碾村-苏坡桥-金沙车站-铁门坎-中医附院-商业街-骡马市-红星路-天祥寺-玉双路-万年场-建材路-十陵-十陵跃进村-西河镇 线路全长38.9km,设车站19座。其中,地下线长约20.21km,地上线长约为18.69km;高架车站8座,地下车站11座 成都地铁5号线驷马桥-火车北站-沙湾-西门车站-中医附院-大石路-高升桥-永丰立交-神仙树-石羊场-青河村-民乐村-华阳江河 线路全长24.63km,设车站13座。其中,地下线长约17.9km,地上线长约6.73km;高架车站2座,地下车站11座 成都地铁6号线沙湾-人民北路-梁家巷-李家沱-建设路-玉双路-牛王庙-顺江路-成仁路-金象花园-琉璃场-中和镇-四河村 线路全长22.05km,设车站13座。其中,地下线长约15.5km,地上线长约6.55km;高架车站2座,地下车站11座

地铁列车门控系统动作原理

门控系统动作原理2011 预备知识 信号设备: ATC设备 轨旁ATC设备 1.STIB信标Static Train Initial Beaconing 静态列车初始化信标: 位于线路中间,长4米,黄色,位于每个站台正方向的头部 和折返信号机前方以及自出入库线上从停车场进入正线的信号 机前方,STIB信标主要用来对车载SACEM系统进行初始化。 2.MTIB信标Mobile Train Initial Beaconing 动态列车初始化信标:是由两个RB组成,相隔21米, 只有区间有。MTIB信标有三个作用: 对车载SACEM系统进行初始化;定 位列车;标准编码里程器。 3.S-BOND: 安装在区间内,用于向列车发送轨旁信息。 4.RB信标Relocate Beaconing 重定位信标: 位于线路中间,长53厘米,黄色,站台和区间都有。

RB信标主要为车载SACEM系统进行定位所用。 5.PEP紧急停车按钮Platform Emergency Pushbutton 站台紧急 (停车)按钮: 位于车站站台上,每侧站台都有2个:头部和尾部各一个。 当发生危及行车安全时,由车站站务员敲碎玻璃,将按钮按下, 列车紧急停车,确保行车安全。(切除ATC状态下列车不停车) 车载ATC初始化 在STIB信标上的初始化: 当列车停在STIB上方,列车会自动读取STIB信息,此时DDU上的ATP,RMO,ATO三灯会同时闪烁,提示司机等待,2到3秒后,一旦STIB上的初始化步骤完成,DDU上的ATP 灯、ATO灯稳定绿色。这时如果信号机开放,司机可以根据速度表上的目标速度以ATO模式驾驶列车。但如果在车站STIB上初始化时ATO方式发车无效,此时司机须以ATP手动方式驾驶到下站后才能将模式开关拨到ATO档,按压启动控制按钮,列车自动驾驶。 在MTIB信标上的初始化: 列车的初始化还可以在MTIB信标上进行。列车以RMO模式越过第一个MTIB信标。几秒后,一旦初始化步骤完成,DDU上的ATP灯亮稳定绿色,ATO灯绿闪,这时候司机继续以RMO方式运行,当列车越过前方的S-Bond后,DDU上的ATO灯亮稳定绿色,RMO灯灭灯。司机可以ATP模式继续驾驶列车。到下一站后将模式开关拨到ATO档,按压启动控制按钮,列车自动驾驶。 开关门作业及发车 当列车对准位后(其精度为士0.5m)相对应站台侧的开左门或开右门灯点亮,此时司机可以按下该侧的开门按钮开门。如允许开左/右门灯不亮司机可以使用洗车模式开门。 当车站发车表示器白色灯光闪烁时,司机可以关门,同时DDU面板发车灯也绿色闪烁。当列车门关好后,DDU面板发车灯变成绿色稳定,此时司机可以以ATO或ATP手动发车。 当车站发车表示器不亮,同时DDU面板发车灯也红色,则代表列车扣车,此时司机不能发车,须等到车站发车表示器白色灯光闪烁时,司机才可以关门动车。

城市轨道交通列车运行控制研究

城市轨道交通列车运行控制研究 学生姓名:畅龙 专业班级:城市轨道交通控制 学号:08301942 指导老师:孙鑫

列车运行控制系统是保证城市轨道交通列车和乘客安全的,是实现列车快速、高密度、有序运行的关键系统,是整个系统中的重中之重。本文文介绍了国、内外基于通信的列车运行控制在我国地铁的应用,从列车的运行模式,到列车的定位停车,列车速度调整、自动折返等几个方面进行了阐述。 【关键词】:

城市轨道交通的诞生和发展已经有一百多年的历史了,城市轨道交通在当今城市交通中已经占据了重要的作用,城市轨道交通是现代化都市的重要基础设施,它安全、快速、舒适、便利地在城市范围内运送乘客,最大限度的满足城市市民的出行需要。在城市各种公共交通工具中,具有运量大、速度快、安全可靠、污染低、受其他交通方式的干扰小,对改变城市拥挤、乘车困难、行车速度慢行之有效的。 随着城市轨道交通行车间隔的缩短,依靠人工控制车速的传统运行方式已经不能满足城市客运的要求了,于是,以列车速度自动控制为中心的列车运行控制系统(Automatic Train Control,简称A TC)应运而生,随着计算机技术(Computer)、通信技术(Communication)和控制技术(Control)的飞跃发展,综合利用3C技术给列车的控制带来了很好的发展机遇,形成了基于无线双向大容量的车地通信模式,使对车辆的控制更加安全可靠。城市轨道交通列车运行控制主要包括列车运行中的驾驶模式、列车运行中的超速防护、列车的制动模式、列车定位停车、列车的折返、运行速度控制等来实现对列车整个运行过程中的控制。这样使列车更加安全可靠、高速有效的运行。

城市轨道交通列车驾驶基本操作

城市轨道交通列车驾驶基本操作 列车司机在出乘前应按照相关管理办法、操作指南、司机手册等要求做好运行前的准备工作,在作业中应注意如下事项: 1、找到对应列车后,先做到“库内动车四确认”。 2、按《列车检查作业标准》做好列车静态检查和动态测试,并控制作业时间。 3、检车时遇到列车因故障而无法进行出库作业时,及时跟车场调度员联系。 4、在车站出乘与交班司机交接时,要清楚列车的技术状态及线路限速与施工情况。 一、投入蓄电池 按下司机操纵台上的蓄电池合按钮,蓄电池即投入使用,通过司机室右侧屏上的蓄电池表可观察到蓄电池电压应该为DC 110 V。 如果蓄电池亏电,即蓄电池电压低于DC 80 V,将司机室继电器柜中的蓄电池欠压强投开关转换到“强制”位,蓄电池即可强制投入使用,当蓄电池电压高于DC 89 V时欠压继电器恢复,蓄电池可以正常投入使用。 二、激活头车 根据实际运行方向,将运行方向前端司控器钥匙开关转换到“开”位,尾端保持在“关”位,通过司机操纵台上TMS显示屏观察到列车有司机室占用显示,表示4016车司机室被占用。 三、控制受电弓 观察司机操纵台上的风压表,如果总风压力高于450 kPa,按下司机室右侧屏上的升弓按钮并持续2 s后松开,车顶上受电弓在8 s内升弓到位,通过司机操纵台上TMS显示屏观察到Mp车受电弓升弓显示,并且电压显示为1 500 V,同时右侧屏的网压表显示为1.5 kV。 如果总风压力低于450 kPa,可以通过控制动车客室下部的受电弓电动气泵来打风。具体操作为:按下司机室右侧屏上的升弓泵按钮,两个动车的电动气泵开始工作;当风压力高于750 kPa时电动气泵停止工作,这时辅助风缸的压力值

