当前位置:文档之家› 微波介质陶瓷的介电特性数值计算

微波介质陶瓷的介电特性数值计算

微波介质陶瓷的介电特性数值计算
微波介质陶瓷的介电特性数值计算

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
《计算材料学》课程设计
指导老师:江建军
教授
电子科学与技术系 2004 年 6 月
电子 0102B3 组
1

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
微波介质陶瓷的介电特性数值计算
万文涛 洪毅 黄文佳 陈婷 杨伟伟 王旭曦 袁大双 黄钏 饶伟 贺策林 李树平 (华中科技大学电子科学与技术系,武汉 430074)
摘要:对于微波介质陶瓷,建立数学模型,
讨论了介电常数与组分,温度,频率的关系。对于组分,重
点讨论运用蒙特卡罗有限元法计算出波介质陶瓷的宏观介电常数 ε m ,结果显示由二维模型和三维模型计 算得出的介电常数 ε m 大小位于串并联模型之间,而且由二维模型计算得出的介电常数 ε m 比由三维模型得 出的结果小,因为实际的一个由两相构成的微波介质陶瓷的相都是以三维形式分布的,所以由三维模型计 算出的介电常数 ε m 比用二维计算的结果要精确;对于频率,介电常数随它的变化不明显;由于温度的变 化灰引起结构以及组成物质的相的变化,只讨论了BaTiO3一类MWDC和温度的变化关系。
关键词:微波介质陶瓷;蒙特卡罗有限元法;介电常数;二相化合物
Dielectric Properties Culculated of MicroWave Dielectric Ceremoes(MWDC) ( Department of Electronics Science & Technology,Huazhong university,Wuhan 430074,China)
Abstract: As to the MicroWave Dielectric Ceremoes, the mathematics model is established,and the relations between dielectric constant and many factors is discussed,such as component,temperature and frequency.In the aspect of component, great importance is taken to using monte carlo and finite element method to culculate the macro dielectric constant of MWDC 。 The results are displayed in curves ,which use two-dimension and three-dimension models and are manifested between the results of serial model and parallel
model.Furthermore,the values which are simulated in two-dimension model are smaller than the ones in three-dimension,for the two-phase MWDC are distributed in three dimensions actually.So it’s preciser to use the three-dimemsion model.In the frequency of microwave,the dielectric constant doesn’t vary obviously.Besides, the changes of temperature can lead to the varieties of the construction and phases of materials,so we only discuss the changes with temperature of BaTiO3。 Keywords:MWDC,Monte Carlo method,finite element method,two-phased materies
电子 0102B3 组
2

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
1 引言
微波介质陶瓷(MWDC)是近十余年才迅速发展起来的一类新型功能电子陶瓷。以其优异的微波介电 性能在微波电路系统中发挥着介质隔离,介质波导以及介质谐振等一系列电路功能,并正在为微波电路 的小型化,集成化,商品化做出重要贡献。应用于微波电路的介质陶瓷,除了必备的机械强度,化学稳 定性及经时稳定性外,应满足如下介电性能的要求:在微波频率下相对介质常数εr应大;在微波频率下 的介质损耗tanδ应很小,或换言之品质因数Q(1/tanδ)应很高;谐振频率温度系数τf应很小。微波介 质陶瓷的介电常数的影响因素有组分,频率,温度. 对于组分,一般情况下,对于单一相的由某一化合物构成的微波介质陶瓷,除非能够用实验仪器直 接测量其介电常数,否则很难直接从公式计算出其介电常数,而在微波介质陶瓷这一领域,也有很多是 以两相和多相存在的,对于每一相的介电常数的具体值,我们往往都能通过查找各种关于微波介质陶瓷 介电特性的资料得到,这样如何从各相的介电常数比较精确地计算出混合相的介电常数问题,我们就必 须解决了。微波介质陶瓷是一个典型的多相体系,一般说来,它既含有主晶相,又含有副相。例如:在 BaO-Sm2O3-TiO2体系中,除了有BaO?Sm2O3?TiO2主晶相外,还有一定的副相Ba2Ti9O20存在。多相体系 的介电常数取决于各相的介电常数,体积浓度,以及相与相之间的配置情况。 , 对于多相的情况,设每相的介电常数分别为 ε1 , ε 2 ,… ε t ,浓度分别为X1,X2,…Xt(X1+X2+…+Xt =1) 现阶段可用于计算的模型有串并联和对数模型:
ε = x1ε1 + x2ε 2 + " + xt ε t
ε ?1 = x1ε1?1 + x2ε 2?1 + " + xt ε t?1
ln ε = x1 ln ε1 + x2 ln ε 2 + " + xt ln ε t
(并联模型) (串联模型) (对数模型)
并联模型和串联模型实际上代表了两种极端的情况,它们分别给出了 ε m 的上限和下限,用它们计算 ε m 与 实验结果相差很大,实际中很少采用.对数模型在计算 ε m 时相对精确一些,应用比较广泛,但是这种模型并 未真正从材料介电特性的物理本质出发,它只能定性反映复合介质介电常数的大致变化趋势,不能作为精 确的定量计算公式.为了更加精确的计算微波介质陶瓷的宏观介电常数,引入蒙特卡罗有限元分析,得到了 比较精确的模型. 对于频率和温度,由于用于微波频段的微波介质陶瓷器件应该在该频段稳定工作,所以介电常数在该 频段应该为一常数.至于温度,由于其变化会引起微波介质陶瓷的结构和它的组成相发生变化,所以也较难 讨论,但是对于钙钛矿型的微波介质陶瓷我们可以通过简单的模型来讨论它的介电常数与温度的关系.
2 介电常数与组分的关系
电子 0102B3 组 3

