当前位置:文档之家› 棒材挤压课程设计

棒材挤压课程设计

棒材挤压课程设计
棒材挤压课程设计

第一章 坯料及工艺参数的确定

1.1 坯料的选择

坯料尺寸的确定十分重要,坯料尺寸的选择是否合理,直接影响到挤压制品的质量、成品率、生产率等技术经济指标。坯料尺寸(直径和长度)越大,制品越长,从而使切头尾、切压余的几何损失和挤压周期内的辅助时间所占的比例降低,对压余所导致的金属几何损失,增大直径或者增加长度对成品率的影响不同。坯料体积一定时,增大直径和减短长度使几何损失增加,减小直径增加长度,几何损失减小。

(1)坯料直径m D 的确定

选择坯料直径时,一定要在满足制品断面机械性能要求和均匀性要求的前提下,尽可能采用较小的挤压比。

查热挤压各种金属材料时的工艺参数值表可知,黄铜棒(DIN_CuZn40Pb2)的挤压比)400~300(~10=λ,选取70=λ,因为

22

220m

m

m m d D d D F F ===ππλ (1-1) 式中,m D —坯料直径,mm ;m d —挤压制品的直径。

由上式,坯料的直径为

m m d D λ= (1-2) 已知制品直径mm 12φ,故有

mm mm D m 4.1001270=?=

圆整,取mm 100=m D 。 (2)坯料长度的确定

在实际生产中,坯料一般是圆柱形的,在挤压有色金属时,坯料长度为其直径的2.0~3.5倍。

本设计取坯料长度m H 为其直径的3倍,即坯料长度m H 为300mm 。 1.2 挤压工艺参数的确定 1.2.1摩擦系数的确定

摩擦系数对挤压有着重要的影响,对挤压力的影响最为显著。根据设计要求,故挤压垫与坯料之间的摩擦系数可取0.5,挤压筒与坯料之间的摩擦系数为0.2,挤压模与坯料之间的摩擦系数为0.2。

1.2.2挤压杆速度的确定

挤压时的速度一般可分为三种:挤压速度;金属流出速度;金属变形速度(也称变形速率)。通常挤压速度越大,不均匀性流动加剧,附加应力增大,在挤压制品上会引起周期性周向裂纹或破裂。挤压速度的影响通过以下三个方面起作用:第一,挤压速度高,流动更不均匀,副应力增大;第二,挤压速度提高来不

及软化,加快了加工硬化,使金属塑性降低;第三,挤压速度的提高,增加了变形热效应,是铸锭温度上升,可能进入高温脆性区,降低金属加工塑性。

综上所述,挤压速度的确定需在一个允许的范围内(如下表1-1所示),因此在黄铜的允许挤压速度范围内本设计取挤压速度值为501s mm -?。

表1-1 有色金属材料允许的挤压速度 材料 挤压速度/)(1

-s mm ?

铜 51~76 钼 12.7~25.4 黄铜

25~51

1.2.3挤压温度的确定

确定挤压温度的原则与确定热轧温度的原则相同,也就是说,在所选择的温度范围内,保证金属具有良好的塑性及较低的变形抗力,同时要保证制品的获得均匀良好的组织性能等。根据设计要求及“三图”(合金的状态图、金属与合金的塑性图、第二类再结晶图)原则,可取挤压温度为590℃。 1.2.4 定径带长度的确定

定径带是用以稳定制品尺寸和保证制品表面质量的关键部分。如果定径带过短,则模子易磨损,同时会压伤制品表面,导致出现压痕和椭圆等缺陷。但是,如果定径带过长,又极易在其上粘结金属,使制品表面上产生划伤、毛刺、麻面等缺陷,而且挤压力将升高。

结合设计要求,本设计取定径带长度为40mm 。 1.2.5工模具预热温度的确定

工模具预热的目的:使挤压坯料放入模具时温降不致过大,以免使塑性降低,变形抗力增加;同时避免坯料中心的温差过大,增加变形的不均匀性;减小模具与坯料的接触温差。

除了坯料在挤压前加热以外,挤压模,挤压垫及挤压筒在挤压前均要进行预热。预热温度一般在150~300℃,应按挤压坯料的温度作调整。由已给条件知,工具模预热温度为C o 300。

第二章 模具尺寸的确定

2.1 工模具尺寸的确定

根据挤压机的结构、用途以及所生产的制品类别的不同,挤压工具的组成和结构形式也不一样。挤压工具一般包括:模子、挤压垫、挤压杆和挤压筒。此外,还包括其他一些配件如:模垫、支撑环、压力环、冲头、针座和导路等。本设计主要针对挤压筒、挤压模、挤压垫进行结构及尺寸的设计。选择模具与坯料部分尺寸,并根据给定的主要尺寸,运用Auto CAD 绘出挤压过程平面图形并设计挤压工艺参数。 2.1.1 挤压示意图

本设计的挤压制品是mm 12φ的黄铜棒,挤压示意图如图1所示。

2.1.2挤压筒尺寸的确定

根据设计任务书可知,挤压制品的直径m d 为mm 12φ,坯料的规格为mm 300100?φ,坯料直径mm 100=m D ,长度mm 300=m h 。 (1)挤压筒内径1d 的确定

挤压筒内径根据挤压合金的强度、挤压比和挤压机能确定的。筒的最大直径

l 1l 2l 3r

w

D m

d 1D 1

l 4l 5

d 2

d 3

D 2

挤压垫挤压筒

坯料

挤压模

图1-1 挤压示意图

应能保证作用在挤压垫上的单位压力不低于金属的变形抗力。显然,筒径越大,作用在垫上的单位压力就越小。再根据产品品种、规格确定筒的内径尺寸。 挤压筒内径1d 可按间隙值计算

D D d m ?+=1 (2-1)

式中,m D —坯料的外径,mm ; D ?—是坯料顺利进入又不产生纵向裂纹的间隙值,mm ,如表2-1所示。

因为挤压示意图所给挤压为卧式挤压机,坯料直径为mm 100φ,故可知挤压筒直径在mm 100≤范围内,即可知间隙值mm D 3~1=?,取mm D 2=?。挤压筒内径1d 为

mm d 10221001=+=

(2)挤压筒外径1D 的确定

根据经验,一般挤压筒外径1D 是挤压筒内径1d 的4~5倍,故

mm 510~408102)5~4()5~4(11=?==d D

本设计取1D =450mm 。

(3)挤压筒长度t L 确定

挤压筒长度可按如下公式进行计算

321l l l L t ++= (2-2)

式中,1l —挤压垫进入挤压筒的深度,mm ; 2l —挤压垫的厚度,mm ; 3l —坯料的长度,mm 。

金属材料 挤压机 挤压筒直径(mm )

间隙值,(mm )

备注

类型 吨位,(KN )

D ?

d ?

卧式 立式 冷挤

3~10 1.5~3 0.2~0.3 4~8 3~4 0.1~0.8

卧式 — ≤100

100~300 ≥300 1~3 5 10 1~5

立式

6 75~120 1~2 稀有金属

卧式

4

15 31.5 31.5 66.72 85 220~260 220~260 1~2 1.5~3 4~5 5 1~1.5 1.5~2 5 6 包套挤压 — 包套挤压 光坯挤压 立式

6

65~120

1.5~2 1.5

1~1.5 1

包套挤压 光坯挤压

表2-1 筒、锭间隙选择

因为mm 3003==m H l ,mm 402=l ,为保证开始挤压时准确定位和挤压杆在挤压过程中保持稳定,1l 可取20mm 。

=++=321l l l L t 20+40+300=360mm.