地铁列车自动驾驶系统分析与设计

文章编号:100021506(2002)0320036204 地铁列车自动驾驶系统分析与设计 黄良骥,唐 涛 (北方交通大学电子信息工程学院,北京100044) 摘 要:对地铁列车自动驾驶系统进行分析,并对列车自动驾驶系统的车载设备进行设计. 关键词:列车自动控制系统;列车自动驾驶系统;自动控制 中图分类号:U284.48 文献标识码:B System Analysis and Design of Autom atic T rain Operation on Metro HUA N G L iang-ji ,TA N G Tao (College of Electronics and Information Engineering ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :In this paper ,the existing metro Automatic Train Operation (A TO )systems have been analyzed in China and the design of an onboard A TO system is proposed. K ey w ords :Automatic Train Control (A TC );Automatic Train Operation (A TO );Automatic Con 2 trol 对于城市轨道交通系统高效率高密度的要求来说,列车自动控制系统(A TC )是必不可少的.A TC 系统包括:列车超速防护子系统(A TP :Automatic Train Protection )、列车自动驾驶子系统(A TO :Automatic Train Operation )、列车自动监控子系统(A TS :Automatic Train Supervision ). A TS 子系统可以实现对列车运行的监督和控制,辅助行车调度人员对全线列车运行进行管理.A TP 子系统则根据地面传递的信息计算出列车运行的允许安全速度,保证列车间隔,实现超速防护.A TO 子系统根据A TS 提供的信息,在A TP 正常工作的基础上,实现最优驾驶,提高舒适度、降低能耗、减少磨损. 国外已研制了适用于高密度城市轨道交通的列车自动驾驶系统,并在城市轨道交通系统中广泛应用.我国在此项技术上研究较少,20世纪80年代以来,北京地铁、上海地铁、广州地铁均以巨额代价引进了国外的设备,近年来,为缓解市内交通紧张、减少空气污染发挥巨大作用.地铁的发展建设受到国家及各大中城市的普遍重视,许多城市的地铁正在设计建设,为降低地铁投资,迫切需要国内研究具有自主产权的适于城市轨道交通的列车自动驾驶设备. 1 ATO 系统分析 1.1 AT O 工作原理[1,2] A TO 子系统能保证运行时间与定点停车,还能提高运行效率,提高舒适度,减少能耗.但作为A TC 的一个子系统,它的功能是要依靠A TC 各子系统协调工作共同完成的,缺少A TP 与A TS 子系统,A TO 将无法正常工作. 从运行中所起作用来说,A TO 主要实现驾驶列车的功能,能进行车速的正常调整,给旅客传送信息,进行车门的开关作业,但这只是执行操作命令,不能确保安全,这就需要A TP 来进行防护.A TP 起监督功 收稿日期:2001209218作者简介:黄良骥(1978— ),男,广东普宁人,硕士生.em ail :hliangji @https://www.doczj.com/doc/007443414.html, 第26卷第3期2002年6月 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Vol.26No.3J un.2002

地铁屏蔽门系统的设计及安全防护装置

地铁屏蔽门系统的设计及安全防护装置 在现代社会中,乘客对城市轨道交通的服务水平要求不断提高,对车站的乘车安全、车站环境、节能等方面的要求也在相应的不断提高。屏蔽门系统就是在这种环境下出现的。屏蔽门系统是设置在城市轨道交通车站站台边缘的一种安全装置,它将列车与车站站台候车区域隔离开来,在列车到达和出发时可自动开启和关闭,为乘客营造了一个安全、舒适的候车环境。同时,地铁屏蔽门与列车之间存在的间隙是屏蔽门系统中的一个不安全因素。为了消除这个安全隐患,保护装置也应运而生。 标签:城市轨道交通;屏蔽门系统;安全保护装置 1 屏蔽门系统简介 作为现代城市的重要交通设施,地铁以其安全、正点、舒适、快捷等优点,已经成为大城市公共交通的主要发展方向。屏蔽门系统是普遍应用在城市轨道交通中的一种安全装置。在地铁站台上安装屏蔽门是地铁建设发展的方向,它设置于地铁站台边缘,将站台和列车运行区域隔开,通过控制系统控制其自动开启,为乘客营造了一个安全、舒适的候车环境。地铁屏蔽门分为封闭式、开式和半高式,其中开式和半高式通常被叫作“安全门”,只起到安全和美观的作用。封闭式的通常才被人们叫作“屏蔽门”,也是最常用的一种。除保障了列车、乘客进出站时的绝对安全之外,地铁站台安装屏蔽门还可以大幅度地减少司机望次数,并且能有效地减少空气对流所造成的站台冷暖气的流失,降低列车运行产生的噪音对车站的影响,提供舒适的候车环境,具有节能、安全、环保、美观等功能。地铁屏蔽门系统,使空调设备的冷负荷大幅度减少,环控机房的建筑面积也相应减少,空调电耗明显降低了,在车站节能方面起到很大效果。 2 屏蔽门的组成及材质的选择 屏蔽门系统主要由门体、顶盒、站台端头控制盒(PSL)、主控机柜(PSC)、操作指示盘(PSA)及站台监控厅内PSAP等组成。 在每一侧站台上,对应一列编组六节列车的车门,共设24档滑动门和2扇端门,总长112.8米。屏蔽门包括滑动门(ASD)单元、固定门(FD)、应急门(EED)及端头门(MSD)。 屏蔽门直接面对乘客,是地铁车站占用面积最大、最醒目的设备。因此,对屏蔽门外表的装饰及制造工艺应有严格的要求。屏蔽门材料通常采用铝合金挤压型材外加表面处理或直接使用不锈钢钣金属件。 3 屏蔽门性能 (1)滑动门关闭时,能够探测到的障碍物的最小厚度为4mm。(2)滑动门