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
2.1 由二相化合物构成的 MWDC 的介电常数的计算
2.1.1 电磁学原理 用右图 1 所示的长方形方格代表一微波介质陶瓷,在 x,y 方向的边 长分别为 nx , n y (图 1)。介质区介质的(相对)介电常数不是常量,而 是坐标的函数,即 ε = ε ( x, y ) 。介质区的底面(y=0)为负电极,施加 零电位;顶面(y= n y )为正电极,施加正电位 u0 。从而介质内部电位 分布 u = u ( x, y ) 满足: u ( x,0) = 0 ; u ( x, n y ) = u0 介质内任一点的电场强度为: E = ??u (1)
图 1:长方形单元格及其划分
在忽略介质区外电场能量的情况下,电容器的总静电储能为:
W=
→ 1 1 ε ( x , y ) | E ( x, y ) |2 dxdy = ∫∫ ε ( x, y ) | ?u ( x, y ) |2 dxdy (2) ∫∫ 2 S 2 S
式中积分域 S 为整个介质区域( (2)式及(4)式省去了真空电容率 ε 0 项,对问题的实质及计算结果 并无影响) 。根据电磁场中的汤姆逊原理,在一定的边界条件和初始条件下,电磁场的分布必使该电 磁场所具有的能量达到最小,因此有
?W / ?u ( x, y ) = 0 , ?( x, y ) ∈ S (3)
根据(2)式和(3)式,并结合边界条件(1)式,设法求得介质内的电位分布 u ( x, y ) ,在代入(2) ,则其电容量和储 式可求出储能 W。对于上述平行板电容器,如果介质的宏观介电常数为 ε m (未知) 能分别为: C = ε m nx / n y (4)
1 2 (5) W = Cu0 2
由(4) , (5)二式可得 ε m 的计算公式: ε m = 2n yW / nxu0 (6)
2
2.1.2 用 MC-FET 法建模 上述(1)~(3)式为连续形式,为了便于计算机求解,按照有限元法的 思想,利用完全二次多项式插值将介质区的连续场离散化,最终(1)~(3) 式转化为线性方程组求解。 作为实际两相复合介质中两相以微粒形式混合情况的近
图 2:单元格的填充
,并将这些单元格按照图 1) 所示 似,将长方形方格划分为 nx × n y 个单位正方形单元格(如图 1)
电子 0102B3 组 4

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
的规律编号,第 I 个单元格的介电常数为 ε i 。用计算机产生两相的随机 分布,使两相体积比为 V1 : V 2 。图 2 给出了 V1 : V2 = 0.4 : 0.6 时的几种可能 分布。每个正方形单元又被进一步划分为两个等腰直角三角形作为有限 单元(如图 3) 。在每个有限单元中,取 6 个节点,电势的插值函数为
u = C1 + C2 x + C3 y + C4 x 2 + C5 xy + C6 y 2
每个单元的静电场能为 w(u ) =
(7) (8)
图 3:子单元格划分
1 ε i (?u ) 2 ds 2∫
将所有单元的能量相加,并求最小值,到出一线性方程组。求解此方程组, 即得出在此特定两相介质空间中的静电场能,从而导出等效介电常数。 对每种初始条件(介电常数比和体积分数) ,重复计算 20 次,记录平均值 ε m 和标准差,将计
? εm ? ε f 算结果对公式拟合,拟合效果用残差 χ = ∑ ? ? ε i ? m
2
? ? ? 评估,其中 ε f 为拟合值。这样,经过逐 ?i
2
次超松弛迭代法和回归分析,可以得出二维的宏观介电常数计算公式:
V εm
2
?V 0
V 2 ?V 0 V 2 ?V 0 , (9) = V1ε1 + V2ε 2
式中 V0 = 0.35 , ε1 < ε 2 。 2.1.3 程序模拟 我们用matlab和labview两种工具对由二相化合物构成的MWDC的介电常数的进行了模拟,选取 由 ε1 =6 (BeO), ε 2 =92(BaO?Sm2O3?TiO2)构成的微波介质陶瓷进行模拟.模拟结果如下:
图 4: ε1 =6, ε 2 =92 二相化合物的介电常数曲线
2.1.4 结果分析
电子 0102B3 组 5

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
(1)用二维蒙特卡罗有限元法得出的曲线位于串并联之间,比较准确的得出了二相分布时的宏观介电 常数的值. (2)和常用的对数模型相比,用蒙特卡罗有限元方法模拟是由物理理论相对严格推导的,有比较强的物 理意义,也较为精确. (3)用二维蒙特卡罗有限元法模拟得出的曲线中间有一极点,此时介电常数为无穷大,这与实际不符,模 型需要改进. 2.1.5 模型改进 (1)模型改进 由于实际的介质分布都是三维的, 所以在蒙特卡罗二维模型的基 础上, 对 z 方向进行模拟, 如图 5 的三维的模型, 在介质区的底面 (z=0) 为负电极,施加零电位;顶面(z= nz )为正电极,施加正电位 u0 。 从而介质内部电位分布 u = u ( x, y , z ) 满足:
u ( x, y ,0) = 0 ; u ( x, y, nz ) = u0 (10)
同二维的电磁学原理一样,则其电容量和储能分别为:
图 5:三维单元格的划分
C = ε m nx n y / nz (11)
1 2 (12) W = Cu0 2
由(11) , (12)二式可得 ε m 的计算公式: ε m = 2nzW / nx n y u0 (13)
2
(2)模拟方法及过程 在 nx × n y × nz 的正方形格子上进行模拟计算, 用标准的蒙特卡罗抽样方法决定每个格子被 ε1 相 和 ε 2 相所占据,从而实现指定的体积分数。 为了提高计算精度,将每一单元格进一步划分为 6 个体积相等的四面体形子单元格,将它们编 号 1~6。不难看出,这 6 个单元格在空间上有明显的对称关系。每个正方形单元又被进一步划分为 两个等腰直角三角形作为有限单元。在每个有限单元中,取 6 个节点,电势的插值函数为
u = C1 + C2 x + C3 y + C4 x 2 + C5 xy + C6 y 2
每个单元的静电场能为 w(u ) =
(14)
1 ε i (?u ) 2 ds ∫ 2
(15)
电子 0102B3 组
6

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
图 6: 一种可能的二相分布(V2=0.4)
图 7:三维子单元格的划分和结点编号规则
将所有单元的能量相加,并求最小值,到出一线性方程组。求解此方程组,即得出在此特定两相介质 空间中的静电场能,从而导出等效介电常数。对每种初始条件(介电常数比和体积分数) ,重复计算
? εm ? ε f 20 次,记录平均值 ε m 和标准差,将计算结果对公式拟合,拟合效果用残差 χ = ∑ ? ? ε i ? m
2
? ? ? 评估, ?i
2
其中 ε f 为拟合值。这样,经过逐次超松弛迭代法和回归分析,可以得出三维的宏观介电常数计算公 式:
α α α , (16) εm = V1ε1 + V2ε 2
0
式中 α = (V1 + 20V1V2 + 5V2 ) / 11 , V1 + V2 = 1 , ε1 < ε 2 。
2 2
(3)程序模拟 我们用matlab和labview两种工具对由二相化合物构成的MWDC的介电常数的进行了模拟,再次 选取由 ε1 =6 (BeO), ε 2 =92(BaO?Sm2O3?TiO2)构成的微波介质陶瓷进行模拟.模拟结果如下:
图 8: ε1 =6, ε 2 =92 二相化合物的介电常数曲线 电子 0102B3 组 7

