当前位置:文档之家› 用Keil C软件自带的逻辑分析仪仿真HT1621驱动的段码型LCD

用Keil C软件自带的逻辑分析仪仿真HT1621驱动的段码型LCD

用Keil C软件自带的逻辑分析仪仿真HT1621驱动的段码型LCD
用Keil C软件自带的逻辑分析仪仿真HT1621驱动的段码型LCD

用Keil C软件自带的逻辑分析仪仿真HT1621驱动的段码型LCD 一:大体按图示3步进行,首先对项目进行编译OK,其次对软件仿真设置,最后调试输出。

二:在debug项下勾选“Use Simulator”

三:进入Debug,进入调试界面

(P2_0, P2_1, P2_2是我这块板上对应的HT1621与MCU连接的3个硬件引脚,分别对应CS/,WR/,Data。)

点击”Logic Analyzer”的Setup,进入设置界面,因P2_0, P2_1, P2_2均以位输出,所以在”Display Type”中要设置成”Bit”,并设置不同的颜色,对示区分波形。

点击全速运行后,调节逻辑分析仪的缩放,输出合适的波形。

说明:

对应HT1621、HT1621B、HT1620等手册,对波形进行解析(已解析)

101(兰色字)是3位命令码,表示写模式

000101(红色字)是6位地址码,RAM的地址是0X05

0011(黑色字)是4位数据码,RAM的数据是0X03

也就是说,此波形的含义是在对应LCD的SEG5与COM1、COM0相交的字段点亮了。

可以过LCD实物验证。

最后说明:

本人对比硬件逻辑分析仪,波形相似度相当高。

用Keil C软件自带的逻辑分析仪仿真对于编程调试还是相当有用的,如PWM、UART等。

对于更复杂的处理也是无能为力的,比如触发方式、采样率、采样深度的设置,测量解析波形数据,如各种协议等,还得依赖硬件的逻辑分析仪。

逻辑分析仪使用手册.pdf

目录 概述 (1) 第1章逻辑分析仪原理及基本概念 (2) 1.1逻辑分析仪原理 (2) 1.2逻辑分析仪基本概念 (2) 1.2.1定时采样 (2) 1.2.2状态采样 (3) 1.2.3动态采样 (3) 1.2.4存储容量 (3) 1.2.5采样时间 (4) 1.2.6测量带宽 (4) 1.2.7门限电压 (5) 1.2.8触发 (5) 1.2.9触发位置优先 (5) 1.2.10触发状态优先 (5) 第2章致远逻辑分析仪 (6) 2.1命名规则 (6) 2.1.1LA系列逻辑分析仪 (6) 2.1.2LAB系列逻辑分析仪 (6) 2.2功能特色 (7) 2.2.1测量线 (7) 2.2.2逻辑笔 (7) 2.2.3频率计 (8) 2.2.4双边沿同步采样 (9) 2.2.5触发方式 (9) 2.2.6数据滤波 (10) 2.2.7数据导出 (11) 2.2.8协议分析 (11) 2.3型号对比 (11) 2.3.1LA系列对比 (11) 2.3.2LAB系列对比 (12) 2.3.3LA系列与LAB系列对比 (13) 第3章如何使用逻辑分析仪 (14) 3.1逻辑分析仪软件安装 (14) 3.1.1安装ZlgLogic软件 (14) 3.1.2安装驱动程序 (18) 3.1.3软件升级 (19) 3.2逻辑分析仪硬件连接 (21) 3.3逻辑分析仪使用步骤 (25) 3.3.1频率测量 (25) 3.3.2总线测量 (28) 3.3.3SPI测量 (31) 3.3.4SPI总线分析 (32) i

3.3.5SPI触发设置 (34) 3.4逻辑分析仪使用注意事项 (36) 3.4.1确保接地良好 (36) 3.4.2合理设置采样频率 (37) 3.4.3合理设置触发方式 (37) 3.4.4合理设置门限电压 (37) 3.4.5使用Timing-State模式 (38) 3.4.6差分信号测量 (38) 第4章逻辑分析仪的应用 (39) 4.1逻辑分析仪队列触发的应用 (39) 4.1.1队列触发在数字通信系统的应用 (39) 4.1.2队列触发在工业自动化领域的应用 (40) 4.2逻辑分析仪数据延迟触发的应用 (42) 4.2.1原理分析 (42) 4.2.2测试步骤 (42) 4.3逻辑分析仪插件触发的应用 (44) 4.4逻辑分析仪外部触发的应用 (44) 4.4.1触发输出在电路调试中的应用 (44) 4.4.2触发输入在电路调试中的应用 (46) 4.4.3其它应用 (47) 4.5逻辑分析仪在数据采集开发系统中的应用 (47) 4.6逻辑分析仪在1-wire总线开发中的应用 (49) 4.7逻辑分析在LIN总线开发中的应用 (51) 4.8逻辑分析仪在DALI总线开发中的应用 (53) 4.9逻辑分析仪在CAN总线开发中的应用 (54) 4.10逻辑分析仪在FPGA开发中的应用 (55) 4.11逻辑分析仪在ACTEL平台中的应用 (57) 4.11.1方案介绍 (58) 4.11.2实现过程 (58) 4.12逻辑分析仪在RFID开发中的应用 (60) 4.12.1方案介绍 (60) 4.12.2方案实现 (60) 4.12.3实现过程 (61) 4.13逻辑分析仪在SDRAM开发中的应用 (62) 4.13.1硬件平台介绍 (62) 4.13.2建立应用平台 (63) 4.13.3逻辑分析仪测量应用 (64) 4.14逻辑分析仪在USB开发中的应用 (65) 4.14.1测量方法 (66) 4.14.2应用实例 (67) 4.15逻辑分析仪在CF卡开发中的应用 (68) 4.15.1CF卡原理 (68) 4.15.2插件解码分析 (69) 4.16逻辑分析仪在SD卡开发中的应用 (71) ii