成都地铁一号线最新运行时间

成都地铁一号线最新运行时间 1 升仙湖∨ 6:30 -- 7:34 ∨ 21:30 -- 22:34 2 火车北站 6:32 7:31 21:32 22:31 3 人民北路 6:35 7:29 21:3 4 22:29 4 文殊院 6:37 7:26 21:37 22:26 5 骡马市 6:39 7:24 21:39 22:24 6 天府广场 6:41 7:22 21:41 22:22 7 锦江宾馆 6:44 7:20 21:43 22:20 8 华西坝 6:46 7:18 21:45 22:18 9 省体育馆 6:48 7:16 21:48 22:16 10 倪家桥 6:50 7:14 21:50 22:14 11 桐梓林 6:52 7:12 21:52 22:12 12 火车南站 6:54 7:09 21:54 22:09 13 高新 6:57 7:07 21:56 22:07 14 金融城 6:59 7:05 21:59 22:05 15 孵化园 7:01 7:03 22:01 22:03 16 世纪城 7:05 -- 7:00 ∧ 22:05 -- 22:00 ∧ 附:成都地铁1号线列车运行图调整情况(一)工作日运行图 1.首末班车时间升仙湖首车6:30 末车21:30 世纪城首车7:00 末车22:00 2.高峰时段 7:30—9:30,17:00—19:00。 3.列车间隔高峰6分50秒,平峰8分20秒。 4.站停时间天府广场、火车北站站停60秒,其他各站站停40秒。 (二)双休日(节假日)运行图 1.首末班车时间升仙湖首车6:30 末车21:30 世纪城首车7:00 末车22:00 2.高峰时段 9:30—18:30。 3.列车间隔高峰6分50秒,平峰8分20秒。 5.站停时间天府广场、火车北站站停60秒,其他各站站停40秒。

城市轨道交通列车驾驶模式

城市轨道交通列车驾驶模式 一、全自动驾驶模式——ATO模式 1、司机将模式开关1转换至“ATO”位置,在此模式下,列车的起动、加速、巡航、惰行、制动、精确停车、开门及折返等由车载信号设备自动控制,不需要司机操作。 2、列车在站台停稳,车载信号设备给出门允许信号后,车门及安全门自动打开。 3、停站时间结束后,需要人工关闭车门,门关好后,按下ATO发车按钮,列车启动。 4、车载信号设备连续监控列车的速度,并在超过规定速度时自动实施常用制动,在超过最大允许速度时自动实施紧急制动。 5、所有必要的驾驶信息将在司机室TOD屏上显示。 二、速度监控下的人工驾驶模式——ATP模式 1、司机将模式开关1转换至“ATP”位置,在此模式下,列车的速度、监控、运行及制动在车载信号设备限制下由司机操作。 2、开关车门由司机人工控制,但开车门仅在车载信号设备给出门允许信号时才允许操作。 3、车载信号设备连续监控列车速度,并在超过规定速度时实施常用制动。在超过最大允许速度时实施紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。 三、限速人工驾驶模式——RM模式 1、司机将模式开关1转换至“RM”位置,在此模式下,列车的速度、监控、运行及制动由司机人工控制。 2、车载信号设备不提供门允许信号,开关车门时需转至NRM模式。 3、车载信号设备仅对列车特定速度(25 km/h)进行超速防护,列车超速(大于25 km/h)时自动施加紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。

