当前位置:文档之家› 飞行力学课件第八章

飞行力学课件第八章

飞行力学复习提纲

第一章 1. 连续介质模型:将流体看成是由无限多流体质点所组成的稠密而无间隙的连续介质。 2. 流体的弹性(压缩性):流体随着压强增大而体积缩小的特性。 压缩系数的倒数称为体积弹性模量E ,他表示单位密度变化所需压强增量:ρ ρβd dp E ==1 流体密度:单位体积中流体的质量。表示流体稠密程度。 压缩系数β:一定温度下升高单位压强时,流体体积的相对缩小量。 {注:当流体速度大于马赫时才考虑弹性模量} 3. 完全气体状态方程:T nR mRT pV m =={kmol m m k kmol J m V R 3*414.228314 ==} 4. 流体粘性:在作相对运动的两流体层的接触面上,存在着一对等值而反向的作用力来阻 碍两相邻流体层作相对运动。 5. 牛顿内摩擦定律:相邻两层流体作相对运动所产生的摩擦力F 与两层流体的速度梯度成 正比;与两层的接触面积成正比;与流体的物理特性有关;与接触面上压强无关。 注:切应力τ:快同慢反静无,只是层流。 6. 理想流体:不考虑粘性(粘性系数0=μ)的流体。 7. 流体内部一点出压强特点:大小与方向无关,处处相等。 8. 质量力(B F ){彻体力、体积力}:作用在体积V 内每一流体质量或体积上的非接触力,

其大小与流体质量或体积成正比,流体力学中,只考虑重力与惯性力。 F):作用在所取流体体积表面S上的力,它是有与这块流体相接触的流体或表面力(S 物体的直接作用而产生的。 9.等压面:在静止流体中,静压强相等的各点所组成的面。 性质:(1)在平衡流体中通过每点的等压面必与该点流体所受质量力垂直。 (2)等压面即为等势面。 (3)两种密度不同而又在不相混的流体处于平衡时,他们的分界面必为等压面。

飞行力学知识点

《飞行动力学》掌握知识点 第一章 掌握知识点如下: 1)现代飞机提高最大升力系数采取的措施包括边条翼气动布局或近耦鸭式布局。 2)飞行器阻力可分为摩擦阻力、压差阻力、诱导阻力、干扰阻力和激波阻力等。 3)试描述涡喷发动机的三种特性:转速(油门)特性,速度特性,高度特性并绘出变化曲线。(P7) 答:涡轮喷气发动机的性能指标推力T和耗油率f C等均随飞行状态、发动机工作状态而改变。下面要简单介绍这些变化规律,即发动机的特性曲线,以供研究飞行性能时使用。 1)转速(油门特性) 在给定调节规律下,高度和转速一定时,发动机推力和耗油率随转速的变化关系,称为转速特性。图1.10为某涡轮喷气发动机T和f C随转速n的变化曲线。 由于一定转速对应一定油门位置,故转速特性又称油门特性或节流特性。 2)速度特性 在给定调节规律下,高度和转速一定时,发动机推力和耗油率随飞行速度或Ma的变化关系,称为速度特性。图1.11为某涡轮喷气发动机T和f C随Ma变化曲线。 3)高度特性 在发动机转速和飞行速度一定时,发动机推力和耗油率随飞行高度的变化关系,称为高度特性。图1.12为某涡轮喷气发动机的T和f C随H的变化曲线。

第二章 掌握知识点如下: 1)飞机飞行性能包括平飞性能、上升性能、续航性能和起落性能。 2)飞机定直平飞的最小速度受到哪些因素的限制?(P40) 答:最小平飞速度 min V 是指飞机在某一高度上能作定直平飞的最小速度。 1)受最大升力系数 max L C 限制的理想最小平飞速度S C W V L ρmax min 2= ; 2)受允许升力系数 a L C .限制的最小允许使用平飞速度S C W V a L a ρ.2= ; 3)受抖动升力系数 sh L C .限制的抖动最小平飞速度S C W V sh L sh ρ.2= ; 4)受最大平尾偏角 m ax .δL C 限制的最小平飞速度S C W V L ρδδmax max .min 2)(= ; 5)发动机可用推力 a T 。一般情况下,高空飞行由于a T 的下降,min V 往往受到a T 的限制;在低空飞行时,min V 由最大允许升力系数a L C .来确定。 3)为提高飞机的续航性能,飞机设计中可采取哪些措施?(P64) 答:设计中力求提高升阻比,增加可用燃油量,选用耗油率低,经济性好的发动机,选择最省油状态上升和最佳巡航状态巡航。