SALEAE16最新软件的使用说明

Saleae Logic 16 逻辑分析仪使用上手手册 Saleae Logic 16 购买地址:https://www.doczj.com/doc/0b6671857.html,

从2014年六月份开始,Saleae官方开始主推他的1.1.19版本的逻辑分析仪界面。我在这里给大家介绍一下新软件的采集设置,波形查看以及协议解析等功能和操作步骤。 第一节, 软件的安装 SALEAE 官方提供了WINDOWS ,LINUX ,MAC操作系统的软件版本,其中WINDOWS 版本又分32位系统和64位系统。如果您的电脑是XP 或者WIN7 32位,请安装32位软件,如果是WIN8 或者WIN7 64位,请安装64位软件。对于WIN7系统的用户如果不知道自己的系统是32位还是64位,可以右击“我的电脑”之后再属性里面看到红色箭头部分指示的是32位系统,您应该选择安装32位软件: 这里我用的操作系统是WIN7 32 ,选择安装Logic+Setup+1.1.19+(32-bit)这个安装文件。 之后一路回车安装好软件。这里不再截图,安装完毕后,可以开启软件,显示出界面:

在安装软件的同时,驱动程序已经被注册到系统了了,当插入SALEAE 16逻辑分析仪后就可以自动安装安装驱动。 第二节, 软件界面的总体介绍 软件界面基本是左中右的布局,左边主要是采集和显示设置,右边是分析和解析设置,中间是波形显示区域。 软件支持脱机模拟采集,没有实际的硬件也可以感受一下软件的界面和操 作。点,可以在波形区域模拟显示出一些软件生成的数据,如果您设置了解析(解析设置方法在下面讲),可以根据所设置的协议,生成一些符合协议解析要求的模拟数值。 由于默认的演示模式是8通道的,我们可以设置成16通道的。

TFT LCD液晶显示器的驱动原理

TFT LCD液晶显示器的驱动原理 我们针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver所送出波形的timing图. SVGA分辨率的二阶驱动波形 我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=786432个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver 来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着768个gate

driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate d river打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压. 而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的t iming介绍过一次呢?因为我们接下来要讨论的feed through电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc). Cs on common架构且common电压固定不动的feed through电压 我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成f eed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed thro ugh电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame 的时间比例是不正确的.在此我们是为了能仔细解释每个frame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将7

逻辑分析仪UsbeeAXPro中文说明书

逻辑分析仪UsbeeAXPro中文说 明书

USBEE AX示波器逻辑分析仪 使用说明书 1. 简介 USBEE AX示波器逻辑分析仪是一款基于PC的高性价比的电路分析调试工具。全面兼容和支持“USBee AX Pro”上位机软件。能够实现示波器,逻辑分析仪等等很多功能。 注意:不正确的使用会造成设备损坏和人员伤害!使用中: ●保证GND线与你的目标板地电位相连; ●数字信号地接DGND.数字通道DCH0 - 7,正常测试电压范围为0-8V; ●模拟信号地接AGND.模拟通道ACH1 的电压范围-10到+10V;x10是 +/-100V; x0.2是+/-2V. ●注意ACH1,x10和x0.2不可同时接,比如测5V信号是接AGND和 ACH1,x10和x0.2悬空; ●数字通道DCH0 - 7保护电压(不损坏仪器,但测试结果不正确)最大 为10v; ●模拟通道保护电压为ACH1:+/-100v;x10:+/-300v;x0.2:+/-10v。 但不要长时间保持。 ●D3V3是仪器提供的输出3.3v的接口,可对外提供不超过100mA的电 流输出。