四、点式ATP模式——IATP模式 点式ATP模式作为最常用的后备模式在CBTC系统无法启用的条件下使用,此时车载通信系统不能实现连续数据传输,依靠固定点式设备进行车地间的点式通信。 1、司机将模式开关1转换至“IATP”位置,司机得到行车调度员可以动车的指令后,按下驾驶台上的IATP释放按钮。在此模式下,列车的速度、监控、运行及制动由司机人工控制。 2、开关车门由司机人工控制,但开车门仅在车载信号设备给出门允许信号时才允许操作。 3、司机应根据操作规程注意控制进站对位时间及出站速度,防止出现紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。 五、非限制人工驾驶模式——NRM模式 1、司机将电气柜内模式开关转换到“NRM”位置,司机操纵台模式开关处于“OFF”模式位置。此模式下信号被切除,列车的速度、监控、运行及制动由司机人工控制,列车没有信号防护。 2、此模式在车载信号设备故障或有特殊运行需要时使用。列车安全完全由司机人工控制。 六、无人自动折返模式——ATB模式 1、司机将模式开关1转换至“ATB”位置,车载信号系统设备处于上电等待状态,不再接收司机室内的驾驶操作命令。 2、当列车两端模式开关处于该模式时,两端车载信号设备处于工作状态;当一端车载信号设备完成自动折返时,它发送一个安全信息给另一端的车载信号设备以实现换端功能;另一端车载信号设备被激活后与轨旁通信,之前的车载信号设备断开。一旦所有条件都满足CBTC系统运行条件,CBTC驾驶模式将被授权允许新的车载信号设备控车。 3、列车无人自动折返时,司机须按压自动折返按钮,将驾驶模式转换为ATB,拔出钥匙锁好车门下车。

城市轨道交通列车驾驶 模块5 习题答案

模块5 思考与练习 1.简述列车司机的岗位职责。 答:1.正司机 (1)按时出勤,认真记录行车注意事项,领取及确认行车备品 (2)在列车正式投入运营前,负责列车的静态检查和动态检查; (3)驾驶列车过程中,是列车上的主要负责人,负责列车故障及信号故障的应急处理,负责突发事件的前期指挥和处理工作; (4)值乘过程中,负责与行车调度员、车场调度员、信号楼值班员、行车值班员、站台安全员等联控与沟通; (5)站台作业过程中,负责开关客室门,并做好客室门开关状态、客室门与安全门缝隙、门关好灯及司机室侧门的确认工作; (6)严格执行确认呼唤(应答)的标准化作业制度; (7)列车运行过程中,严格确认隧道、接触网、线路区间状态,发现异常情况,及时采取措施,并报行车调度员或车场调度员; (8)列车运行过程中,发现有危及行车安全的情况,立即采取紧急停车措施; (9)负责通过车辆显示屏监视列车状态,监视列车上的按钮、各显示灯、风压表、网压表的状态; (10)负责《司机报单》的填写及列车故障的记录; (11)正线交接过程中,确认接车时间,负责告知接车司机注意事项,列车技术状态和行车调度员命令等。 2.副司机 (1)协助正司机驾驶列车; (2)在开关门作业过程中负责开关安全门,负责安全门开关状态、客室门与安全门缝隙、门关好灯及司机室侧门的确认工作; (3)负责开关司机室侧门,尾端司机室门及间壁门的锁闭,并确认锁闭状态; (4)负责使用对讲机与站务人员联控确认后三节车安全门和车门的开关状态及安全门与车门间缝隙安全; (5)正司机驾驶过程中,可协助正司机与行车调度员等进行联控; (6)负责协助正司机确认隧道、接触网、线路区间状态,发现异常及时提醒正司机,如果提醒来不及,须立即按压紧急停车按钮; (7)负责确认运营时刻表,向正司机报列车到站及发车时间; (8)负责监听自动广播是否错报或漏报,发现错误及时更正,负责人工广播; (9)负责驾驶过程中列车故障的记录及《司机报单》的填写; (10)负责行车备品的保管; (11)负责动态地图的设定,并对动态地图显示情况进行监控; (12)负责对客室的LCD状态和客室温度进行监控,并负责座椅电加热的操作; (13)负责监督正司机精神状态和操作,发现异常,要立即采取紧急停车措施,并报告行车调度员或车场调度员。 2.简述列车检查时的走行顺序。