2.1.3挤压垫尺寸的确定

挤压垫是用来防止高温的锭坯直接与季亚杆接触,消除其端面磨损和变形的工具。垫片的外径应比挤压筒内径小D ?,太大,可能形成局部脱皮挤压,从而影响制品质量,特别是在挤压管材时不能有效的控制针的位置,以致造成管子偏心;但是D ?也不能太小,以防与挤压筒内衬套摩擦加速其磨损。D ?值与挤压筒内径有关:卧式挤压机取0.5~1.5mm 。由表2-1本次设计采用卧式挤压机,坯料的直径为100mm ,所以挤压筒的内径应mm 100≤,D ?取0.5~1.5mm 。 所以挤压垫的直径为

D d d ?-=1 (2-3) 由于本设计选用卧式挤压机,则 1.5~0.5=?D mm ,故

=d 102-(0.5~1.5)=100.5~101.5mm 本设计取挤压垫的直径mm 101=d 。

由于挤压垫的厚度2l 可等于其直径的0.2~0.7倍,所以

mm 7.70~2.20101)7.0~2.0()7.0~2.0(2=?==mm d l

可在范围内取挤压垫的厚度=2l 40mm 。

2.1.4 挤压模尺寸确定 (1)模角的确定

模角是模子的最基本的参数之一,是指模子的轴线与其工作断面间所构成的夹角,挤压模锥角ω为20~900。

(2)定径带长度的确定

工作带又称定径带,是稳定制品尺寸和保证制品表面质量的关键部分。倘若工作带过短,则模子易磨损,同时会压伤制品表面导致出现压痕和椭圆等缺陷。但是,如果工作带过长,又极易在其上粘结金属,则制品表面上产生划伤、毛刺、麻面等缺陷,而且挤压力将升高。

本设计取定径带长度为40mm 。 (3)定径带直径的确定

模子工作带直径与实际所挤压的制品直径并不相等。在设计时应保证制品在冷状态下不超过所规定的偏差范围,同时又能最大限度地延长模子的使用期限。通常是用一裕量系数1C 来考虑各种因数对制品尺寸的影响。表2-2为挤压不同金属与合金时的模孔裕量系数1C 值。

合金

1C 值

含铜量不超过65%的黄铜 0.014~0.016 紫铜、青铜及含铜量大于65%的黄铜

0.017~0.020

表2-2 裕量系数C 1

纯铝、防锈铝及镁合金

0.015~0.020 硬铝和锻铝

0.007~0.010

对于棒材,按标准规定只有负偏差。在挤压铜合金一类温度较高的材料时,因模孔会逐渐变小,所以工作带直径的设计应使开始一批棒材的直径接近其名义尺寸。随着模孔变小,挤压棒材的实际直径接近最大的负偏差。对于轻合金,因挤压温度低,没有模孔的问题。挤压棒材的模孔直径2d 用下式计算:

m m d C d d 12+= (2-4)

式中,m d —棒材的名义直径,mm 。

由于所给挤压坯料为黄铜DIN_CuZn40Pb2,含铜量为58%,所以查表2-2,1C 值可取0.015。故由式(2-4)得

=2d 12+12?0.015=12.18mm (4)出口直径3d 的确定

模子的出口直径一般比工作带直径2d 大3~5mm ,如果尺寸过小会划伤制品的表面。

mm )5~3(23+=d d (2-5)

由式得mm 18.17~18.15)5~3(18.123=+=d ,本设计取mm 163=d 。 (5)入口圆角半径(过渡圆角)r 的确定

入口圆角半径(过渡圆角)r 的作用是为了防止低塑性合金在挤压时产生表面裂纹和减轻金属在进入工作带(定径带)时所产生的非接粗变形,同时也是为了减轻在高温下挤压时模子的入口棱角被压颓而很快改变模孔尺寸用的。在设计任务书中已给定过渡圆角的半径为5mm 。

l 1l 2l 3

r

w

D m

d 1D 1

l 4l 5

d 2d 3

D 2

挤压垫挤压筒

坯料

挤压模

图1-1 挤压示意图

(6)挤压模的外形尺寸2D 和H 的确定

挤压模的外圆直径与厚度主要是根据其强度和标准系列化来考虑。它与挤压的型材类型、难挤压的程度及合金的性质有关。一般所挤压的型材的外接圆最大直径max w D 等于挤压筒内径1d 的0.8~0.85倍。根据经验,对棒材、管材、带板和简单的型材,模子的外径2D =(1.25~1.45)w D 。故挤压模外径

()112)23.1~1(85.0~8.0)45.1~25.1()45.1~25.1(d d D D w =??==

代入mm 1021=d 得,mm 25.123~25.106102)23.1~1()23.1~1(12=?==d D ,本设计取2D =110mm 。

因为本设计中挤压模的锥角是可以变化的,取值在090~20,在设计时可取030,故挤压模的长度H 需根据定径带长度4l 、出口带长度5l 和模角处垂直长度共同决定,因为模角处垂直长度为

9288.2560cot 2

18

.12102cot 2021=-=-ωd d mm 出口带长度5l =30mm ,则挤压模长度=H 25.9288+40+30=95.9288mm 。

第三章挤压方案的分配与模拟过程

3.1方案的分配

由于本设计以挤压垫摩擦系数为变化量来探究挤压过程中对各个参数的影响,即挤压垫摩擦系数取0~0.6,分成8组进行实验模拟。具体方案见表3-1所示。

挤压方案如表3-1所示。

序号学生学号挤压垫

摩擦系

挤压筒挤压

模摩擦系数

挤压杆

速度

/1-s

mm?

挤压模

锥角

ω/°

挤压温

度/℃

定径带

长度

4

l/mm

工模具

预热温

度/℃

10 101~112 0.5 0.2 50 20

30

40

50

60

70

80

90

590 40 300

根据给定的几何尺寸,运用CAD或Pro/E分别绘制挤压垫、挤压模/挤压筒和坯料的几何实体,文件名称分别为“jiyadian”、“jiyamo”、“jiyatong”、“piliao”,输出STL格式。程序→DEFORM6.1→New Problem→Next→填入名称→Finish→进入前处理界面。

3.2前处理

3.2.1添加对象

连续3次点击Insert Object按钮,添加4个对象。

3.2.2单位制度选择

点击Simulation Control→Main→Units→SI→Mode选Deformation及Heat Transfer。

3.2.3导入和定义材料

在对象树上选择Work piece→点击General按钮→Assign Temperature→填入温度为590℃→点击OK→单击按钮,选择材料库中的DIN-CuZn40Pb2,单击Load,完成材料基本属性界面。单击Geometry→按钮,在弹出的对话框中选择事先画好的UG造型文件。导入后单击,对几何