●USBEE AX的数字通道能够驱动输出,在使用前一定不要超过电压和电 流范围; ●先将USBEE AX连接到PC,再运行软件。 电脑系统要求 ●Windows 8.1/7/ XP或者Windows 操作系统; ●Pentium以上处理器; ●USB2.0高速接口,不支持USB1.1全速端口工作; 设备清单 ●USBEE AX设备一台; ●测试杜邦线一排10根(可选带测试夹); ●USB连接线一条; ●光盘(软件和说明文档,也可从商品描述页面提供的链接下载); 设备工作在最高的采样速度时,对USB带宽和处理器资源要求较高,为了保证稳定工作: ●不要在PC上连接其它USB高速设备; ●最好不要在软件采样和输出信号时运行其它的程序。 2.安装USBEE AX PRO 的步骤: 1. 安装软件前请勿连接硬件。 2.安装USBEE AX PRO 软件。注意: a)只有在WIN7 64/WIN8 64下才选择安装axsw64BIT_English文件夹。其余选择32位版本。

labview的8位逻辑分析仪

目录 引言 (5) 一、LABVIEW和数字逻辑分析仪简介 (6) 1.1 LABVIEW简介 (6) 1.2 数字逻辑分析仪简介 (6) 1.3 实验平台简介 (8) 二、数字逻辑分析仪的总体设计 (8) 三、前面板设计 (11) 四、程序设计 (11) 五、调试及结果 (13) 六、总结心得 (14) 七、参考文献 (15)

引言 数字逻辑分析仪重点在于考察信号高于或低于某一门限电平值,以及这些数字信号与系统时间之间的相对关。逻辑分析仪是一种类似于示波器的波形测试设备,它可以监测硬件电路工作时的逻辑电平(高或低),并加以存储,用图形的方式直观地表达出来,便于用户检测,分析电路设计(硬件设计和软件设计) 中的错误,逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速地定位错误,解决问题,达到事半功倍的效果。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。由于逻辑分析仪不像示波器那样有许多电压等级,通常只显示两个电压(逻辑1和0),因此设定了参考电压后,逻辑分析仪将被测信号通过比较器进行判定,高于参考电压者为High,低于参考电压者为Low,在High与Low之间形成数字波形。逻辑分析仪分为两大类:逻辑状态分析仪(Logic State Analyzer,简称LSA)和逻辑定时分析仪(Logic Timing Analyzer)。这两类分析仪的基本结构是相似的,主要区别表现在显示方式和定时方式上。 LabVIEW是目前国际上唯一的编译型图形化编程语言,使用“所见即所得”的可视化技术建立人机界面,使用图标表示功能模块迷失用图标之间的连线表示各模块间的数据传递。同时LabVIEW继承了高级编程语言的结构化和模块化编程的优点,支持模块化与层次化实际,这种结构的实际增强了程序的可读性。 LabVIEW是一种图形化的编程语言和开发环境,它广泛地被工业界、学术界和研究实验室所接收,被公认为是标准的数据采集和仪器控制软件。LabVIEW 是一个功能强大且灵活的软件,利用他可以方便的建立自己的虚拟仪器。以LabVIEW为代表的图形化编程语言,又称为“G”语言。使用这种语编程时,基本上不需要编写程序代码,而是“绘制”程序流程图。LabVIEW尽可能利用工程技术人员所熟悉的术语、图标和概念,因而它是一种面向最终用户的开发工具,可以增强工程人员构建自己的科学和工程系统的能力,可为实现仪器编程和数据采集系统提供便捷途径。 本次课程设计就是在LabVIEW基础上设计一个8位数字逻辑分析仪。并从中学习和了解LabVIEW的运用和编程。

LED液晶显示器的驱动原理

LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之 中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs. For personal use only in study and research; not for commercial use

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因 素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方 式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显 示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时, 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因. For personal use only in study and research; not for commercial use

基于单片机的简易逻辑分析仪毕业设计论文

基于单片机的简易逻辑分析仪 目录 第1节引言 (3) 1.1系统概述 (3) 1.1.1系统的特点 (4) 1.1.2系统的功能 (4) 第2节系统主要硬件电路设计 (5) 2.1 系统结构框图 (5) 2.2 主体控制模块 (5) 2.3 系统硬件的主体实现 (7) 2.3.1 数字信号发生器模块的电路设计与实现 (7) 2.3.2 主控系统模块的电路设计与实现 (8) 2.3.3 LED显示模块的电路设计与实现 (10) 2.3.4 硬件的抗干扰措施 (12) 第3节系统软件设计 (13) 3.1 系统软件流程 (13) 3.2 中断服务子程序 (15) 3.3 AT24C04程序设计 (15) 第4节结束语 (19) 参考文献 (20) 基于单片机的简易逻辑分析仪