飞行力学基础

第二章飞行力学基础 2、1 飞行器空间运动的表示、飞行器操纵机构、稳定性与操纵性的概念2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g 取自地面上某一点(例如飞机起飞点)。o g x g 轴处于地平面内并指向某 方向(如指向飞行航线);o g y g 轴也在地平面内并指向右方;o g z g 轴垂直地面指向地 心。坐标按右手定则规定,拇指代表o g x g 轴,食指代表o g y g 轴,中指代表o g z g 轴,如 图2、1-1所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参瞧图2、1-1)。发动机推力一般按机体坐标系给出。 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a 轴与飞行速度V的方 向一致。一般情况下,V不一定在飞机对称平面内。oz a 轴在飞机对称面内垂直于 ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图2、1-2所示。作用在 x 图2、1-1 机体坐标系与地面坐标系

飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1、俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2、偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3、滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时为正。 2)速度轴系与地面轴系的关系 图2、1-2 速度坐标系与地面坐标系

飞行力学复习提纲

第一章 1. 连续介质模型:将流体瞧成就是由无限多流体质点所组成的稠密而无间隙的连续介质。 2. 流体的弹性(压缩性):流体随着压强增大而体积缩小的特性。 压缩系数的倒数称为体积弹性模量E,她表示单位密度变化所需压强增量:ρ ρβd dp E ==1 流体密度:单位体积中流体的质量。表示流体稠密程度。 压缩系数β:一定温度下升高单位压强时,流体体积的相对缩小量。 {注:当流体速度大于0、3马赫时才考虑弹性模量} 3. 完全气体状态方程:T nR mRT pV m =={kmol m m k kmol J m V R 3*414.228314 ==} 4. 流体粘性:在作相对运动的两流体层的接触面上,存在着一对等值而反向的作用力来阻 碍两相邻流体层作相对运动。 5. 牛顿内摩擦定律:相邻两层流体作相对运动所产生的摩擦力F 与两层流体的速度梯度成 正比;与两层的接触面积成正比;与流体的物理特性有关;与接触面上压强无关。 注:切应力τ:快同慢反静无,只就是层流。 6. 理想流体:不考虑粘性(粘性系数0=μ)的流体。 7. 流体内部一点出压强特点:大小与方向无关,处处相等。 8. 质量力(B F ){彻体力、体积力}:作用在体积V 内每一流体质量或体积上的非接触力, 其大小与流体质量或体积成正比,流体力学中,只考虑重力与惯性力。 表面力(S F ):作用在所取流体体积表面S 上的力,它就是有与这块流体相接触的流体或物体的直接作用而产生的。 9. 等压面:在静止流体中,静压强相等的各点所组成的面。

性质:(1)在平衡流体中通过每点的等压面必与该点流体所受质量力垂直。 (2)等压面即为等势面。 (3)两种密度不同而又在不相混的流体处于平衡时,她们的分界面必为等压面。 第二章 1. 流线:某一瞬时流场中存在这样的曲线,该曲线上每点速度矢量都与该曲线相切。(欧拉 法) 迹线:任何一个流体质点在流场中的运动轨迹。(拉格朗日法) 区别:流线就是某一瞬时各流体质点的运动方向线,而迹线则就是某一流体质点在一段时间内经过的路径,就是同一流体质点不同时刻所在位置的连线。 2. 定常流:在任意空间点上,流体质点的全部运动参数都不随时间的变化而变化。 非定常流:在任意空间点上,流体质点的全部或部分流动参数随时间发生变化的流动。 3. 流线微分方程=V {) ,,(),,(),,(z y x w z y x v z y x u )(定常w dz v dy u dx ==? )(),,,({非定常 t z y x u V = 4. 一维定常流的连续方程表达式? ?==c VA m ρ 5. 定常流动量方程;() ()()?????????-=-=-=∑∑∑???z z z y y y x x x V V m F V V m F V V m F 121212 6. 伯努利方程的表达式02 2P C V p ==+ρ 7. 空速表指示原理:空速管通过全压孔与静压孔分别感受气流的全压(0p )与静压(p ) , 在全压与静压之差(即动压)的作用下空速表的指针发生偏转,即可指示飞机飞行时相应的速度:ρ/)(20p p V -= 真速与表速关系:H V V ρρ0表真=