表3-1 挤压方案

体进行几何检查,结果质量合格,单击OK键。其他同上,材料为DIN-D5-1U,COLD,且温度为0。

3.2.4网格划分选择对称面热交换面及工件体积补偿

选择Work piece,单击Mesh→Detailed Settings→Absolute绝对划分网格→在Size Ratio栏中,设置尺寸比率为1.5,Min Element Size中,设置最小单元尺寸为2。→单击Surface Mesh 按钮,进行对象表面网格划分,再单击Sold Mesh按钮,生成体网格。

点击,点击添加坯料的两直角面;挤压垫、挤压模、挤压筒的直角面,点击Symmetric Surface添加对称面。选择Thermal类中的Heat Exchange with Environment 选项,选择除对称面之外的所有面。

单击Property→在Target V olume卡上选中Active选项→点击按钮→点击Yes按钮→勾选Compensate during remeshing。

3.2.5设置运动参数

选择Top Die,单击Movement→Speed→在Direction选中主动工具运行方向+X→Define选项,其性质选为Constant,设置速度值50mm/s。

3.2.6模拟控制设置

点击Simulation Control→Step→Number of Simulation Steps中填入模拟步数,如100→Step Increment to Save中填入每隔2步保存信息→Solution St eps Definition→With Constant Die Displacement填入距离步长1mm→点击OK完成设置。

3.2.7定义接触关系

单击→出现对话框,单击→Deformation选项种Constant选项填入0~0.6。点击Thermal→选中Constant选项,选择传热类型Forming。另外两个接触关系,设置方法同上,但在Constant中填入0.5,在其他的摩擦系数中填入0.2。

3.2.8生成库文件

在工具栏上点击→→没有错误信息则点击→完成模拟数据库的生成。

3.2.9退出前处理

在工具栏上点击,退出前处理程序界面。

3.3运行

退出前处理后,在DEFORM-3D的主窗口中,选择Simulator中的Run选项,试验就开始运行了。在运行过程中,可点击Process Monitor查看模拟进程,某一数据规律呈现平稳状态时即可停止运行,点击Stop。

3.4后处理

在DEFORM-3D的主窗口中选择DEFORM-3D Post选项,进入后处理窗口。点击Graph选择挤压垫,勾选所需输出的数据如Damage、Load Prediction。出现数据曲线图后,右击鼠标,点击Export graph data,将记事本中的数据复制到Excel

表中,制作回归曲线图。

第四章 实验结果分析

4.1挤压垫摩擦系数对载荷的影响

根据表4-1的数据利用Excel 画出载荷—挤压模锥角回归曲线图如下图4-1所示。

表4-1 各组挤压模锥角对应的载荷值

图4-1 载荷—挤压模锥角回归曲线图

由图4-1可以看出,随着挤压模锥角的增大,载荷值总体呈先减小后增大的趋势,当模角α在45°-60°范围时挤压力最小。图中挤压模锥角等于30°时,载荷值突然达到最大值,这也可能是因为在模拟过程中,出现错误或者误差造成的。

原因:随着模角的增大,金属进入变形区压缩锥产生的附加弯曲变形较大,使所消耗在这上面的金属变形功升高;同时,α增大则使变形区压缩锥缩短,降低了挤压模锥面上的摩擦阻力,两者叠加后就会出现一及压力最小值。 4.2 挤压垫摩擦系数对破坏系数的影响

根据表4-2的数据利用Excel 画出破坏系数—挤压模锥角回归曲线图如下图4-2所示。

表 4-2各组挤压模锥角对应的破坏系数值

挤压模

锥角ω/° 20

30 40 50 60 70 80 90 载荷P

/KN

2230

2300

143

586

693

104

952

2860

挤压模锥角ω/° 20 30 40 50 60 70 80 90 破坏 系数

1.32

3.04

3.24

3.98

2.88

2.65

2.79

2.67

图4-2 破坏系数-挤压模锥角回归曲线

从图4-2可以得出:随着挤压模锥角的增大,破坏性系数总体呈先变大后减小趋势。当锥角在45°时破坏系数最大。

原因:模锥角是在挤压时可以形成较大的死区。锥模的最佳模角为45°-60°.

但是在45°-50°时是不利的。因为这种情况下死区很小,甚至消失,因而无法阻碍锭坯表面缺陷和偏析物流出模孔,会导致制品表面质量恶化。所以此时对制品的破坏程度也应该最大。在图中也可以看出此间破坏系数达到最大。因而模角在55-°70°才是最佳角度,从图中可以看到此时破坏系数值也因此降到了2.6左右。

设计总结

本课程设计为计算机辅助棒材挤压模设计,以Φ12mm 棒材(黄铜DIN_CuZn40Pb2)挤压成型为例,研究挤压变形参数、模具结构形状与尺寸对金属流动、变形力等参数的影响,通过deform 软件模拟分析参数的合理性。这次课程设计,让我们掌握了挤压变形工具的设计方法,巩固了挤压变形理论与知识,进一步熟悉了Deform-3D 的使用方法。

设计中,我们经过参阅书本和小组共同讨论,得出的挤压筒外径1D 为450mm ,挤压筒1d 为102mm ,挤压垫厚度2l 为40mm ,挤压模工作带直径2d 为12.18mm ,工作带长度4l 为40mm ,出口直径3d 为16mm ,外径2D 为110mm ,厚度为100mm 。

实验中,我们将实验模拟分为八组,分别在8个不同的挤压模锥角下进行模拟,运用八组模拟结果,利用Excel 将其列入表格、画出回归曲线,根据曲线的波动和走势进行分析。实验验中遇到过很多问题,比如刚开始模拟时忽略了热传递,导致成品温度保持不变,而使我们不得不重新模拟;模拟时间过长等。

本次课程设计,我们小组共同研究、设计参数,模拟、画图、排版分工操作,除用到了专业知识、deform 、AutoCAD 以外,还用到Word 文档和Excel 表格的使用,体会到团队合作以及综合运用知识的重要性。此外,我们还体验到了塑性成型计算机模拟减少现场模拟试验成本和模拟时间,从而提高工模具设计效率,降低生产和材料成本,缩短产品研究开发周期的优点。

材料成型计算机模拟课程设计是我们材控专业的学生在学习过程中一个很重要的专业实训环节,是对我们DEFORM-3D 塑性成形CAE 应用教程及挤压与拉拔课程所学知识的一次综合运用。在同组各位同学的共同努力下,我们完成了本次课程设计。本次课程设计主要是模拟挤压过程,从导出的数据证明课堂上所学的理论知识。我们组主要的目标是探讨在其他条件均一致的情况下,挤压垫摩擦系数,对载荷、最大温度及破坏系数的影响。

本次课程设计得到了以下结论:①平模在挤压时,可以形成较大的死区,挤压力较大,制品表面优良。②当模角α在45°-60°范围时挤压力最小,但死区很小,表面质量恶化,破坏系数较高。

通过本次设计,我们重新熟悉了如何在文档中插入公式、制作表格、修改表格、利用CAD 画图等计算机运用技巧,并再次熟悉DEFORM-3D 模拟黄铜棒挤压的过程,也懂得了如何运用标准、规范、手册、图册和查阅有关资料。

参考文献

[1]马怀宪,金属塑性加工学,北京:冶金工业出版社,1991.5.