第1节引言 信息时代是数字化的时代,数字技术的高速发展,出现了以高性能计算机为核心的数字通信、数字测量的数字系统。在研究这些数字系统产品的应用性能的同时也必须研究在设计、生产和维修他们的过程中,如何验证数字电路设计的合理性、如何协调硬件及其驱动应用软件的工作、如何测量其技术指标以及如何评价其性能。逻辑分析仪的出现,为解决这些问题提供了可能。 随着数字系统复杂程序的增加,尤其是微处理器的高速发展,用示波器测试己显得有些无能为力。1973年在美国应运而生的逻辑分析仪(Logic Analyzer),能满足数字域测试的各种要求。它属于总线分析仪一类的数据域测试仪器*主要用于查找总线(或多线)相关故障.同时对于数据有很强的选择能力和跟踪能力,因此,逻辑分析汉在数字系统的测试中获得了广泛的应用。 逻辑分析仪(Logic Analyzer)是以逻辑信号为分析对象的测量仪器。是一种数据域仪器,其作用相当于时域测量中的示波器。正如在模拟电路错误分析中需要示波器一样,在数字电路故障分析中也需要一种仪器,它适应了数字化技术的要求,是数字、逻辑电路、仪器、设备的设计、分析及故障诊断工作中不可按少的工具。在测试数字电路、研制和维修电子计算机、微处理器以及各种集成化数字仪表和装置中具有广泛的用途;还是数字系统设计、侦错、软件开发和仿真的必备仪器;作为硬件设计中必不可少的检测工具,还可将其引入实验教学中,建立直观感性的印象,提升学生的硬件设计能力,可以全面提高教学质量;随着科技的发展,LA在多通道、大存储量、高采样速率、多触发功能方面得到更快的发展,在航天、军事、通信等数字系统领域得到越来越广泛的应用。 我们从上面可以看出逻辑分析仪在各个领域的广泛应用。那么我们在学习、应用的同时设计并制作一个简易的逻辑分析仪就显的意义重大了,这样这个过程既可以让我们更加深入理解其原理,又可以提高动手设计并制作整个系统电路的能力,还可以将其作为简易仪器应用于以后的实验中。 1.1系统概述 因在本节中,我们将对简易逻辑分析仪的应用进行分析。给出它的特点,能实现的功能以及系统的简单操作 1.1.1 系统的特点 逻辑分析仪也称逻辑示波器,它是用来分析数字系统逻辑关系的一种仪器。逻辑分析仪的主要作用有二个:一是用于观察的形式显示出数字系统的运行情况,相当于扩展了人们的视野,起一个逻辑显示器的作用;二是对系统运行进行分析和故障诊断。

逻辑分析仪使用教程

声明: 本文来自 另外,将68013制作逻辑分析仪的原理说明简单整理了一下,大家可以看看,如果想DIY也就不难了。点击此处下载ourdev_578200.pdf(文件大小:203K)(原文件名:逻辑分析仪开发手册.pdf) 前言 一、什么是逻辑分析仪 二、使用介绍 三、安装说明 四、Saleae软件使用方法 五、逻辑分析仪硬件安装 六、使用Saleae分析电视红外遥控器通信协议 七、使用Saleae分析UART通信 八、使用Saleae分析IIC总线通信 九、使用Saleae分析SPI总线通信 十、Saleae逻辑分析仪使用问题和注意事项 https://www.doczj.com/doc/0b6671857.html,/item.htm?id=6293581805

淘宝地址:https://www.doczj.com/doc/0b6671857.html,/item.htm?id=6293581805 (原文件名:21.jpg) 前言: 工欲善其事,必先利其器。逻辑分析仪是电子行业不可或缺的工具。但是由于一直以来,逻辑分析仪都属于高端产品,所以价格居高不下。因此我们首先要感谢Cypress公司,提供给我们68013这么好的芯片,感谢俄罗斯毛子哥将这个Saleae逻辑分析仪开源出来,让我们用平民的价格,就可以得到贵族的待遇,获得一款性价比如此之高的逻辑分析仪,可以让我们在进行数字逻辑分析仪的时候,快速查找并且解决许多信号、时序等问题,进一步提高我们处理实际问题的能力。 原本计划,直接将Saleae的英文版本使用手册直接翻译过来提供给大家,我花费半天时间翻译完后,发现外国人写的东西不太符合我们国人的思维习惯,当然,也是由于我的英语水平有限,因此,我根据自己摸索这个Saleae的过程,写了一份个人认为符合中国人习惯的Saleae,提供给大家,希望大家在使用过程中少走弯路,快速掌握使用方法,更快的解决自己实际遇到的问题。 由于个人水平有限,因此在文章撰写的过程中难免存在问题和错误,如果有任何问题,希望大家能够提出来,我会虚心接受并且改进,希望通过我们的交流,给越来越多的人提供更加优秀的资料,共同进步。 一、什么是逻辑分析仪: 逻辑分析仪是一种类似于示波器的波形测试设备,它通过采集指定的信号,并通过图形或者数据统计化的方式展示给开发人员,开发人员通过这些图形化时序信号按照协议来分析硬件或者软件中的错误。逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速定位错误,发现并解决问题,达到事半功倍的效果,尤其在分析时序,比如1wire、I2C、UART、SPI、CAN等数据的时候,应用逻辑分析仪解决问题非常快速。 如果在你的工作中有数字逻辑信号,你就有机会使用逻辑分析仪。因此应选好一种逻辑分析仪,既符合所用的功能,又不太超越所需的功能。用户多半会找一种容易操作的仪器,它在功能控制上操作步骤较少,菜单种类也不多,而且不太复杂。而Saleae就是一种低端的,比较适合大众化的逻辑分析仪,价格便宜,而且常用的逻辑分析功能足够,人机界面人性化,非常适合实用。 以下是一个Saleae分析I2C时序的一个典型例子:从图中我们可以清晰的看到,起始信号start,从地址是0x50的器件中去读取数据,第一个字节是0xc0,第二个字节是0x50,有了逻辑分析仪,我们可以快捷的找出我们的I2C时序读写数据的正确与否,可以很快将问题解决。后边的讲解中,我会详细讲解逻辑分析仪分析红外遥控器,UART时序,I2C 时序的具体方式方法。