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
(4) 实验验证 由参考资料 7 可得数据: 下表(1) :. 表 1:模型计算值与实际值的比较
ε1 = 1.25 , ε 2 = 28.5 的体积分数下实际值,与各模型算的值相比的结果见
ε
0.2 V2 0.4 0.6
串联 6.7 12.15 17.6
并联 1.55 2.02 2.93
对数 1.83 2.69 3.95
二维 2.79 7.05 14.30
三维 3.33 8.22 14.40
实际 3.13 7.75 14.98
(5) 结论 通过利用蒙特卡罗有限元法模拟两相复合介质内的电场分布并计算其宏观介电常数,得出如下 结论:两相复合介质内的电场分布不均匀,低介相中的电场强度高于高介相。三维模拟比二维模型 更能精确反映实际复合介质中的电场分布情况,因而计算宏观介电常数更接近实验值。
3 介电常数与频率的关系
复介质常数 ε (ω ) 可用下式表示:
( ze) 2 / mV ε 0 ε (ω ) = 2 = ε ' (ω ) ? jε '' (ω ) 2 ωT ? ω ? jγω
换算得到:
(1)
ε ' (ω ) =
( ze) 2 / mV ε 0 2 (ωT ? ω 2 ) (2) 2 2 2 2 2 (ωT ? ω ) + γ ω
'
由于在微波范围内,离子晶体的 ε (ω ) 不会因为频率而变化,即在微波下保持恒定,故在微波范围内,微波介 电陶瓷的宏观介电常数 ε r 在频率变化时基本保持不变,在直角坐标系上的图像近似为直线.
4 介电常数与温度的关系
1) 模型建立 微波介电陶瓷介质特性的温度稳定性很重要,其宏观介电常数 ε r 的温度特性一般可以用介质常数的
电子 0102B3 组
8

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
温度系数 τ ε 表示为:
τε =
1 dε r ε r dT
(3)
微波介质陶瓷的 τ ε 要与陶瓷本身的热膨胀系数 α 相互匹配补偿,才能保质介质器件的谐振频率
f 0 的高度稳定性. f 0 的温度系数 τ f (=
1 df 0 ) 在一定的条件下与 τ ε 和 α 有如下的关系: f 0 dT 1 2
τ f = ?(α + τ ε ) , (4)
一般要求介质谐振器件的 τ f = 0 .而陶瓷的线热膨胀系数 α 为正,其值在 α =(6~9)*10-6/oC左右. 当温度 T > T0 时,由居里定律可以得到: ε r =
C ; (5) T ?θ0
当温度 T < T0 时,由 τ ε =
1 dε r 1 ? ? ,τ f = ? ? α + τ ε ? ,τ f = 0 可以得到: ε r dT 2 ? ?
ε r = exp(?2α T + C ) . (6)
2) 程序模拟 查找资料可得, α = (6 ~ 9) × 10 / C, C = 1.7 × 105 K,并用图 10 的相关数据,可以运用MATLAB模拟得
?6
o
到图 9:.
3)
结论 与实际的钙钛矿型的图 10 比较, 可知,我们对于钙钛矿型 MWDC 的温度模型时比较合适,对于钙钛 矿一类的微波介质陶瓷存在一个介电常数的突变点(居里点),在居里点以下,介电常数随温度呈指数增 长;在居里点以上,介电常数随温度呈反比下降.
图 9: 介电常数温度曲线
图 10:BaTiO3 介电常数与温度关系
5 总论
电子 0102B3 组 9

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
微波介质陶瓷的介电常数的精确计算模型是能够反映起内部电场分布的 MC-FET 模型,而其他模型 都存在较大的误差.在微波频带内,频率对介电常数的影响不大,微波介质陶瓷的介电常数几乎为一常数. 对于钙钛矿一类的微波介质陶瓷存在一个介电常数的突变点(居里点),在居里点以下,介电常数随温度呈 指数增长;在居里点以上,介电常数随温度呈反比下降.
参考文献
[1] 吕文中,汪小红. 电子材料物理. 北京:电子工业出版社,2002. [2] 李标荣,王 珍,张绪礼. 无机电介质. 武汉:华中理工大学出版社,1994
[3] 王国庆,吴顺华,赵玉双 etal. 无机材料学报, 2004, 12(1):214-222. [4] 吴裕功,沈洪亮,赵选贺 etal. 哈尔滨理工大学学报, 2002, 19(1):24-26. [5] Dario l g,Diego P F,Horacio RC.Fluid Phase Equilibria,1999,158-160:1011-1019. [6]宋 英, 王福平, 周 玉. 材料科学与工艺,1998,6(2):59-64. [7] 吕文中,张道礼,姜胜林 etal. 功能材料, 2000, 31(6):572-576.
电子 0102B3 组
10

微波介质陶瓷的介电特性数值计算

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
《计算材料学》课程设计
指导老师:江建军
教授
电子科学与技术系 2004 年 6 月
电子 0102B3 组
1

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Wuhan 430074, Hubei, P. R. China 中国·武汉 Tel(027)
微波介质陶瓷的介电特性数值计算
万文涛 洪毅 黄文佳 陈婷 杨伟伟 王旭曦 袁大双 黄钏 饶伟 贺策林 李树平 (华中科技大学电子科学与技术系,武汉 430074)
摘要:对于微波介质陶瓷,建立数学模型,
讨论了介电常数与组分,温度,频率的关系。对于组分,重
点讨论运用蒙特卡罗有限元法计算出波介质陶瓷的宏观介电常数 ε m ,结果显示由二维模型和三维模型计 算得出的介电常数 ε m 大小位于串并联模型之间,而且由二维模型计算得出的介电常数 ε m 比由三维模型得 出的结果小,因为实际的一个由两相构成的微波介质陶瓷的相都是以三维形式分布的,所以由三维模型计 算出的介电常数 ε m 比用二维计算的结果要精确;对于频率,介电常数随它的变化不明显;由于温度的变 化灰引起结构以及组成物质的相的变化,只讨论了BaTiO3一类MWDC和温度的变化关系。
关键词:微波介质陶瓷;蒙特卡罗有限元法;介电常数;二相化合物
Dielectric Properties Culculated of MicroWave Dielectric Ceremoes(MWDC) ( Department of Electronics Science & Technology,Huazhong university,Wuhan 430074,China)
Abstract: As to the MicroWave Dielectric Ceremoes, the mathematics model is established,and the relations between dielectric constant and many factors is discussed,such as component,temperature and frequency.In the aspect of component, great importance is taken to using monte carlo and finite element method to culculate the macro dielectric constant of MWDC 。 The results are displayed in curves ,which use two-dimension and three-dimension models and are manifested between the results of serial model and parallel
model.Furthermore,the values which are simulated in two-dimension model are smaller than the ones in three-dimension,for the two-phase MWDC are distributed in three dimensions actually.So it’s preciser to use the three-dimemsion model.In the frequency of microwave,the dielectric constant doesn’t vary obviously.Besides, the changes of temperature can lead to the varieties of the construction and phases of materials,so we only discuss the changes with temperature of BaTiO3。 Keywords:MWDC,Monte Carlo method,finite element method,two-phased materies
电子 0102B3 组
2