飞行器自动控制导论_第二章飞行力学基础

第二章飞行力学基础 2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g 取自地面上某一点(例如飞机起飞点)。o g x g 轴处于地平面内并指向 某方向(如指向飞行航线);o g y g 轴也在地平面内并指向右方;o g z g 轴垂直地面 指向地心。坐标按右手定则规定,拇指代表o g x g 轴,食指代表o g y g 轴,中指代表 o g z g 轴,如图2-1所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。发动机推力一般按机体坐标系给出。 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a 轴与飞行速度V的 方向一致。一般情况下,V不一定在飞机对称平面内。oz a 轴在飞机对称面内垂 x 图2.1-1 机体坐标系与地面坐标系

直于ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。作用在飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2.偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3.滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时 图2.1-2 速度坐标系与地面坐标系

飞行力学基础

第二章飞行力学基础 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念 2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g取自地面上某一点(例如飞机起飞点)。o g x g轴处于地平面内并指向某方向(如指向飞行航线);o g y g轴也在地平面内并指向右方;o g z g轴垂直地面指向地心。坐标按右手定则规定,拇指代表o g x g轴,食指代表o g y g轴,中指代表o g z g轴,如图所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图)。发动机推力一般按机体坐标系给出。 x 图机体坐标系与地面坐标系 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a轴与飞行速度V的方向一致。一般情况下,V不一定在飞机对称平面内。oz a轴在飞机对称面内垂

直于ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图所示。作用在飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2.偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3.滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时 xg 图 速度坐标系与地面坐标系

导弹飞行力学 第一章 导弹飞行的力学环境

第一章 导弹飞行的力学环境 目的要求: 1、掌握描述作用在导弹上的空气动力和空气动力矩的坐标系定义; 2、掌握作用在导弹上的空气动力和力矩的物理成因、计算公式; 3、掌握攻角、侧滑角压力中心和焦点的定义及其确定方法。 重点、难点: 作用在导弹上的空气动力及其力矩的物理成因。 教学方法: 在已学过“空气动力学”、“气动力计算”两门课的基础上,结合多媒体演示和课堂分析讲解,以及飞行器吹风和气动力计算网格图等,完成教学内容的讲授。 授课时数:6个课时。 在飞行过程中,作用在导弹上的力主要有:空气动力、发动机推力和重力。本章将扼要介绍作用在导弹上的空气动力、空气动力矩、推力和重力的有关特性。 §1–1 空气动力 一、 两个坐标系 空气动力的大小与气流相对于弹体的方位有关。其相对方位可用速度坐标系和弹体坐标系之间的两个角度来确定。习惯上常把作用在导弹上的空气动力R 沿速度坐标系的轴分解成三个分量来进行研究。 二、 空气动力的表达式 空气动力R 沿速度坐标系分解为三个分量,分别称之为阻力X (沿ox 轴负向定义为正)、升力Y (沿轴正向定义为正)和侧向力Z (沿轴正向定义为正)。实验分析表明:空气动力的大小与来流的动压头和导弹的特征面积(又称参考面积)S 成正比,即 33oy 3oz q 212x y z X C qS Y C qS Z C qS q V ρ=??=??=? ?=?