[2]胡建军、李小平,DEFORM-3D塑性成形CAE应用教程,北京:北京大学出版社,2011.1.

[3]王廷薄、齐克敏,金属塑性加工学,北京:冶金工业出版社,2001.8.

[4]温景林、丁桦、曹富荣,有色金属挤压与拉拔技术,北京:化学工业出版社,2007.7.

deform挤压模拟课程设计

课题: 材料成型计算机模拟系别: 机械工程学院专业班级: 11级材控1班 指导教师: 张金标 组别: 第五组 2014年6月

第一章课程设计内容及任务分配.............................................................................................................. - 1 - 1.1 概述.......................................................................................................................................................... - 1 - 1.2 设计目的.................................................................................................................................................. - 1 - 1.3 设计内容.................................................................................................................................................. - 1 - 1.4 设计要求.................................................................................................................................................. - 1 - 1.5 挤压方案任务分配.................................................................................................................................. - 2 - 第二章工艺参数.......................................................................................................................................... - 3 - 2.1 工艺参数的设计...................................................................................................................................... - 3 - 2.1.1 摩擦系数的确定.................................................................................................................................... - 3 - 2.1.2 挤压速度的确定.................................................................................................................................... - 3 - 2.1.3 工模具预热温度的确定........................................................................................................................ - 3 - 第三章模具尺寸的确定.............................................................................................................................. - 4 - 3.1 挤压工模具示意图.................................................................................................................................. - 4 - 3.2 模具尺寸的确定...................................................................................................................................... - 4 - 3.2.1挤压模结构尺寸的确定......................................................................................................................... - 4 - 3.2.2 挤压筒结构尺寸的确定...................................................................................................................... - 6 - 3.2.3 挤压垫的结构及尺寸确定.................................................................................................................... - 7 - 第四章实验模拟及数据提取分析............................................................................................................ - 8 - 4.1挤压工模具及工件的三维造型............................................................................................................... - 8 - 4.2 挤压模拟.................................................................................................................................................. - 8 - 4.3 后处理...................................................................................................................................................... - 9 - 4.4分析数据................................................................................................................................................... - 9 - 4.5 坯料温度对挤压力的影响.................................................................................................................... - 10 - 4.6 坯料预热温度对破坏系数的影响........................................................................................................ - 11 - 个人小结........................................................................................................................................................ - 12 - 参考文献........................................................................................................................................................ - 21 - 附表《塑性成型计算机模拟》课程设计成绩评定表

挤压铝型材课程设计讲解

一. 题目: 铝合金型材挤压工艺及模具设计 二. 设计基本内容: 设计一件实心型材制品和一件空心型材制品的工艺工艺过程及模具设计,包括挤压工艺参数,模具结构,制造工艺等要求 三. 完成后应缴的资料: 课程设计说明书一份 实心型材模零件图 空心型材模上模零件图 空心型材模下模零件图 空心型材模装配图 四. 设计完成期限: 2007年6月11日------2007年6月22日 指导老师_______签发日期___________ 教研室主任_______批准日期___________ 课程设计评语: 成绩: 设计指导教师_________ _____年_____月____日

目录 一、绪论 (4) 二、总设计过程概论 (7) 2.1挤压工艺流程 (7) 2.2挤压工艺条件 (7) 三、实心型材模设计 (9) 3.1所要设计的实心型材制品 (9) 3.2选坯和选设备 (10) 3.3挤压力的计算 (11) 3.4实心型材模具体结构设计 (12) 3.5.实心模尺寸数据设计 (13) 四、空心型材模设计 (18) 4.1所要设计的制品 (18) 4.2选坯和选设备 (18) 4.3挤压力的计算 (19) 4.4模组及模子外形尺寸确定 (20) 4.5组合模相关参数的确定 (20) 4.6 模子内形尺寸的确定 (23) 4.7模孔工作带长度h g的确定 (24) 4.8模芯的设计 (24)

4.9上模凸台设计 (24) 4.10定位销,螺钉 (24) 4.11模子强度校核 (25) 4.12零件图装配图 (26) 五、总结与体会 (26) 参考文献 (26) 一. 绪论

模拟电路课程设计心得体会

模拟电路课程设计心得 体会 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

精选范文:《模拟电路》课程设计心得体会(共2篇)本学期我们开设了《模拟电路》与《数字电路》课,这两门学科都属于电子电路范畴,与我们的专业也都有联系,且都是理论方面的指示。正所谓“纸上谈兵终觉浅,觉知此事要躬行。”学习任何知识,仅从理论上去求知,而不去实践、探索是不够的,所以在本学期暨模电、数电刚学完之际,紧接着来一次电子电路课程设计是很及时、很必要的。这样不仅能加深我们对电子电路的任职,而且还及时、真正的做到了学以致用。这两周的课程设计,先不说其他,就天气而言,确实很艰苦。受副热带高气压影响,江南大部这两周都被高温笼罩着。人在高温下的反应是很迟钝的,简言之,就是很难静坐下来动脑子做事。天气本身炎热,加之机房里又没有电扇、空调,故在上机仿真时,真是艰熬,坐下来才一会会,就全身湿透,但是炎炎烈日挡不住我们求知、探索的欲望。通过我们不懈的努力与切实追求,终于做完了课程设计。在这次课程设计过程中,我也遇到了很多问题。比如在三角波、方波转换成正弦波时,我就弄了很长时间,先是远离不清晰,这直接导致了我无法很顺利地连接电路,然后翻阅了大量书籍,查资料,终于在书中查到了有关章节,并参考,并设计出了三角波、方波转换成正弦波的电路图。但在设计数字频率计时就不是那么一帆风顺了。我同样是查阅资料,虽找到了原理框图,但电路图却始终设计不出来,最后实在没办法,只能用数字是中来代替。在此,我深表遗憾!这次课程设计让我学到了很多,不仅是巩固了先前学的模电、数电的理论知识,而且也培养了我的动手能力,更令我的创造性思维得到拓展。希望今后类似这样课程设计、类似这样的锻炼机会能更多些!

课程设计任务书(2级)

电子技术课程设计任务书 题目一:信号发生器 一、设计目的 根据常用的电子技术知识,以及可获得的技术书籍与电子文档,初步形成电子设计过程中收集、阅读及应用技术资料的能力;熟悉电子系统设计的一般流程;掌握分析电路原理、工程计算及对主要技术性能进行测试的常见方法;最终,完成从设计图纸到实物搭建的整个过程,并调试作品。 二、任务与要求 1、熟悉信号发生器的组成和基本原理,了解单片集成信号发生器的功能特点; 2、掌握信号波形参数的调节和测试方法的应用; 3、电路能够产生正弦波、方波、锯齿波; 4、掌握信号发生器的设计测试方法; 5、工作电源为+5~+15V 连续可调。 参考方案: 图1、ICL8038原理框图 参考原理: ICL8030内部由恒流源I 1、I 2、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波变换电路组成。外接电容C 经过两个恒流源进行充放电,电压比较器A 、B 的参考电压分别为电源电压(U CC +U CE )的2/3和1/3。恒流源的恒流源I 1、I 2的大小可通过外接电阻调节,但必须I 2>I 1。当触发器的输出为低电平时,恒流源I 2断开,I1给电容充电,其两端电压U C 随时间上升,当U C 上升到电源电压的2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),恒流源I 2加到C 上反充电,相当于C 由一个净电流I 1放电,C 两端电压U C 转为直线下降,当下降到电源电压1/3时,电压比较器B 的输出电压发生跳变,使触发器的输出由高电平变为原来的低电平,恒流源I 2断开,I 1对C 充电,如此重复,产生振荡信号。 若通过调节外接电阻使得I 2=2I 1,触发器的输出为方波,反向缓冲后由9脚输出;C 上