keil的软件逻辑分析仪使用教程

keil的软件逻辑分析仪(logic analyzer)使用教程 在keil MDK中软件逻辑分析仪很强的功能,可以分析数字信号,模拟化的信号,CPU的总线(UART、IIC等一切有输出的管脚),提供调试函数机制,用于产生自定义的信号,如Sin,三角波、澡声信号等,这些都可以定义。 以keil里自带的stm32的CPU为例,对PWM波形跟踪观测,打开 C:\Keil\ARM\Boards\Keil\MCBSTM32\PWM_2目录下的stm32的Dome,第一步:进行仿真配置,如图: (原文件名:1.jpg) 把开工程中的Abstract.txt文件有对工程的描述,PWM从PB0.8和PB0.9输出,稍后将它加入软件逻辑分析仪里。 The 'PWM' project is a simple program for the STM32F103RBT6 using Keil 'MCBSTM32' Evalua tion Board and demonstrating the use of PWM (Pulse Width Modulation) with Timer TIM4 . Example functionality: - Clock Settings: - XTAL = 8.00 MHz - SYSCLK = 72.00 MHz - HCLK = SYSCLK = 72.00 MHz - PCLK1 = HCLK/2 = 36.00 MHz - PCLK2 = HCLK = 72.00 MHz - ADCLK = PCLK2/6 = 12.00 MHz

- SYSTICK = HCLK/8 = 9.00 MHz - TIM4 is running at 100Hz. LEDs PB8, PB9 are dimmed using the PWM function of TIM4 channel3, channel4 The Timer program is available in different targets: Simulator: - configured for software Simulator MCBSTM32: - runs from Internal Flash located on chip (used for production or target debugging) 第二、选择软件仿真 (原文件名:2.jpg)

逻辑分析仪的应用

第1章逻辑分析仪的应用 逻辑分析仪是分析数字系统逻辑关系的仪器。逻辑分析仪是属于数据域测试仪器中的一种总线分析仪,即以总线(多线)概念为基础,同时对多条数据线上的数据流进行观察和测试的仪器,这种仪器对复杂的数字系统的测试和分析十分有效。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。 一、逻辑分析仪的应用场合 通常在电子仪器行业,我们在以下情况下需要使用逻辑分析仪: ●调试并检验数字系统的运行; ●同时跟踪并使多个数字信号相关联; ●检验并分析总线中违反时限的操作以及瞬变状态; ●跟踪嵌入软件的执行情况。 二、逻辑分析仪的使用步骤 使用逻辑分析仪与数字信号相连、捕获数字信号并进行分析,一般有以下4个步骤: ●用逻辑探头与被测系统(DUT)相连; ●设置时钟模式和触发条件; ●捕获被测信号; ●分析与显示捕获的数据。 三、逻辑探头 在使用逻辑分析仪测试中,首先选择合适的逻辑探头与被测系统(DUT)相连,探头利用内部比较器将输入电压与门限电压相比较,确定信号的逻辑状态(1或0)。门限值由用户设定,范围由逻辑分析仪本身决定,常用的逻辑电平为TTL电平、CMOS电平、ECL电平等等。 逻辑分析仪的探头有各种各样的形状、大小,用户可以根据自己的需要,选择合适的探头夹具。常用的探头有用于点到点故障查找的“夹子状”,有用在电路板上专用的连接器高密度、多通道型探头。逻辑探头应能够捕获高质量的信号,并且对被测系统的影响最小。另外,逻辑分析仪的探头应能提供高质量信号并传递给逻辑分析仪,并且对被测系统造成的负载最小,而且要适合与电路板及设备以多种方式连接。 四、设置时钟模式和触发条件 在逻辑分析仪与被测系统连接好之后,需要设置时钟模式与触发条件。逻辑分析仪的数据捕获方式不同于示波器,它有两种捕获方式,分别是异步捕获,获取信号的时间信息和同步捕获,用于获取被测系统的状态信息。其中异步分析更类似于示波器的数据捕获方式,其中采样率、波形捕获率等概念都与示波器的相关概念类似。 1.异步捕获模式 在这个模式中,逻辑分析仪用内部时钟进行数据采样,采样速度越快,测试分辨率越高。采样速率对于异步定时分析非常重要,例如,当采样间隔为2ns时,即每隔2ns捕获新的数据存入存储器中,在采样时钟到来之后改变的数据不会被捕获,直到下一个采样时钟到来,由于无法确定2ns中不会被捕获的数据,直到下一个采样时钟到来,由于无法确定2ns中数据是否发生变化,所以最终分辨率是2ns。这种异步捕获模式常用在目标设备与分析仪捕获的数据之间没有固定的时间关系,而且被测系统的信号间的时间关系为主要考虑因素时,通常使用这种捕获模式。