(1–1) 式中 ,,x y C C C z ——无量纲比例系数,分别称为阻力系数、升力系数和侧向力系数(总称为气动力系数); ρ——空气密度; V ——导弹飞行速度; ——参考面积,通常取弹翼面积或弹身最大横截面积。 S 三、 升力 全弹升力Y 的计算公式如下: 21 2 y Y C V S ρ= 在导弹气动布局和外形尺寸给定的条件下,升力系数基本上取决于马赫数y C Ma 、攻角α和升降舵的舵面偏转角z δ(简称为舵偏角,按照通常的符号规则,升降舵的后缘相对于中立位置向下偏转时,舵偏角定义为正),即 (),,y z C f Ma αδ= (1–2) 在攻角和舵偏角不大的情况下,升力系数可以表示为α和z δ的线性函数,即 0z y y y y C C C C δαz αδ=++ (1–3) 式中 ——攻角和升降舵偏角均为零时的升力系数,简称零升力系数,主要是由导弹气动外形不对称产生的。 0y C 对于气动外形轴对称的导弹而言,00y C =,于是有 z y y y C C C δαz αδ=+ (1–4) 当马赫数Ma 固定时,升力系数随着攻角y C α的增大而呈线性增大,但升力曲线的线性关系只能保持在攻角不大的范围内,而且,随着攻角的继续增大,升力线斜率可能还会下降。 当攻角增至一定程度时,升力系数将达到其极值。与极值相对应的攻角,称为临界攻角。超过临界攻角以后,由于气流分离迅速加剧,升力急剧下降,这种现象称为失速(图1.3)。

飞行力学复习

飞机 第一章 1. 连续介质模型:将流体看成是由无限多流体质点所组成的稠密而无间隙的连续介质。 2. 流体的弹性(压缩性):流体随着压强增大而体积缩小的特性。 压缩系数的倒数称为体积弹性模量E ,他表示单位密度变化所需压强增量:ρρβd dp E == 1 流体密度:单位体积中流体的质量。表示流体稠密程度。 压缩系数β:一定温度下升高单位压强时,流体体积的相对缩小量。 {注:当流体速度大于0.3马赫时才考虑弹性模量} 3. 完全气体状态方程:T nR mRT pV m =={kmol m m k kmol J m V R 3*414.228314==} 4. 流体粘性:在作相对运动的两流体层的接触面上,存在着一对等值而反向的作用力来阻 碍两相邻流体层作相对运动。 5. 牛顿内摩擦定律:相邻两层流体作相对运动所产生的摩擦力F 与两层流体的速度梯度成 正比;与两层的接触面积成正比;与流体的物理特性有关;与接触面上压强无关。 dy dV S F S dy dV F μτμ === 注:切应力τ:快同慢反静无,只是层流。 6. 理想流体:不考虑粘性(粘性系数0=μ)的流体。 7. 流体内部一点处压强特点:大小与方向无关,处处相等。 8. 质量力(B F ){体积力}:作用在体积V 内每一流体质量或体积上的非接触力,其大小 与流体质量或体积成正比,流体力学中,只考虑重力与惯性力。 表面力(S F ):作用在所取流体体积表面S 上的力,它是由与这块流体相接触的流体或物体的直接作用而产生的。 9. 等压面:在静止流体中,静压强相等的各点所组成的面。 性质:(1)在平衡流体中通过每点的等压面必与该点流体所受质量力垂直。 (2)等压面即为等势面。 (3)两种密度不同而又在不相混的流体处于平衡时,他们的分界面必为等压面。

航天器飞行力学课程教学大纲

《航天器飞行力学》课程教学大纲 一、课程基本信息 1.课程代码: 2.课程名称:航天器飞行力学 课程名称:Spacecraft Flight Mechanics 3.学时/学分:48学时/ 学分 4.先修课程:理论力学、飞行力学(导弹弹道学与动态分析) 5.面向对象:飞行器设计学科本科生 6.开课院(系):航天学院(航天设计工程系) 7.推荐教学参考书: 《远程火箭与卫星轨道力学基础》,王志刚,国防工业出版社,2006.10 《远程火箭弹道学》,贾沛然,陈克俊等,国防科技大学出版社,1993.12 《航天器飞行动力学原理》,肖业伦,宇航出版社,1995.12 《卫星轨道姿态动力学与控制》,章仁为,北京航空航天大学出版社,1998.8 二、课程的性质和任务 航天器飞行力学是一门综合性的基础课程,本课程其中的包括远程火箭弹道学与卫星轨道力学基础两部分。它是飞行器设计专业必修的基础理论课程,也是从事航天器设计、研究和研制等不可缺少的理论基础。 三、教学内容和要求 教学内容分远程火箭弹道学与卫星轨道力学两部分,共10章。课时共需48学时。详细内容、课时分配与要求如下: 绪论(1学时) 1 一般知识 2 航天器飞行力学 3 学习这门课程的目的和意义 4 学习要求 第一章 常用坐标系与变质量力学原理(4学时) *1.1 常用坐标系及其变换 1.2 坐标系间矢量导数的关系 1.3 变质量力学原理 第二章 火箭的力学环境(8学时) 2.1 附加力与附加力矩 2.2 推力 2.3 引力与重力 *2.4 气动力与气动力矩 2.5 控制系统的控制力和控制力矩 第三章 火箭的运动方程(4学时) 3.1 矢量形式的动力学方程 3.2 地面发射坐标系中的弹道方程 3.2.3 补充方程 3.3 地面发射坐标系中的弹道计算方程 3.4 速度坐标系中的弹道方程