模拟电路课程设计题目

电子技术(模拟电路部分)课程设计题目 一、课程设计要求 1、一个题目允许两个人选择,共同完成电子作品,但课程设计报告必须各自独立完成。 2、课程设计报告按给定的要求完成,要上交电子文档和打印文稿(A4)。 3、设计好的电子作品必须仿真,仿真通过后,经指导老师检查通过后再进行制作。 4、电子作品检查时间:2010年3月4日,检查通过作品需上交。 4、课程设计报告上交时间:2010年5月20日前。 二、课程设计题目 方向一、波形发生器设计 题目1:设计制作一个产生方波-三角波-正弦波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤设计电路所需的直流电源可用实验室电源。 题目2:设计制作一个产生正弦波-方波-三角波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤设计电路所需的直流电源可用实验室电源。 题目3:设计制作一个产生正弦波-方波-锯齿波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④锯齿波峰-峰值为2V,占空比可调;

⑤设计电路所需的直流电源可用实验室电源。 题目4:设计制作一个方波/三角波/正弦波/锯齿波函数发生器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2V,占空比可调; ④三角波峰-峰值为2V; ⑤锯齿波峰-峰值为2V; ⑥设计电路所需的直流电源可用实验室电源。 方向二、集成直流稳压电源设计 题目1:设计制作一串联型连续可调直流稳压正电源电路。 设计任务和要求 ①输出直流电压1.5∽10V可调; ②输出电流I O m=300mA;(有电流扩展功能) ③稳压系数Sr≤0.05; ④具有过流保护功能。 题目2:设计制作一串联型连续可调直流稳压负电源电路。 设计任务和要求 ①输出直流电压1.5∽10V可调; ②输出电流I O m=300mA;(有电流扩展功能) ③稳压系数Sr≤0.05; ④具有过流保护功能。 题目3:设计制作一串联型二路输出直流稳压正电源电路。 设计任务和要求 ①一路输出直流电压12V;另一路输出5-12V连续可调直流稳压电源; ②输出电流I O m=200mA; ③稳压系数Sr≤0.05;

棒材挤压课程设计

第一章 坯料及工艺参数的确定 1.1 坯料的选择 坯料尺寸的确定十分重要,坯料尺寸的选择是否合理,直接影响到挤压制品的质量、成品率、生产率等技术经济指标。坯料尺寸(直径和长度)越大,制品越长,从而使切头尾、切压余的几何损失和挤压周期内的辅助时间所占的比例降低,对压余所导致的金属几何损失,增大直径或者增加长度对成品率的影响不同。坯料体积一定时,增大直径和减短长度使几何损失增加,减小直径增加长度,几何损失减小。 (1)坯料直径m D 的确定 选择坯料直径时,一定要在满足制品断面机械性能要求和均匀性要求的前提下,尽可能采用较小的挤压比。 查热挤压各种金属材料时的工艺参数值表可知,黄铜棒(DIN_CuZn40Pb2)的挤压比)400~300(~10=λ,选取70=λ,因为 22 220m m m m d D d D F F ===ππλ (1-1) 式中,m D —坯料直径,mm ;m d —挤压制品的直径。 由上式,坯料的直径为 m m d D λ= (1-2) 已知制品直径mm 12φ,故有 mm mm D m 4.1001270=?= 圆整,取mm 100=m D 。 (2)坯料长度的确定 在实际生产中,坯料一般是圆柱形的,在挤压有色金属时,坯料长度为其直径的2.0~3.5倍。 本设计取坯料长度m H 为其直径的3倍,即坯料长度m H 为300mm 。 1.2 挤压工艺参数的确定 1.2.1摩擦系数的确定 摩擦系数对挤压有着重要的影响,对挤压力的影响最为显著。根据设计要求,故挤压垫与坯料之间的摩擦系数可取0.5,挤压筒与坯料之间的摩擦系数为0.2,挤压模与坯料之间的摩擦系数为0.2。 1.2.2挤压杆速度的确定 挤压时的速度一般可分为三种:挤压速度;金属流出速度;金属变形速度(也称变形速率)。通常挤压速度越大,不均匀性流动加剧,附加应力增大,在挤压制品上会引起周期性周向裂纹或破裂。挤压速度的影响通过以下三个方面起作用:第一,挤压速度高,流动更不均匀,副应力增大;第二,挤压速度提高来不

挤压铝型材课程设计报告

一.题目: 铝合金型材挤压工艺及模具设计 二.设计基本容: 设计一件实心型材制品和一件空心型材制品的工艺工艺过程及模具设计,包括挤压工艺参数,模具结构,制造工艺等要求 三.完成后应缴的资料: 课程设计说明书一份 实心型材模零件图 空心型材模上模零件图 空心型材模下模零件图 空心型材模装配图 四.设计完成期限: 2007年6月11日------2007年6月22日 指导老师_______签发日期___________ 教研室主任_______批准日期___________ 课程设计评语: 成绩: 设计指导教师_________ _____年_____月____日

目录 一、绪论 (4) 二、总设计过程概论 (7) 2.1挤压工艺流程 (7) 2.2挤压工艺条件 (7) 三、实心型材模设计 (9) 3.1所要设计的实心型材制品 (9) 3.2选坯和选设备 (10) 3.3挤压力的计算 (11) 3.4实心型材模具体结构设计 (12) 3.5.实心模尺寸数据设计 (13) 四、空心型材模设计 (18) 4.1所要设计的制品 (18) 4.2选坯和选设备 (18) 4.3挤压力的计算 (19) 4.4模组及模子外形尺寸确定 (20) 4.5组合模相关参数的确定 (20) 4.6 模子形尺寸的确定 (23) 4.7模孔工作带长度h g的确定 (24)

4.8模芯的设计 (24) 4.9上模凸台设计 (24) 4.10定位销,螺钉 (24) 4.11模子强度校核 (25) 4.12零件图装配图 (26) 五、总结与体会 (26) 参考文献 (26)