地铁屏蔽门控制系统

地铁屏蔽门控制系统 作者:发布时间:2008-9-5 22:31:05 作者:刘鑫美: 摘要: 地铁屏蔽门系统对于我国大多数人来说还是很陌生的, 本文以广州地铁为例,阐述了地铁屏蔽门控制系统的构成和功能.并对现场总线技术在其系统中的应用及屏蔽门系统与其他相关专业接口问题做了简明扼要的介绍。 关键词: 构成、功能、现场总线、接口、原理框图。 1、引言 地铁屏蔽门系统是一个典型的机电一体化产品,其沿站台边缘布置,将车站站台与行车隧道区域隔离开,降低车站空调通风系统的运行能耗。同时减少了列车运行噪音和活塞风对车站的影响,防止人员跌落轨道产生意外事故,为乘客提供了舒适、安全的候车环境,提高了地铁的服务水平。在我国轨道交通建设中,广州地铁2号线是国内首次引入屏蔽门系统,并在实际应用中取得了良好的经济、社会效益的地铁线路。目前已建成的地铁线路有些正在筹备加装屏蔽门(或安全门)系统(如广州一号线),新建线路多数设计采用屏蔽门(或安全门)系统。 2、系统构成 屏蔽门控制系统主要由中央接口盘(PSC)、就地控制盘(PSL)、门控单元(DCU)、通讯介质及通讯接口及外围设备等组成。中央接口盘(PSC)又由主监视系统(MMS)、两个单元控制器(PEDC)、接线端子、接口设备及控制配电回路组成。典型站配置一个中央接口盘(PSC)、两个就地控制盘(PSL)、每扇滑动门一个门控单元(DCU)。 3、系统功能及实现 3.1、控制功能

屏蔽门控制系统具有系统级控制(SIG)、站台级控制(PSL)、手动操作控制、火灾模式(IBP)。其中以手动操作控制优先级最高,系统级最低。只有在执行完优先级的操作后,才可以进行低级别的操作。 3.1.1、系统级控制(SIG) 系统级控制是在正常运行模式下由信号系统(SIG)直接对屏蔽门进行控制的方式。在系统级控制方式下,列车到站并停在允许的误差范围内时(如:±300mm),信号系统向屏蔽门每侧单元控制器(PEDC)发送“长/短车开/关门”命令,单元控制器(PEDC)通过门控单元(DCU)对每扇滑动门进行实时控制,实现屏蔽门的系统级控制操作。单元控制器(PEDC)与门控单元(DCU)通过可靠的硬线连接。 3.1.2、站台级控制(PSL) 站台级控制是由列车驾驶员或站务人员在站台的就地控制盘(PSL)上对屏蔽门进行“开/关门”的控制方式。当系统级控制不能正常实现时,列车驾驶员或站务人员可在就地控制盘(PSL)上通过“专用钥匙”及”开/关门按钮”对屏蔽门进行“开/关门”操作,实现屏蔽门的站台级控制操作。 3.1.3、手动操作控制 手动操作是由站台人员或乘客对屏蔽门进行的操作。当控制系统电源故障或个别屏蔽门操作机构发生故障时,站台工作人员可在站台侧用“专用钥匙”或乘客在轨道侧通过“开门把手”打开屏蔽门。并将相关状态信息上传。 3.1.4、火灾模式控制(IBP) 在隧道/车站发生火灾时,为了配合车站环控系统执行火灾模式,屏蔽门系统必须接受控制,由车站工作人员通过在车站综合控制室的应急后备盘(IBP)上的按钮对屏蔽门系统进行紧急操作。所有连接采用硬线连接。 3.2、监视功能 主监视系统(MMS)是中央接口盘(PSC)核心部分,完成每侧屏蔽门单元相关信息

成都地铁1号2号线发车收车时间经停站点及高峰期信息

1号线 成都地铁1号线升仙湖--世纪城|06:30-23:00 站点:升仙湖- 火车北站- 人民北路- 文殊院- 骡马市- 天府广场- 锦江宾馆- 华西坝- 省体育馆- 倪家桥- 桐梓林- 火车南站- 高新- 金融城- 孵化园- 世纪城(16站) 成都地铁1号线运行时间表 工作日: 1.首末班车时间 升仙湖首车6:30 末车21:30 世纪城首车7:00 末车22:00 2.高峰时段7:30—9:30,17:00—19:00。 3.列车间隔高峰6分50秒,平峰8分20秒。 4.站停时间天府广场、火车北站站停60秒,其他各站站停40秒。双休日(节假日) 1.首末班车时间 升仙湖首车6:30 末车21:30 世纪城首车7:00 末车22:00 2.高峰时段9:30—18:30。 3.列车间隔高峰6分50秒,平峰8分20秒。 4.站停时间天府广场、火车北站站停60秒,其他各站站停40秒。成