逻辑分析仪使用

泰克逻辑分析仪文章 ------------------------------------------------- 最大限度地利用逻辑分析仪 Chris Loberg,泰克公司 逻辑分析仪是一种多功能工具,可以帮助工程师进行数字硬件调试、设计检验和嵌入式软件调试。然而,许多工程师在应该使用逻辑分析仪时,却使用了数字示波器,其主要原因是工程师比逻辑分析仪更熟悉示波器。但逻辑分析仪在过去几年中已经取得了很大的进步,对许多应用,它们将比其它仪器帮助您用更少的时间找到麻烦的漏洞的根本原因。 当然,示波器和逻辑分析仪之间有很多类似的地方,但也有一些重要的差异。为了更好地了解两台仪器可以怎样满足您的特定需求,我们有必要先比较一下它们的各种功能。 数字示波器是一种通用的查看信号的基础工具。其高采样率和高带宽,可以在时间跨度内捕获许多数据点,测量信号跳变(边沿)、瞬态事件和小时间增量。示波器当然也能查看与逻辑分析仪相同的数字信号,但示波器一般用于模拟测量,如上升时间、下降时间、峰值幅度及边沿间经过的时间。 示波器一般有最多四条输入通道。但在您需要同时测量五个数字信号时,或您的数字系统拥有一条32位数据总线和一条64位地址总线时,该怎么办呢?这时需要工具中有多得多的输入。逻辑分析仪一般有34-136条通道。每条通道输入一个数字信号。某些复杂的系统设计要求数千条输入通道。市场上也为这些任务提供了近似规模的逻辑分析仪。 与示波器不同,逻辑分析仪不测量模拟细节,而是检测逻辑门限电平。逻辑分析仪只查找两个逻辑电平。在输入高于门限电压(V)时,我们把这个电平称为“高”或“1”。相反,我们把低于Vth的电平称为“低”或“0”。在逻辑分析仪对输入采样时,它存储一个“1”或一个“0”,具体视相对于电压门限的信号电平而定。 逻辑分析仪的波形定时显示与产品技术资料中找到的或仿真器生成的定时图类似。所有信号都时间相关,以便能够查看建立时间和保持时间、脉宽、外来数据或丢失数据。除高通道数外,逻辑分析仪提供了许多重要功能,支持数字设计检验和调试,包括: ?完善的触发功能,您可以指定逻辑分析仪采集数据的条件 ?高密度探头和适配器,简化与被测系统(SUT)的连接 ?分析功能,把捕获的数据转换成处理器指令,并关联到源代码 使用逻辑分析仪与使用其它仪器类似。下面几节将介绍四个主要步骤:连接,设置,采集,分析。 连接被测系统

TFT-LCD液晶显示器的驱动原理

TFT-LCD液晶显示器的驱动原理 LCD显示器在近年逐渐加快了替代CRT显示器的步伐,你打算购买一台LCD吗?你了解LCD吗?液晶显示器和传统的CRT显示器,在其发光的技术原理上有什么不同?传统的CRT 显示器主要是依靠显象管内的电子枪发射的电子束射击显示屏内侧的荧光粉来发光,在显示器内部人造磁场的有意干扰下,电子束会发生一定角度的偏转,扫描目标单元格的荧光粉而显示不同的色彩。而TFT-LCD却是采用“背光(backlight)”原理,使用灯管作为背光光源,通过辅助光学模组和液晶层对光线的控制来达到较为理想的显示效果。 液晶是一种规则性排列的有机化合物,它是一种介于固体和液体之间的物质,目前一般采用的是分子排列最适合用于制造液晶显示器的nematic细柱型液晶。液晶本身并不能构发光,它主要是通过因为电压的更改产生电场而使液晶分子排列产生变化来显示图像。 液晶面板主要是由两块无钠玻璃夹着一个由偏光板、液晶层和彩色滤光片构成的夹层所组成。偏光板、彩色滤光片决定了有多少光可以通过以及生成何种颜色的光线。液晶被灌在两个制作精良的平面之间构成液晶层,这两个平面上列有许多沟槽,单独平面上的沟槽都是平行的,但是这两个平行的平面上的沟槽却是互相垂直的。简单的说就是后面的平面上的沟槽是纵向