一.绪论 近20年来,随着建筑行业的高速发展,我国民用建筑铝型材工业也从无到有,从弱到强地迅猛前进。至今,省的建筑铝型材产品已约占全国的三分之二左右,铝型材的生产能力超过社会的需求,如何提高产品质量,降低成本是取得市场竞争胜利的关键环节。 铝合金型材具有强度高、重量轻、稳定性强、耐腐蚀性强、可塑性好、变形量小、无污染、无毒、防火性强,使用寿命长(可达50—100年),回收性好,可回炉重炼。6063合金中的主要合金元素为镁及硅,具有加工性能极佳,优良的可焊性,挤出性及电镀性,良好的抗腐蚀性,韧性,易于抛光,上包膜,阳极氧化效果优良,是典型的挤出合金,广泛应用于建筑型材,灌溉管材,供车辆,台架,家具,升降机,栅栏等用的管,棒,型材。多年来世界各国均采用6063铝合金(铝合金近百种)作为门窗框架。主要是为了该金属表面阳极氧化效果好,开始阳极氧化是白色,后进一步改变电解质才达到古铜色,这两种主体颜色在国用了十多年。 铝材在挤压过程中,如挤压模具不是很好或模具挤压铝材过多,铝材表面会产生挤压痕,用手可能触摸到铝材表面不平,因此,在现代化大生产中实施挤压加工技术,其成败的关键是模具,模具设计以及其质量,事关产品的质量,成本。 在挤压设计的过程中挤压工艺条件:应考虑挤压温度、挤压速度、润滑、

CAD,CAM课程设计任务说明书

、 八、, 刖言 本次课程设计按照任务说明书的要求,我做的是二级圆柱齿轮减速器的三维建模以及运动仿真,主要设计数据来自我的机械设计的课程设计计算,其中模型的尺寸主要依据我的二维图纸(后附),模型共有以下几部分组成:箱体、齿轮、轴、轴承、轴套、端盖、螺钉。总计用时大概三天时间,我分一周的时间分别各部完成,下面就将我的主要成果一一书写如下,请老师指正。 1 ?零部件建模 箱体 箱体建模主要由拉伸构成,辅助以打孔、阵列、镜像、倒角、筋工具。其中油标孔由旋转而成。具体数据参数见后附的CAD工程图。 齿轮 本模型中共有两对四个齿轮,均采用轮廓法建模而成(方法由网上教程而来),通过参数方 程获得渐开线,而后获得轮齿的完整轮廓,最后阵列,得到一个完整的齿轮,鉴于齿轮建模较为陌生下面我将说明齿轮建模具体的步骤。

1?用拉伸画一个直径为齿顶圆,厚度为齿宽的的圆柱体 2?插入基准曲线---从方程--完成--选取--坐标(三个面的交点)---笛卡尔---输入参数(参数如下) 文件(F)辑揖旧梧式〔6查看M縉助(H) 为馆卡儿坐标系输入参数方程 作根据t (将从0变到D对心y和£ /*画如:対立x-yd面的一个圆「中心在原点 "半径=良参魏方程将是: /* x = 4 * cos ( t * 360 ) /+ y = 4 ?sin ( t * 360 ) /* z = 0 /*--------------------------------------------- m=2 z=98 a=20 r=(m*z*cos(a))/2 fi=t*90 arc=(pi*r*t)/2 x^r^co s(f i)+arc+s i n (f i) y=r*sin(f i)-arc*cos(f i) z=0 3.选中步骤2做好的蓝色的曲线---镜像---得到第2根蓝色的曲线,此时两根曲线是相交的八字形.如图4?点取第2根曲线(注意此时曲线以粗红色显示) 主菜单编辑”--复制”--主菜单编辑”一一选择性粘贴”--在操作面板上选取旋转”按钮,――选取旋转中心轴----输入旋转角度((360/2/z) +) 得到第3根细红色的曲线,该曲线与第一根曲线相交的。(注意:原来的第2根曲线消失了) 5?选中第3根曲线(注意此时曲线以粗红色显示) 、 主菜单编辑”--复制”--主菜单编辑”一一选择性粘贴”--在操作面板上选取旋转”按钮,――选取旋转中心轴----输入旋转角度(-360/z),(即该曲线要与前面旋转的方向相反) ,此时发现模型区域如下所示:点取确定退出操作,得到第4根蓝色曲线,此时两根曲线成八字 所示如图:

铝型材挤压原理【详述】

铝型材挤压原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、铝型材挤压原理 铝型材挤压机分为正向挤压和反向挤压两种,目前绝大部分用的是正向挤压机,科学原理是液压机原理,要从挤压机的构造来分析:我们通常把挤压机分为三部分:主缸、中板(挤压桶)、挤压杆。主缸是一个液压装置,液压油通过大活塞传压至小活塞,推进挤压杆,将经过加热的铝棒推进挤压桶,达到排气压力后挤压桶后退排气,再前进与模具腔体接合,达到出材压力后,挤压杆同时前进将挤压桶内的铝送入模具分流孔,铝合金通过模具慢慢流出成型。 铝型材挤压是对放在容器(挤压筒)内的金属坯料施加外力,使之从特定的模孔中流出,获得所需断面形状和尺寸的一种塑性加工方法。 二、铝型材挤压机的构成 铝型材挤压机由机座,前柱架,涨力柱,挤压筒,电气控制下的液压系统构成,另配备模座,顶针,刻度板,滑板等。 三、铝型材挤压方法的分类 根据铝型材挤压筒内金属的种类,应力应变状态,铝型材挤压方向,润滑状态,挤压温度,挤压速度,工模具的种类或结构,坯料的型状或数目,制品的型状或数目等的不同,可分为正向挤压法,反向挤压法,(包括平面变形挤压,轴对称变形挤压,一般三维变形挤压)侧向挤压法,玻璃润滑挤压法,静液挤压法,连续挤压法等等。 四、正向热变形挤压 绝大多数热变形铝材生产企业采用正向热变形挤压方法通过特定的模具(平模,锥模,分流模)来

获取所需断面形状相符的铝材,这是金浩淳铝业目前为止所釆取的唯一铝材生产方法! 正向挤压工艺流程简单,设备要求不高,金属变形能力高,可生产范围广,铝材性能可控性强,生产灵活性大,工模具便于维护保养修正。 【铝型材挤压机工作流程】 1、检查油压系统是否漏油,空气压力是否正常。 2、检查传输带、冷床、储料台是否有破损和擦伤型材之处。 3、拉伸前要确认铝型材的长度,再预定拉伸率,确定拉伸长度,即主夹头移动位置,通常6063T5拉伸率为0.5%--1%,6061 T6拉伸率为0.8%--1.5%。 4、根据铝型材的形状确认夹持方法,大断面空心型材,可塞入拉伸垫块,但要尽量确保足够的夹持面积。 5、当铝型材冷却至50℃以下时,开能拉伸型材。 6、当型材同时存在弯曲和扭拧时,应先矫正扭拧后拉弯曲。 7、第一、二根进行试拉,确认预定拉伸率和夹持方法是否合适。目视弯曲、扭拧、检查型材的平面间隙、扩口、并口,如不合适,要适当调整拉伸率。 8、正常拉伸率仍不能消除弯曲、扭拧,或不能使几何尺寸合格时,应通知操作手停止挤压。 9、冷却台上的型材不能互相摩擦、碰撞、重叠堆放、防止擦花。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