PCB介电常数知识

1、我们常用的PCB介质是FR4材料的,相对空气的介电常数是4.2-4.7。这个介电常数是会随温度变化的,在0-7 0度的温度范围内,其最大变化范围可以达到20%。介电常数的变化会导致线路延时10%的变化,温度越高,延时越大。介电常数还会随信号频率变化,频率越高介电常数越小。100M以下可以用4.5计算板间电容以及延时。 2、一般的FR4材料的PCB板中内层信号的传输速度为180ps/inch(1inch=1000mil=2.54cm)。表层一般要视情况而定,一般介于140与170之间。 3、实际的电容可以简单等效为L、R、C串联,电容有一个谐振点,在高频时(超过这个谐振点)会呈现感性,电容的容值和工艺不同则这个谐振点不同,而且不同厂家生产的也会有很大差异。这个谐振点主要取决于等效串联电感。现在的比如一个100nF的贴片电容等效串联电感大概在0.5nH左右,ESR(等效串联电阻)值为0.1欧,那么在24M 左右时滤波效果最好,对交流阻抗为0.1欧。而一个1nF的贴片电容等效电感也为0.5nH(不同容值差异不太大),E SR为0.01欧,会在200M左右有最好的滤波效果。为达好较好的滤波效果,我们使用不同容值的电容搭配组合。但是,由于等效串联电感与电容的作用,会在24M与200M之间有一个谐振点,在这个谐振点上有最大阻抗,比单个电容的阻抗还要大。这是我们不希望得到的结果。(在24M到200M这一段,小电容呈容性,大电容已经呈感性。两个电容并联已经相当于LC并联。两个电容的ESR值之和为这个LC回路的串阻。LC并联的话如果串阻为0,那么在谐振点上会有一个无穷大的阻抗,在这个点上有最差的滤波效果。这个串阻反倒会抑制这种并联谐振现象,从而降低LC谐振器在谐振点的阻抗)。为减轻这个影响,可以酌情使用ESR大些的电容。ESR相当于谐振网络里的串阻,可以降低Q值,从而使频率特性平坦一些。增大ESR会使整体阻抗趋于一致。低于24M的频段和高于200M的频段上,阻抗会增加,而在24M与200M频段内,阻抗会降低。所以也要综合考虑板子开关噪声的频带。国外的一些设计有的板子在大小电容并联的时候在小电容(680pF)上串几欧的电阻,很可能是出于这种考虑。(从上面的参数看,1nF的电容Q值是100nF电容Q值的10倍。由于手头没有来自厂商的具体等效串感和ESR的值,所以上面例子的参数是根据以往看到的资料推测的。但是偏差应该不会太大。以往多处看到的资料都是1nF和100nF的瓷片电容的谐振频率分别为100M和10M,考虑贴片电容的L要小得多,而又没有找到可靠的值,为讲着方便就按0.5nH计算。如果大家有具体可靠的值的话,还希望能发上来^_^) 介电常数(Dk, ε,Er)决定了电信号在该介质中传播的速度。电信号传播的速度与介电常数平方根成反比。介电常数越低,信号传送速度越快。我们作个形象的比喻,就好想你在海滩上跑步,水深淹没了你的脚踝,水的粘度就是介电常数,水越粘,代表介电常数越高,你跑的也越慢。 介电常数并不是非常容易测量或定义,它不仅与介质的本身特性有关,还与测试方法,测试频率,测试前以及测试中的材料状态有关。介电常数也会随温度的变化而变化,有些特别的材料在开发中就考虑到温度的因素.湿度也是影响介电常数的一个重要因素,因为水的介电常数是70,很少的水分,会引起显著的变化. 以下是一些典型材料的介电常数(在1Mhz下):

最新9微波基础知识及测介电常数汇总

9微波基础知识及测 介电常数

实验五微波实验 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。与无线电波相比,微波有下述几个主要特点 图1 电磁波的分类 1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而 确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。 2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。

3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。 4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV ,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。(北京大华无线电仪器厂) 5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。 综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同。微波实验是近代物理实验的重要组成部分。 实 验 目 的 1. 学习微波的基本知识; 2. 了解微波在波导中传播的特点,掌握微波基本测量技术; 3. 学习用微波作为观测手段来研究物理现象。 微波基本知识 一、电磁波的基本关系 描写电磁场的基本方程是: ρ=??D , 0=??B