排列的话,那么前面的平面就是横向排列的。位于两个平面间液晶分子的排列会形成一个Z轴向90度的逐渐扭曲状态。背光光源即灯管发出的光线通过液晶显示屏背面的背光板和反光膜,产生均匀的背光光线,这些光线通过后层会被液晶进行Z 轴向的扭曲,从而能够通过前层平面。如果给液晶层加电压将会产生一个电场,液晶分子就会重新排列,光线无法扭转从而不能通过前层平面,以此来阻断光线。 LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 液晶显示器的缺点在于亮度、画面均匀度、可视角度和反应

TFT_LCD液晶显示器的驱动原理详解

TFT LCD液晶显示器的驱动原理 TFT LCD液晶显示器的驱动原理(一) 我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因. 至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显

逻辑分析仪基础知识

逻辑分析仪基础知识 1.1 什么是逻辑分析仪 何为逻辑分析仪?逻辑分析仪是分析数字系统逻辑关系的仪器,属于数据域测试的一种总线分析仪。逻辑分析仪以总线为基础,同时对多条是数据线上的数据进行观察和存储,利用时钟从测试是设备上采集和显示数字信号的仪器,最主要是作用于时序判定。由于逻辑分析仪不像示波器一样能够测量电流电压,通常只是显示两个电压,0或者1,因此设定了参考电压以后,逻辑分析仪讲被测信号通过比较器进行判定,从而确定时序关系。 1.2 逻辑分析仪的构成 逻辑分析仪的构成如图1.2所示。逻辑分析仪主要的作用是采样和存储。在组成部分上,逻辑分析仪由采样部分、触发控制部分、存储部分、和显示部分组成。其中最重要的是捕获和数据显示部分。逻辑分析仪一般采用先进行数据采集并存储,然后进行数据分析显示处理。 图错误!文档中没有指定样式的文字。.1逻辑分析仪的架构图 数据捕获部分包括信号输入、比较采样、触发控制、数据存储和时钟电路等。外部被测信号通过探头送到信号输入电路,在比较器中与设定的阀值电平(也称门限电压)进行比较,大于阀值电平的信号为高电平,反之为低电平。采样电路在采样时钟(外时钟和内时钟)控制下对信号进行采样,并将数据流送到触发模块中,产生触发信号。数据存储电路在触发信号的作用下进行相应的数据存储控制。数据捕获完成之后,由分析显示电路将存储的数据处理之后以相应的方式显示出来。 1.3 测试软件 测试软件相当于是逻辑分析仪的显示屏,可以将逻辑分析仪的采集的信号在PC端显示出来,然后通过对应的软件进行观察和分析,得出关于总线通讯是否异常的结论。首先在PC端安装Zlglogic_V5,然后通过USB正确连接PC段,这样就可以将逻辑分析仪采集的信息通过USB方式在PC端显示。 1.4 相关名词及功能 采样方式; 采样方式分为定时采样和状态采样。 定时采样也称异步采样,是使用逻辑分析仪内部时钟作为数据抽样时钟的采样模式,每个抽样点占用一个存储单元。而状态采样也称同步采样,是使用外部时钟作为数据抽样时钟的采样模式,每个外部时钟的有效沿对应的抽样点占用两个存储单元。

使用逻辑分析仪调试时序问题

使用逻辑分析仪调试时序问题 在今天的数字世界,嵌入式系统比以往任何时候都更为复杂。使用速度更快、功耗更低的设备和功能更强大的电路,工程师需要考虑信号完整性问题。在调试和验证过程中,大部分数字电路失效可以追溯到信号完整性问题。本文将讨论如何使用逻辑分析仪的特性和功能来解决这些和时序相关的问题,以快速、方便地找到设计问题的根源。 探测的考虑 在你的设计电路中布置合适的探测点对于后期的调试工作具有至关重要的作用。有了合适的探测点,你可以把不同位置的信号时序问题关联起来,查看总线的运行情况,并分析硬件和软件接口。因此寻找问题根源的第一步就是信号的探测。 确定好测试点后,下一步就是挑选探头,探头的特性对于测量非常重要,总电容负载偏高的探头可以改变系统性能并带来(或隐藏)时序问题。尤其在高速系统,偏高的探头电容负载可能导致被测系统(SUT)无法正常运行。因此,尽可能选择较小的总电容负载探头。 探头电容一般会拉长信号边沿时间,如图1所示。该边沿的转换速度变慢,时间大约为tΔ,而较慢的边沿经过逻辑电路后,将在被测系统中引入时序问题。随着时钟频率增加,这个问题变得更加严重。 图1 逻辑分析仪探头的阻抗影响信号的上升时间和时序测量 逻辑分析仪的性能考虑 逻辑分析仪的性能对于系统调试,寻找问题源起了重要作用。而要正确选择逻辑分析仪来满足测试需求,首先需要了解逻辑分析仪的基本功能。逻辑分析仪的最基本的功能是利用采集的数据绘出时序分析图。如果被测系统工作正常,并且逻辑分析仪的采集设置正确,逻辑分析仪的时序显示应该与设计仿真或规格书上的数据完全相同,但在实际情况下,这还与逻辑分析仪的分辨率(即采样率)密切相关。逻辑分析仪的采样时钟与输入信号是异步的,采样率越高,就越可能准确检测到信号的异常事件(如毛刺)。为了分析更快的信号,逻辑分析仪通常提供更高的分辨率采集模式,在触发点周围采集更多的数据。泰克TLA系列逻辑分析仪的MagniVu高分辨率采集模式能够在所有通道提供高达50GHz的采样。其他功能还包括可调节的MagniVu采样率、可调节的触发位置、一个独立于主触发器的MagniVu触发。所有这些功能为捕获各种各样的时序问题提供了更多的灵活性。