园林工程课程设计设计说明书1

课程设计任务书 课程设计名称园林工程课程设计 学生姓名 专业班级 设计题目洛阳工会苑小区中心绿地园林工程设计 一、课程设计目的 课程设计目的与任务在于使学生能够掌握园林工程设计的基本知识和锻炼初步的实践操作技能。要求学生掌握园林绿化施工图的制作基本原则、制图方法和园林绿化工程设计的具体内容;能综合运用园林工程、城市绿地设计、CAD 计算机辅助设计等专业课程的技能,完成相应园林绿地的设计图纸、园林工程施工图纸以及设计说明。 在课程设计过程中促进学生专业知识的积累和设计、制图技能的提高,培养学生综合分析问题、解决问题的能力,建立正确的园林工程设计概念、编写完善的设计说明以及学习规范化园林工程施工图纸的制作技能。 二、设计内容、技术条件和要求 一)设计内容: 1. 完成给定CAD图纸的设计范围内绿地的设计平面图、竖向与排水设计图、园路与场地的铺装设计和结构设计、绿化种植施工图、以及该园林建设工程的设计说明(设计说明中含工程概算部分)。 2. 所有图纸内容在四张A3的CAD图纸上完成,图纸比例为1:250(园路与场地设计图比例自定)。设计说明字数不少于3000字,格式制作参照毕业论文格式,由指导老师给定。 3. 图样中文字用HZTXT细线体,字高3mm;图样名用宋体,字高6mm。二)技术条件和要求: 1. 设计要体现较好的平面构图,各种园林要素布局合理,地被植物组成的图案样式可以简洁明了,乔灌木行列式配置或自然式配置均可。经济技术指标用

标准的三线表完成,绿地率大于30%。 2. 园林工程设计中植物应具有合理的常绿、落叶树种比例(3:7左右),考虑规划合适的树种以及其他绿化材料,对各种绿化材料的观赏特性、观赏季节、苗木规格安排合理;园路与铺装场地的结构设计图纸符合园林制图标准规范。 3. 绿地的竖向与排水设计一般考虑由中心绿地排向小区内车行道,铺装场地排水坡度要求在0.5%——1%。 4. 种植施工图要求表明植物学名、株高、胸径、冠径等指标,正确统计数量,备注栏根据实际情况填写,植物图例表要符合园林施工的相关要求。 5. 设计图纸加统一的封面装订成一份,设计任务书加封面(含概算部分)统一装订成一份。 6. 设计说明、设计图纸严禁抄袭,如有抄袭现象,一律重做。 三、时间进度安排 2010-11-17 课程设计动员,明确目的要求和设计任务; 2010-11-18——2010-11-20 完成设计草稿,并由指导教师初步审查; 2010-11-21——2010-11-24 完成CAD图纸,提交指导教师审查; 2010-11-25——2010-11-27 完成施工设计说明,提交指导教师审查; 2010-11-28——2010-11-29 图纸、设计说明整改并打印装订; 2010-11-30 课程设计统一讲评。 四、主要参考文献 孟兆侦毛培琳黄庆喜.园林工程[M].北京:中国林业出版社,1996. 居住区绿地设计规范DB11/T 214-2003 城市绿化工程施工及验收规范CJJ/T82-99 环境景观--室外工程细部构造03J012-1 指导教师签字:苏维2011年11 月16 日

模拟电子课程设计仿真

1、集成运放的应用电路 (1)参考电路图如下: (2)应用仿真库元件,3D元件分别进行仿真,熟悉示波器的使用2、电流/电压(I/V)转换器的制作与调试 (1)参考电路图如下:

(2)要求将0~10毫安电流信号转换成0~10伏电压信号。(3)分析电路的工作过程,完成制作与调试。 (4)填写下表,分析结果。 3、电压/电流(V/I)转换器的制作与调试(1)参考电路图如下: (2)要求将0~10伏电压信号转换成0~10毫安电流信号。(3)分析电路的工作过程,完成制作与调试。 (4)填写下表,分析结果。

4、电子抢答器制作 (1)参考电路图如下: (2)电路的工作原理: 本电路使用一块时基电路NE555,其高电平触发端6脚和低电平触发端2脚相连,构成施密特触发器,当加在2脚和6脚上的电压超2/3V CC时,3脚输出低电平,当加在2脚和6脚上的电压低于1/3V CC时,3脚输出高电平。按下开关SW,施密特触发器得电,因单向可控硅SCR1~SCR4的控制端无触发脉冲,SCR1~SCR4关断,2脚和6脚通过R1接地而变为低电平,所以3脚输出高电平,绿色发光二极管LED5发光,此时抢答器处于等待状态。 K1~K4为抢答键,假如K1最先被按下,则3脚的高电平通过K1作用于可控硅SCR1的控制端,SCR1导通。红色发光二极管LED1发光,+9V电源通过LED1和SCR1作用于NE555的2脚和6脚,施密特触发器翻转,3脚输出低电平,LED5熄灭。因3脚输出为低电平,所以此后按下K2~K4时,SCR2~SCR4不能获得触发脉冲,SCR2~SCR4维持关断状态,LED2~LED4不亮,LED1独亮说明按K1键者抢先成功,此后主持人将开关SW起落一次。复位可控硅,LED1熄灭,LED5亮,抢答器又处于等待状态。 220V市电经变压器降压,VD1~VD4整流,C滤波,为抢答器提供+9V直流电压。VD1~VD4选IN4001,C选用220μF/15V。R1和R2选1KΩ,LED1~LED4选红色发光二极管,LED5选绿色发光二极管。SW为拨动开关,K1~K4为轻触发开关,单向可控硅选2P4M,IC 为NE555。 (3)完成电路的制作与调试。 5、交替闪光器的制作与调试 (1)参考电路图如下:

自行车花盘冷挤压模具设计(课程设计)

ANYANG INSTITUTE OF TECHNOLOGY 本科毕业论文 自行车花盘冷挤压模具设计Design for cold extruding dies of the bicycle face 2008年05月

目录 第一章自行车花盘零件图纸及要求 (1) 第二章冷挤压工艺性分析 (30) 2.1 零件冷挤压工艺性分析 (40) 2.2 许用变形程度及变形程度的计算 (40) 2.3 挤压变形力的计算 (42) 第三章冷挤压毛坯的制备 (52) 3.1毛坯形状和尺寸的确定 (42) 3.2毛坯的软化处理 (42) 3.3毛坯的表面处理和润滑 (42) 第四章冷挤压模具设计 (52) 4.1 模具结构的选择 (53) 4.2 模架的选择 (60) 4.3模具工作部分设计 (42) 4.3.1凸模设计 (42) 4.3.2凹模设计 (42) 4.4导向、顶出及紧固件设计 (42) 4.4.1导向设计 (42) 4.4.2顶出装置设计 (42) 4.4.3模具固定方法设计 (42) 4.4.2 (42) 结论 (71) 致谢 (74) 参考文献 (75)

附录3: 自行车花盘冷挤压模具设计 专业班级: 指导教师: 职称: 摘要(空1格)× ×××××××××××××××××××××××××××××××× 关键词:××× ××× ××× Design for cold extruding dies of the bicycle face Abstract (空1格)Key words ××× ××× ××× ×××