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

微波介质陶瓷的应用

螂微波介质陶瓷(MWDC)是应用于微波频段(主要是UHF、SHF频段,300MHz~300GHz)电路中作为介质材料并完成一种或多种功能的陶瓷,是近年来国内外对微波介质材料研究领域的一个热点方向。近年来,移动通讯、卫星通信、军用雷达、全球卫星定位系统(GPS)、蓝牙技术、无线局域网等现代通信技术得到了快速发展。这些通信装置中使用的微波电路一般由谐振器、滤波器、振荡器、衰减器、介质天线、微波集成电路基片等元件组成,微波介质陶瓷(MWDC)是其制备的关键基础材料。用微波介质陶瓷制作的元器件具有体积小、质量轻、性能稳定、价格便宜等优点。目前微波陶瓷材料和器件的生产水平以日Murata公司、德EPCOS公司、美Trans-Tech公司、Narda MICROW A VE-WEST公司、英Morgan Electro Ceramics、Filtronic等公司为最高。其产品的应用范围已在300MHz~40GHz系列化,年产值均达十亿美元以上。国外介质陶瓷材料发展具有综合领先水平的是日本、美国等发达国家。日本在介质陶瓷材料领域中一直以全列化、产量最大、应用领域最广、综合性能最优,占据了世界电子陶瓷市场50%的份额。美国在电子陶瓷的技术研发方面走在世界前列,但是产业化应用落后于日本,大部分技术停留在实验室阶段。目前,美国电子陶瓷产品约占世界市场份额的30%,居全球第二位。目前世界电子陶瓷的市场规模达到1300亿美元左右。未来几年需求量每年将以15~20%的速度增长,到2015年需求量将突破2100亿美元。 我国特陶企业集中分布在北京、上海、天津、江苏、山东、浙江、福建、广东等沿海城市和地区以及华中部分城市地区,西南西北等偏远地区以原军工三线企业为主。在我国电子陶瓷行业中,股份制和三资企业具有最强的竞争力。国内微波介质陶瓷材料及器件的生产,在技术水平、产品品种和生产规模上与国外相比有较大差距。我国特种陶瓷产业目前主要存在产业规模小、技术创新弱、研发投入少、品牌知名度不高、工艺和装备水平低、能耗高、融资困难、无序竞争等问题,特别是企业缺乏创新能力,产业缺乏创新平台,严重制约了特种陶瓷产业由量向质的飞跃提升。我国从事特种陶瓷开发研制的高校、科研院所和生产企业已超过300家,其中研发生产功能陶瓷的单位占63.6%,研发生产结构陶瓷的单位占36.4%。中国科学院、上海硅酸盐研究所、清华大学等对我国特种材料研究起到了重要的推动作用。目前微波介质陶瓷已在便携式移动电话、汽车电话、无绳电话、电视卫星接收器、军事雷达等方面被用来广泛制造微波介质滤波器和谐振器,在现代通信工具的小型化、集成化过程中正发挥着越来越大的作用。2009年国内通信设备市场投资达1743亿人民币,增速14.6%;预计2010年和2011年的电信设备市场投资为1850亿元和1880亿元,无疑会给微波介质陶瓷行业带来巨大需求。预计到2015年,我国电子陶瓷产品需求量将突破280亿元。 本研究咨询报告在大量周密的市场调研基础上,主要依据了国家统计局、国家商务部、国家海关总署、国家发改委、国务院发展研究中心、国家信息中心、中国通信企业协会、中国陶瓷工业协会、国内外相关刊物的基础信息以及各产业研究单位等公布和提供的大量资料。本报告对我国微波介质陶瓷行业发展现状、发展趋势、竞争格局、投资前景等进行了分析,是微波介质陶瓷制造企业、研究单位、销售企业以及相关企业和单位、计划投资于微波介质陶瓷行业的企业等准确了解目前中国微波介质陶瓷市场发展动态,把握行业发展趋势,制定市 场策略的必备的精品。 滤波器的用途 羂[日期:2010-01-04] 聿来源:深圳市西凯士电气有限公司作者:a dmin 蚆[字体:大中小]

电介质的电气特性及放电理论-高电压技术考点复习讲义和题库

考点1:电介质的电气特性及放电理论 (一)气体电介质的击穿过程 气体放电可以分非自持放电和自持放电两种。20世纪Townsend在均匀电场,低气压,短间隙的条件下进行了放电试验,提出了比较系统的理论和计算公式,解释了整个间隙的放电过程和击穿条件。 1、汤逊放电理论的适用范围: 汤逊理论的核心是: (1)电离的主要因素是电子的空间碰撞电离和正离子碰撞阴极产生表面电离; (2)自持放电是气体间隙击穿的必要条件。 汤逊理论是在低气压、Pd值较小的条件下进行的放电实验的基础上建立起来的,这一放电理论能较好的解释低气压短间隙中的放电现象。因此,汤逊理论的适用范围是低气压短间隙(Pd<26 66kPa.cm)。在高气压、长气隙中的放电现象 无法用汤逊理论加以解释,两者间的主要差异表现在以下几方面: (1) 放电外形根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。 低气压下气体放电发光区确实占据了整个间隙空间,如辉光放电。但在大气压下气体击穿时出现的却是带有分支的明亮细通道。 (2) 放电时间根据汤逊理论,闻隙完成击穿,需要好几次循环:形成电子崩,正离子到达阴极产生二次电子,又形成更多的电子崩。完成击穿需要一定的时间。但实测到的在大气压下气体的放电时间要短得多。 (3) 击穿电压当Pd值较小时,根据汤逊自持放电条件计算的击穿电压与实测值比较一致;但当Pd值很大时,击穿电压计算值与实测值有很大出入。 (4) 阴极材料的影响根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。实验表明,低气压下阴极材料对击穿电压有一定影响,但大气压下空气中实测到的击穿电压却与阴极材料无关。

由此可见汤逊理论只适用于一定的Pd范围,当Pd>26 66kPa. cm后,击穿过程就将发生改变,不能用汤逊理论来解释了。 2、流注理论 利用流注理论可以很好地解释高气压、长间隙情况下出现的一系列放电现象。 (1) 放电外形 流注通道电流密度很大,电导很大,故其中电场强度很小。 因此流注出现后,将减弱其周围空间内的电场,加强了流注前方的电场,并且这一作用伴随着其向前发展而更为增强。因而电子崩形成流注后,当某个流注由于偶然原因发展更快时,它就将抑制其它流注的形成和发展,这种作用随着流注向; 前推进将越来越强,开始时流注很短可能有三个,随后减为两个,最后只剩下一个流注贯通整个间隙了,所以放电是具有通道形式的。 (2) 放电时间 根据流注理论,二次电子崩的起始电子由光电离形成,而光子的速度远比电子的大,二次电子崩又是在加强了的电场中,所以流注发展更迅速,击穿时间比由汤逊理论推算的小的多。 (3) 阴极材料的影响 根据流注理论,大气条件下气体放电的发展不是依靠芷离子使阴极表面电离形成的二次电子维持的,而是靠空间光电离产生电子维持的,故阴极材料对气体击穿电压没有影响。 在Pd值较小的情况下,起始电子不可能在穿越极间距离后完成足够多的碰撞电离次数,因而难 e≥108所要求的电子数,这样就不可能出现流注,放电的自持只能依靠阴极上的 过程。以聚积到ad 因此汤逊理论和流注理论适用于一定条件下的放电过程,不能用一种理论来取代另一种理论,它们互相补充,可以说明广阔的Pd范围内的放电现象。 ‘ 3、不均匀电场中气体的击穿 稍不均匀电场中放电达到自持条件时发生击穿现象,此时气隙中平均电场强度比均匀电场气隙的要小,因此在同样极间距离时稍不均匀场气隙的击穿电压比均匀气隙的要低,在极不均匀场气隙中自持放电条件即是电晕起始条件,由发生电晕至击穿的过程还必须增高电压才能完成。 极不均匀电场有如下特征: (1) 极不均匀电场的击穿电压比均匀电场低;