都地铁二号线已于9月6号开通、具体时间如下: 茶店子客运站-成都行政学院(上行)07:00-22:30 成都行政学院-茶店子客运站(下行)06:30-22:00 成都地铁2号线 1、茶店子客运站-成都行政学院(上行) 07:00-22:30 途经:茶店子客运站- 羊犀立交- 一品天下- 蜀汉路东- 白果林- 中医药大学·省人民医院- 通惠门- 人民公园- 天府广场- 春熙路- 东门大桥- 牛王庙- 牛市口- 东大路- 塔子山公园- 成都东客站- 成渝立交- 惠王陵- 洪河- 成都行政学院 2、成都行政学院-茶店子客运站(下行) 06:30-22:00 途经:成都行政学院- 洪河- 惠王陵- 成渝立交- 成都东客站- 塔子山公园- 东大路- 牛市口- 牛王庙- 东门大桥- 春熙路站- 天府广场- 人民公园- 通惠门- 中医药大学·省人民医院- 白果林- 蜀汉路东- 一品天下- 羊犀立交- 茶店子客运站

地铁列车应急牵引允许控制电路的设计

1 车辆概况 南京地铁采用A 型车辆,其牵引、制动分别系统采用阿尔斯通和克诺尔公司的产品。 车辆单元分为带驾驶室的控制车A、带受电弓的动车B 和不带受电弓的动车C 三种类型。6车编组,每一列车由2个单元构成,即为A—B —C —C —B —A,A 车头采用自动车钩,两单元之间采用半自动车钩,单元内部车钩用半永久性连接杆连接。 2 影响车辆正常牵引的故障 2006年3月9日,2122列车在奥体中心站启动时,车辆不能正常牵引,制动缓解指示灯无显示(不亮),司机显示单元DD U 显示22A车制动缓解故障,降下受电弓推牵引,制动缓解指示灯无显示,仍不能正常牵引。下车查看发现,22A车的制动闸瓦实际已经缓解,因此,分析此车为制动缓解控制电路故障,现场无法处理,只能按特殊情况下应急低速牵引(3 km/h)回库。回库后更换制动压力控制开关触点BCPS ,试车线试验正常。 此种故障运营1年以来已发生多次,此种故障的偶然性、突发性特别强,有时能自动恢复,在运行中不易找到故障的原因,从而,导致车辆不能正常牵引。3 控制原理 根据牵引允许控制原理分析(图1),牵引允许时要激活1个牵引允许继电器MA R,通过M A R 接点可以激活牵引指令列车线并启动牵引逆变器电源,列车可正常牵引。在正常情况下激活M A R 得电通路条件是: (1)110 V 供电正常且钥匙闭合,司机室激活继电器COR3 常开点闭合; (2)所有的门都关闭,车门互锁继电器DIR_A1 和DIR_A2 常开点闭合; (3)所有停放制动都缓解,所有停放制动缓解继电器A P BR R 常开点闭合; (4)所有常用空气制动缓解,所有常用空气制动缓解继电器ABRR或制动未缓解延时继电器BNRDYR常开点闭合; (5)没有常用制动指令,制动需求继电器BDR 在常开点位置,接通回路; (6 )紧急制动接触器E B K 1 、EBK2是得电状态(没有紧急制动),EBK1 和EBK2 的常开触点均闭合。 这样,MAR 就得电激活了,牵引指令列车线也就可以激活,列车就可以正常牵引。 在列车没有开动之前,所有制动缓解继电器A B R R 是不得电的,M A R 不能靠A B R R 来激活。而是需要制动未缓解继电器B N R D Y R的常开触点临时激活一段时间。 4 致车辆不能正常牵引的原因 空气制动的制动“施加”与“缓解”2根列车线串入每辆车制动缓解控制器BRG 中的压力开关触点BCPS(图2),其中空气制动施加列车线(Brake applied trainline)串入的是常开触点,当它闭合时,则激活所有空气制动施加继电器ABAR ;空气制动缓解列车线(Brake re-leased trainline)串入的是常闭触点,要激活的所有空气制动缓解继电器(ABRR)。在BRG 开关内,若施加了空气制动,则开关压力会高于0.7 bar,然后开关触点动作,BRG状态发生翻转,制动施加指示列车线导通,

相关主题
文本预览
相关文档 最新文档