附录4: 引 言 ××××××××××××××××××××××××××××××××××××× 第一章 自行车花盘零件图纸及要求 在电子、汽车、电机、电器、仪器、仪表、家电和通讯等产品中,60%~80%的零部件都要依靠模具成形。从1997年开始,我国模具工业产值也超过了机床工业产值。模具生产技术水平的高低,已成为衡量一个国家产品制造水平高低的重要标志,在很大程度上决定着产品的质量、效益和新产品的开发能力。 作为学过《模具设计》的学生应该掌握模具设计程序、设计思路,设计方法。基于此,以生活当中自行车的花盘作为工件,结合大学所学的机械设计知识,设计出一套能挤出自行车花盘的冷挤压模具。自行车花盘的参数如下: 第二章 冷挤压工艺性分析 2.1 零件冷挤压工艺性分析 1)材料:Q215为碳素结构钢,具有良好的可冲压性能。该钢的强度与塑性配合较好,冷弯性能和焊接性能也很好。在制造机械设备时,一般采用冷弯、焊接,而不用锻造和热处 工件名称:自行车花盘 生产批量:大批量 材 料:Q215

铝型材挤压

铝型材 铝型材的含义:铝型材就是铝棒通过热熔,挤压.从而得到不同截面形状的铝材料. 铝型材分类方法: 一、按用途可以分为以下几类: 1. 门窗的建筑用门窗铝型材(分为门窗和幕墙二种). 2. CPU散热器的专用散热器铝型材 3. 铝合金货架铝型材,他们的区别在于截面形状的不同.但都是通过热熔挤压生产出来的. 二、按合金成分类: 可分为1024、2011、6063、6061、6082、7075等合金牌号铝型材,其中6系的最为常见.不同的牌号区别在于各种金属成分的配比是不一样的,除了常用的门窗铝型材如60系列、70系列、80系列、90系列、幕墙系列等建筑铝型材之外,工业铝型材没有明确的型号区分,大多数生产厂都是按照客户的实际图纸加工的. 三、按表面处理要求分类: 1. 阳极氧化铝材 2. 电泳涂装铝材 3. 粉末喷涂铝材 3. 木纹转印铝材 4. 刨光铝材(分为机械刨光与化学抛光二种,其中化学抛光成本最高,价格也最贵) 铝型材生产流程: 主要包括熔铸、挤压和上色(上色主要包括:氧化、电泳涂装、氟炭喷涂、粉末喷涂、木纹转印等)三个过程。 1、熔铸是铝材生产的首道工序。 主要过程为: (1)配料:根据需要生产的具体合金牌号,计算出各种合金成分的添加量,合理搭配各种原材料。 (2)熔炼:将配好的原材料按工艺要求加入熔炼炉内熔化,并通过除气、除渣精炼手段将熔体内的杂渣、气体有效除去。 (3)铸造:熔炼好的铝液在一定的铸造工艺条件下,通过深井铸造系统,冷却铸造成各种规格的圆铸棒。 2、挤压:挤压是型材成形的手段。先根据型材产品断面设计、制造出模具,利用挤压机将加热好的圆铸棒从模具中挤出成形。常用的牌号6063合金,在挤压时还用一个风冷淬火过程及其后的人工时效过程,以完成热处理强化。不同牌号的可热处理强化合金,其热处理制度不同。 3、上色(此处先主要讲氧化的过程) 氧化:挤压好的铝合金型材,其表面耐蚀性不强,须通过阳极氧化进行表面处理以增加铝材的抗蚀性、耐磨性及外表的美观度。 其主要过程为: (1)表面预处理:用化学或物理的方法对型材表面进行清洗,裸露出纯净的基体,以利于获得完整、致密的人工氧化膜。还可以通过机械手段获得镜面或无光(亚光)表面。 (2)阳极氧化:经表面预处理的型材,在一定的工艺条件下,基体表面发生阳极氧化,生成一层致密、多孔、强吸附力的AL203膜层。 (3)封孔:将阳极氧化后生成的多孔氧化膜的膜孔孔隙封闭,使氧化膜防污染、抗蚀和耐磨性能增强。氧化膜是无色透明的,利用封孔前氧化膜的强吸附性,在膜孔内吸附沉积

课程设计任务书

电子技术课程设计任务书 项目1交通灯控制设计 一、设计目的 根据常用的电子技术知识,以及可获得技术书籍与电子文档,初步形成电子设计过程中收集、阅读及应用技术资料的能力;熟悉电子系统设计的一般流程;掌握分析电路原理、工程计算及对主要技术性能进行测试的常见方法;使学生学会使用电路仿真分析软件(Multisim)在计算机上进行电路设计与分析的方法。要求学生所选课题必须在计算机上通过虚拟设计确定设计方案,通过虚拟仿真建立系统,完成设计要求。 二、任务与要求 设计一个十字路口控制交通秩序的交通灯,满足以下条件: 显示顺序为其中一组方向是绿、黄、红;另一方向是红、绿、黄。设臵一组数码管以倒计时的方式显示语序通行或禁止通行时间,其中支通道绿灯的时间是20s,另一个方向上主通道的绿灯亮的时间是30s,黄灯亮的时间都是5s. 选做:当任何一个方向出现特殊情况,按下手动开关,其中一个方向通行,倒计时停止,当特殊情况结束后,按下自动控制开关恢复正常状态。 三、课程设计报告要求 1、任务说明 2、目录 3、正文 (1)总体方案框图设计 (2)单元电路具体设计 (3)计算器件参数值 (4)选择相关元器件 (5)画出总体设计电路图 (6)利用Multisim软件调试,对调试过程中出现的问题给出定性的的分析,最终能实现预计的效果。 4、课程设计的收获及体会 5、参考文献 四、评分标准

五、任务安排 六、所需调试工具 Multisim软件。

项目2用移位寄存器实现彩灯控制 一、设计目的 根据常用的电子技术知识,以及可获得技术书籍与电子文档,初步形成电子设计过程中收集、阅读及应用技术资料的能力;熟悉电子系统设计的一般流程;掌握分析电路原理、工程计算及对主要技术性能进行测试的常见方法;使学生学会使用电路仿真分析软件(Multisim)在计算机上进行电路设计与分析的方法。要求学生所选课题必须在计算机上通过虚拟设计确定设计方案,通过虚拟仿真建立系统,完成设计要求。 二、任务与要求 采用移位寄存器设计一个彩灯循环控制器,要求有两种变化花样。 三、课程设计报告要求 1、任务说明 2、目录 3、正文 (1)总体方案框图设计 (2)单元电路具体设计 (3)计算器件参数值 (4)选择相关元器件 (5)画出总体设计电路图 (6)利用Multisim软件调试,对调试过程中出现的问题给出定性的的分析,最终能实现预计的效果。 4、课程设计的收获及体会 5、参考文献 四、评分标准 五、任务安排

模拟电路课程设计..

模拟电子技术课程设计任务书 一、课程设计的任务 通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、课程设计的基本要求 1、掌握电子电路分析和设计的基本方法。包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。 2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。 3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。 4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。 5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。

三、课程设计任务 课题4 逻辑信号电平测试器的设计 (一)设计目的 1、学习逻辑信号电平测试器的设计方法; 2、掌握其各单元电路的设计与测试方法; 3、进一步熟悉电子线路系统的装调技术。 (二)设计要求和技术指标 在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障原因。使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。 本课题所设计的仪器采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无须分神去看万用表的表盘或示波器的荧光屏。 1、技术指标: (1)测量范围:低电平<1V,高电平>3V; (2)用1.5KH Z的音响表示被测信号为高电平; (3)用500H Z的音响表示被测信号为低电平;

相关主题
文本预览
相关文档 最新文档