11.3 材料微波介电常数和磁导率测量

实验11.3 材料微波介电常数和磁导率测量 一、引言 隐身技术是通过控制、降低目标的可探测信号特征,使其不易被微波、红外、可见光、声波等各种探测设备发现、跟踪、定位的综合技术。其中,微波隐身(或称雷达波隐身)的研究早在20世纪30年代就开始了。现在已发展成集形状隐身、材料隐身等一体的高度复杂的技术,并已应用到导弹、飞机、舰船、装甲车辆、重要军事设施等许多武器装备上。 雷达隐身技术中,最简单的一种是涂覆型隐身技术。它是将吸波材料直接以一定的厚度涂覆在外壳以降低对微波的反射,减小雷达探测截面,提高隐身能力。而材料的微波介电常数和导弹磁率与吸波性能有关,本实验用开关短路法对其进行测量。 二、实验目的 1. 了解和掌握微波开路和短路的含意和实现方法。 2. 掌握材料微波介电常数和磁导率的原理和方法。 3. 了解微波测试系统元部件的作用。 三、实验原理 对于涂覆在金属平板(假定其为理想导体,下同)表面的单层吸波材料,空气与涂层界面处的输入阻抗为 ()d Z Z γεμγ γ th 0 = 其中Ω== 3770 0εμZ 是自由空间波阻抗,γ是电磁波在涂层中的传播常数,d 是吸收波涂层厚度,μγ,εγ分别为涂层的相对磁导率和相对介电常数。 当电磁波由空气向涂层垂直入射时,在界面上的反射系数为: Z Z Z Z Γ+-= 以分贝(dB )表示的功率反射率为: R =20lg|Γ|

对多层涂覆,电磁波垂直入射到第n 层时,其输入阻抗为: ()() n n n n n n n n n n d Z d Z Z γηγηηth th 11--++= 其中,()()n n n n n εεμμη''-'''-'= j j 是第n 层的特征阻抗, ()()n n n n n c εεμμω γ''-'''-'=j j j 是第n 层的传播常数,d n 为第n 层的厚度,Z n -1为第n -1层入射面的输入阻抗。 理想导体平面的输入阻抗为0,最外层的输入阻抗可以通过迭代法得出,从而由前述公式得到反射率。 图1 一种基于测量线的波导测量装置 图2 传输线模型 由此可见,无论是单层涂覆还是多层涂覆,测出各层材料的复介电常数εr 和复磁导率μr ,及其余频率的关系是设计隐身涂层的关键。

微波介质陶瓷材料体系研究综述.doc

微波介质陶瓷材料体系研究综述 (桂林理工大学) 摘要:介绍了微波介质陶瓷的应用及其性能要求,按照应用频域的不同,对微波介质 陶瓷的材料体系进行分类讨论,将其划分为低频端、中频端以及高频端等三大类,指明了微波介质陶瓷的发展展望。 关键词: 微波陶瓷;介质陶瓷 引言 微波介质陶瓷是近十多年来发展起来的一种新型的功能陶瓷材料。它是指应用于微波频率(主要是300MHz-30GHz频段)电路中作为介质材料并完成一种或多种功能的陶瓷材料,是制造微波介质滤波器和谐振器的关键材料。它具有高介电常数、低介电损耗、温度系数小等优良性能,适于制造多种微波元器件,能满足微波电路小型化、集成化、高可靠性和低成本的要求。用微波介质陶瓷材料做成的各类高性能器件,已被广泛应用于卫星电视、雷达、移动通讯、电子计算机及现代医学等众多领域[1]。随着移动通信的发展,微波介质陶瓷已成为高技术陶瓷研究的重点项目之一[2]。 1 微波介质陶瓷的应用及性能要求 1.1微波介质陶瓷的应用 微波介质陶瓷应用范围广泛,在微波电路中的应用主要有如下几个方面[ 3, 4]: (1)用作微波电路的介质基片,起着电路元器件及线路的承载、支撑、绝缘的作用;(2)用作为微波电路的电容器,起着电路或元件之间的耦合及储能作用;(3)用作微波电路的介质天线, 起着集中吸收储存电磁波能量的作用;(4)用作微波电路的介质波导,起着引导电磁波沿一定方向传播的作用;(5)用作微波电路的介质谐振器件,起着类似一般电子电路中LC谐振电路的作用。其中,最后一项的应用是最主要

的。因为实现微波设备的小型化、高稳定性和廉价的途径是微波电路的集成化,早期金属谐振腔和金属波导体积和重量过大,大大限制了微波集成电路的发展, 由微波介质陶瓷做成的介质谐振器,可按设计要求将若干谐振器耦合在一起, 制成一系列为满足微波电路各方面需要的腔体块状微波器件,如:滤波器、稳频震荡器及放大器等介质谐振式选频器件,体积小、重量轻介质谐振器件的出现能排除微波电路小型化与集成化方向上的最大障碍。陶瓷介质微波器件体积小、损耗低、稳定好、承受功率高、可在恶劣条件下工作, 最高应用频率可达90GHz,不仅在民用中广泛应用,而且在军用通信中受到重视。腔体块状陶瓷介质微波器件有分体和联体两种结构,前者是由几个谐振器耦合而成; 后者是在一个陶瓷块体上制作几个谐振器及其间的耦合结构,使器件体积大大减小,但小型化有限,不能满足移动通信市场日益发展的要求。利用低温烧结微波介质陶瓷与导体浆料的共烧技术和精细叠层工艺,制成片式多层微波频率器件具有小型化、可表面贴装、性能优良、可靠性高、可承受波峰焊和再流焊等诸多优点。LTCC技术的出现,微波器件小型化得到迅速发展,如天线、双工器、滤波器、平衡--不平衡转换等叠层微波器件获得广泛应用[5]。 1.2微波介质陶瓷的性能要求[6~8] 评价微波介质陶瓷介电性能的参数主要有三个:相对介电常数εr、品质因数Q·f、谐振频率τf。应用于微波电路的介质陶瓷,除了必备的机械强度、化学稳定性及经时稳定性外,还应满足如下介电特性的要求: (1)在微波频率下材料相对介电常数εr应大,以便于器件小型化。由微波传输理论可知: 微波在介质体内传输,无论采用何种模式,谐振器的尺寸都大约在λ/2~λ/4的整数倍间。微波在介质体内传输时的波长λ与它在自由空间传输时的波长λ0有如下关系:λ=λ0/ε0.5。所以,相同的谐振频率下,εr 越大,介质谐振器的尺寸就越小,电磁能量越能集中于介质体内,受周围环境的影响也小。这既有利于介质谐振器件的小型化,也有利于其高品质化。另一方面,谐振频率越高,波长越短,介质谐振器的尺寸在相对介电常数不是很大的情况下也可以很小,不同的应用领域,对εr的要求不同,通常要求εr>10。 (2)在微波频率下的介电损耗tanδ应很小,即介质的品质因子Q(=1/tanδu )要高,