逻辑分析仪使用教程

逻辑分析仪使用教程

声明: 本文来自 https://www.doczj.com/doc/0b6671857.html,/thread-4232738-1-1.html 另外,将68013制作逻辑分析仪的原理说明简单整理了一下,大家可以看看,如果想DIY也就不难了。点击此处下载ourdev_578200.pdf(文件大小:203K)(原文件名:逻辑分析仪开发手册.pdf) 前言 一、什么是逻辑分析仪 二、使用介绍 三、安装说明 四、Saleae软件使用方法 五、逻辑分析仪硬件安装 六、使用Saleae分析电视红外遥控器通信协议 七、使用Saleae分析UART通信 八、使用Saleae分析IIC总线通信 九、使用Saleae分析SPI总线通信 十、Saleae逻辑分析仪使用问题和注意事项 https://www.doczj.com/doc/0b6671857.html,/item.htm?id=6293581805

淘宝地址:https://www.doczj.com/doc/0b6671857.html,/item.htm?id=6293581805 (原文件名:21.jpg) 前言: 工欲善其事,必先利其器。逻辑分析仪是电子行业不可或缺的工具。但是由于一直以来,逻辑分析仪都属于高端产品,所以价格居高不下。因此我们首先要感谢Cypress公司,提供给我们68013这么好的芯片,感谢俄罗斯毛子哥将这个Saleae逻辑分析仪开源出来,让我们用平民的价格,就可以得到贵族的待遇,获得一款性价比如此之高的逻辑分析仪,可以让我们在进行数字逻辑分析仪的时候,快速查找并且解决许多信号、时序等问题,进一步提高我们处理实际问题的能力。 原本计划,直接将Saleae的英文版本使用手册直接翻译过来提供给大家,我花费半天时间翻译完后,发现外国人写的东西不太符合我们国人的思维习惯,当然,也是由于我的英语水平有限,因此,我根据自己摸索这个Saleae的过程,写了一份个人认为符合中国人习惯的Saleae,提供给大家,希望大家在使用过程中少走弯路,快速掌握使用方法,更快的解决自己实际遇到的问题。 由于个人水平有限,因此在文章撰写的过程中难免存在问题和错误,如果有任何问题,希望大家能够提出来,我会虚心接受并且改进,希望通过我们的交流,给越来越多的人提供更加优秀的资料,共同进步。 一、什么是逻辑分析仪: 逻辑分析仪是一种类似于示波器的波形测试设备,它通过采集指定的信号,并通过图形或者数据统计化的方式展示给开发人员,开发人员通过这些图形化时序信号按照协议来分析硬件或者软件中的错误。逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速定位错误,发现并解决问题,达到事半功倍的效果,尤其在分析时序,比如1wire、I2C、UART、SPI、CAN等数据的时候,应用逻辑分析仪解决问题非常快速。 如果在你的工作中有数字逻辑信号,你就有机会使用逻辑分析仪。因此应选好一种逻辑分析仪,既符合所用的功能,又不太超越所需的功能。用户多半会找一种容易操作的仪器,它在功能控制上操作步骤较少,菜单种类也不多,而且不太复杂。而Saleae就是一种低端的,比较适合大众化的逻辑分析仪,价格便宜,而且常用的逻辑分析功能足够,人机界面人性化,非常适合实用。 以下是一个Saleae分析I2C时序的一个典型例子:从图中我们可以清晰的看到,起始信号start,从地址是0x50的器件中去读取数据,第一个字节是0xc0,第二个字节是0x50,有了逻辑分析仪,我们可以快捷的找出我们的I2C时序读写数据的正确与否,可以很快将问题解决。后边的讲解中,我会详细讲解逻辑分析仪分析红外遥控器,UART时序,I2C 时序的具体方式方法。

相关主题
文本预览
相关文档 最新文档