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

高电压工程答案(清华大学版)

高电压工程课后答案 1.1空气作为绝缘的优缺点如何? 答:优点:空气从大气中取得,制取方便,廉价,简易,具有较强的自恢复能力。缺点:空气比重较大,摩擦损失大,导热散热能力差。空气污染大,易使绝缘物脏污,且空气是助燃物当仿生电流时,易烧毁绝缘,电晕放电时有臭氧生成,对绝缘有破坏作用。 1.2为什么碰撞电离主要是由电子而不是离子引起? 答:由于电子质量极小,在和气体分子发生弹性碰撞时,几乎不损失动能,从而在电场中继续积累动能,此外,一旦和分子碰撞,无论电离与否均将损失动能,和电子相比,离子积累足够造成碰撞电离能量的可能性很小。 1.5负离子怎样形成,对气体放电有何作用? 答:在气体放电过程中,有时电子和气体分子碰撞,非但没有电离出新电子,碰撞电子反而别分子吸附形成了负离子,离子的电离能力不如电子,电子为分子俘获而形成负离子后电离能力大减,因此在气体放电过程中,负离子的形成起着阻碍放电的作用。 1.7非自持放电和自持放电主要差别是什么? 答:非自持放电必须要有光照,且外施电压要小于击穿电压,自持放电是一种不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。 1.13电晕会产生哪些效应,工程上常用哪些防晕措施? 答:电晕放电时能够听到嘶嘶声,还可以看到导线周围有紫色晕光,会产生热效应,放出电流,也会产生化学反应,造成臭氧。 工程上常用消除电晕的方法是改进电极的形状,增大电极的曲率半径。 1.14比较长间隙放电击穿过程与短间隙放电放电击穿过程各有什么主要特点? 答:长时间放电分为先导放电和主放电两个阶段,在先导放电阶段中包括电子崩和流注的形成和发展过程,短间隙的放电没有先导放电阶段,只分为电子崩流注和主放电阶段。 2.1雷电放电可分为那几个主要阶段? 答:主要分为先导放电过程,主放电过程,余光放电过程。 2.4气隙常见伏秒特性是怎样制定的?如何应用伏秒特性? 答:制定的前提条件是①同一间隙②同一波形电压③上升电压幅值。当电压较低时击穿发生在波尾,取击穿时刻t1作垂线与此时峰值电压横轴的交点为1,当电压升高时,击穿也发生在峰值,取击穿时刻的值t2作垂线与此时峰值电压横轴的交点为2,当电压进一步升高时,击穿发生在波前,取此时击穿时刻t3作垂线与击穿电压交点为3,连接123 应用:伏秒特性对于比较不同设备绝缘的冲击击穿特性有重要意义,如果一个电压同时作用于两个并联气隙s1和s2上,若某一个气隙先击穿了,则电压被短接截断,另一个气隙就不会击穿。 2.7为什么高真空和高压力都能提高间隙的击穿电压?简述各自运用的局限性? 答:在高气压条件下,气压增加会使气体密度增大,电子的自由行程缩短,削弱电离工程从而提高击穿电压,但高气压适用于均匀电场的条件下而且要改进电极形状,点击应仔细加工光洁,气体要过滤,滤去尘埃和水分 在高真空条件下虽然电子的自由行程变得很大,但间隙中已无气体分子可供碰撞,故电离过程无从发展,从而可以显著提高间隙的击穿电压,但是在电气设备中气固液等几种绝缘材料往往并存,而固体液体绝缘材料在高真空下会逐渐释放出气体,因此在电气设备中只有在真空断路器等特殊场合下才采用高真空作为绝缘。 2.8什么是细线效应?

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集 1

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

含水量的变化影响介电常数的实部,水溶液中含盐量的变化影响土壤的导电性,即介电常数的虚部。水与某些铁锰化合物具有高的介电常数,绝大多数矿物的介电常数较低,约为4--12个相对单位,由于主要造岩矿物与水的相对介电常数存在较大差异,所以,具有较大孔隙度岩石的介电常数主要取决于它的含水量,泥岩由于含有大量的弱束缚水,所以其相对介电常数可高达50--60,岩石含泥质较多时,它们的介电常数与泥质含量有明显的关系,很多火成岩的孔隙度只有千分之几,其相对介电常数主要取决于造岩矿物,一般变化范围为6--12,水的介电常数与其矿化度的关系较弱,与此相应,岩石孔隙中所含水的矿化度同样对其介电常数不应有大的影响,水的矿化度的增大只导致岩石介电常数的少许增加。 表1 常见介质的电性参数值 媒质电导率 / (S/m) 介电常 数(相对 值) 电磁波速度/ (m/ns) 空气0 1 0.3 水10-4~3х10-281 0.033 花岗岩(干)10-8 5 0.15 灰岩(干)10-97 0.11 灰岩(湿) 2.5х10-28~10 0.11~0.095 粘土(湿)10-1~1 8~12 0.11~0.087 混凝土10-9~10-86~15 0.12~0.077 钢筋∞∞

材料复介电常数测量的方法

万方数据

材料复介电常数测量的方法 作者:杜婵 作者单位:华中师范大学物理科学与技术学院,湖北武汉,430079 刊名: 科技风 英文刊名:TECHNOLOGY WIND 年,卷(期):2008(5) 本文读者也读过(9条) 1.魏玮介电常数的实地测量方法研究[学位论文]2006 2.黄铭.彭金辉.张世敏.张利波.夏洪应.杨晶晶材料介电常数的测量方法及应用[会议论文]-2005 3.曹玉婷.张安祺.尹秋艳.Cao Yuting.Zhang Anqi.Yin Qiuyan基于Matlab的介电常数测量[期刊论文]-舰船电子工程2008,28(4) 4.马国田.梁昌洪.MA Guotian.LIANG Changhong分层媒质复介电常数测量的一种方法[期刊论文]-微波学报2000,16(2) 5.王秀丽.陈彦.贾明全.刘丽娜.郑伟.四郎.Wang Xiuli.Chen Yan.Jia Mingquan.Liu Lina.Zheng Wei.Si Lang 介电常数的实地测量装置的研制[期刊论文]-电子测量技术2010(9) 6.陈维.姚熹.魏晓勇.CHEN Wei.YAO Xi.WEI Xiao-yong同轴传输反射法测量高损耗材料微波介电常数[期刊论文]-功能材料2005,36(9) 7.桂勇锋毫米波段低损耗平面和非平面材料复介电常数测量研究[学位论文]2009 8.李钰.李云宝.童明强电介质介电常数的测量及其不确定度的评定[会议论文]-2009 9.吴昌英.丁君.韦高.许家栋.WU Chang-ying.DING Jun.WEI Gao.XU Jia-dong一种微波介质谐振器介电常数测量方法[期刊论文]-测控技术2008,27(6) 本文链接:https://www.doczj.com/doc/056260376.html,/Periodical_kjf200805017.aspx

微波基础知识及测介电常数

实验五微波实验 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。与无线电波相比,微波有下述几个主要特点 图1 电磁波的分类 1.波长短(1m—1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成 方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而 确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。 2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。 3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。 4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。(北京大华无线电仪器厂) 5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。 综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同。微波实验是近代物理实验的重要组成部分。 实验目的 1.学习微波的基本知识; 2.了解微波在波导中传播的特点,掌握微波基本测量技术; 3.学习用微波作为观测手段来研究物理现象。 微波基本知识 一、电磁波的基本关系 描写电磁场的基本方程是:

固体电介质的电起性能

固体电介质的电气性能 一、电介质:能在其中持久建立静电场的物质。 二、分类:非极性及弱极性电介质、偶极性电介质和离子性电介质。 三、电介质的极化:电子位移化、离子位移化、转向极化、夹层介质界面极化和空间电荷极化。 四、固体介电常数:非极性及弱极性固体电介质(介点常数:2.0~2.7)、偶极性固体电介质(介点常数: 3~6)、离子性电介质(介点常数:5~8)。 五、固体电介质的电导 体积电导 微观上是由电介质或杂质的离子造成电导,宏观上由于纤维材料或多孔性材料易吸水,电阻率较低。 表面电导 干燥清洁的固体介质的表面电导很小,主要是由表面吸附的水分和污物引起的,介质吸附水分的能力与自身结构有关,是介质本身固有的性质。 固体介质可按水滴在介质表面的浸润情况分为憎水性和亲水性两大类,如下图1所示。如果水滴 的内聚力大于水和介质表面的亲和力,则表现为水滴的接触角大于90。, 即该固体材料为憎水性材料。憎水性材料的表面电导小,表面电导受环境湿度的影响较小。非极性和弱极性介质材料如石蜡、硅橡胶、硅树脂等都属于憎水性材料。如果水滴的内聚力小于水和介质表面的亲和力,则表现为水滴的接触角小于90。,即该固体材料为亲水性材料。亲水性材料的表面电导大,且表面电导受环境湿度的影响大,偶极性和离子性介质材料都属于亲水性材料。 采取使介质表面洁净、干燥或涂敷石蜡、有机硅、绝缘漆等措施,可以降低介质表面电导。 图 1 六、电介质的能量损耗 在交流电压作用下介质的能量损耗除漏导损失,还有极化损失。 图2为介质在交流电压作用下,流过介质的电流U 和I 间的向量图。 由于存在损耗,U 和I 之间的夹角不再是90度,Ic 代表流过介质总 的无功电流,Ir 代表流过介质总的有功电流,Ir 包括了漏导损失和 极化损失。从直观上看,若Ir 大,则损失大,因此用介质损失角正 切值tan δ代表在交流电压下的损耗。

微波范围金属介电常数和磁导率的获取

微波范围金属粉末有效介电常数和磁 导率的获取 摘要 在本文中,微波范围内金属与绝缘体混合物的有效电介电常数和磁导率的获取来源与电磁全3维仿真数据。其中使用的数值分析方法的边界条件是有限的集成技术。模拟混合物有周期性扩展方向并垂直与平面波方向。因此,它足以分析单元元素以提取有效的电磁特性。使用这个程序,用2.45 GHz的微波频率辐射模拟细铜粉的行为。这样,就可以研究粒子大小与混合物有效属性的关系了。通过引入薄铜氧化物或导电层,在烧结的早期阶段可以模拟金属粉末压块的有效属性。因此,本文力求通过对比散装金属材料,提高对导电材料的微波吸收机理的认识。 在过去的几十年里,科学界和工业界早就有了微波烧结陶瓷粉末的技术[1]。与传统加热方法相比,微波加热允许对材料进行整个体积的加热,从而节省时间和减少能源消耗。此外,高频加热金属碳化物是一种微波加热与传统加热相结合的方法,可加速微波吸收少的材料的加热过程,如大多数氧化物和氮化物。快速、可控加热方法和细粉的使用促成较小的晶粒尺寸和更均匀的晶粒尺寸分布,提高了烧结材料的力学性能。 最近,微波加热已成为金属粉末加工的一个强大工具。据报道1999年罗伊等人[2]报道,多孔金属粉末压块缩受到微波辐射电场或磁场会被加热,然而众所周知,微波不能穿透大部分金属以外的皮肤深度,因此不能在微波炉里深热金属。罗伊的结果表明,多孔金属粉末压块材料的有效介电和有效磁损失,对应于多空金属压块的有效介电常数和有效磁导率。 有很多实验研究微波加热金属粉末。在马等最近工作中[3]在磁场或电场单模腔中微波加热的铜粉(TE102),已经结合起来研究金属压块的电磁属性。论及用高频加热的预烧结阶段机理时,样品的电导率依赖性作为加热时间函数来衡量。 有两个重要的理论描述基于实验结果的金属粉末微波吸收机制。在罗等的工作中[4]——镍铁合金粉末的升温速率在理论上与功率吸收公式相关。Rybakov等[5]的论文描述了使用有效中介近似方法在近似薄氧化层金属粉末的微波吸收原理。 在本文中,我们研究利用有限的集成技术获得的金属粉末的电和磁特性(适合)[6]模拟。通过介绍了这些材料以及提取的混合物的有效参数的一个计算机模型,我们有机会认识金属粉末在千分尺规模微波吸收机制。计算机模拟是用先进

相关主题
文本预览
相关文档 最新文档