2022西北工业大学英语语言文学考研真题考研经验考研参考书

西北工业大学 英语语言文学 考研真题经验参考书

目录 第一章考前知识浏览 1.1西北工业大学招生简章...................... 1.2西北工业大学专业目录........................ 1.3西北工业大学英语语言文学专业历年报录比....... 1.4西北工业大学英语语言文学初试科目解析...... 第二章英语语言文学专业就业前景解读 2.1西北工业大学专业综合介绍................. 2.2西北工业大学专业就业解析................. 2.3西北工业大学各方向对比分析....... 第三章西北工业大学英语语言文学专业内部信息传递 3.1报考数据分析.............. 3.2复试信息分析.............. 3.3导师信息了解........ 第四章西北工业大学英语语言文学初试专业课考研知识点4.1参考书目分析.......... 4.2真题分析................ 4.3重点知识点汇总分析(大纲).... 第五章西北工业大学英语语言文学初试复习计划分享 5.1政治英语复习技巧 5.2专业课复习全程详细攻略 5.3时间管理策略及习题使用 第六章西北工业大学英语语言文学复试 6.1复试公共部分的注意事项 6.2复试专业课部分的小Tips

【学校简介】 西北工业大学(以下简称西工大)坐落于陕西西安,是一所以发展航空、航天、航海(三航)等领域人才培养和科学研究为特色的多科性、研究型、开放式大学,是国家“一流大学”建设高校(A类),隶属于工业和信息化部。新中国成立以来,西工大一直是国家重点建设的高校,1960年被国务院确定为全国重点大学,“七五”、“八五”均被国务院列为重点建设的全国15所大学之一,1995年首批进入“211工程”,2001年进入“985工程”,是“卓越大学联盟”成员高校,先后获得“全国文明单位”、“全国创先争优先进基层党组织”、“全国毕业生就业典型高校”、“全国文明校园”等荣誉称号和表彰奖励。学校秉承“公诚勇毅”校训,弘扬“三实一新”(基础扎实、工作踏实、作风朴实、开拓创新)校风,扎根西部、献身国防,历史上书写了新中国多个“第一”,今天在创建一流大学和一流学科上续写新的辉煌。 学校办学资源富集,学科特色鲜明。现有学生29000余名,教职工4000余人,占地面积近5400亩,设有20个专业学院和国际教育学院、教育实验学院、西北工业大学伦敦玛丽女王大学工程学院。拥有66个本科专业,35个硕士学位一级授权学科,22个博士学位一级授权学科,17个博士后流动站。其中,材料科学、工程学、化学、计算机科学等4个学科群进入ESI国际学科排名前1%,形成了以三航学科群为引领,3M(材料、机电、力学)学科群、3C(计算机、通信、控制)学科群、理科学科群和人文社科学科群协调发展的学科体

空间飞行器飞行动力学(工大教纲)

《空间飞行器飞行动力学》课程教学大纲 课程编码: T1180230 课程中文名称:空间飞行器飞行动力学 课程英文名称:SPACECRAFT DYNAMICS 总学时:50 讲课学时:50 实验学时:0 习题学时:0 上机学时:0 学分:3 授课对象:飞行器设计专业、空间环境专业本科生 先修课程:高等数学、普通物理、理论力学、自动控制理论 教材及参考书:《空间飞行器动力学》,刘暾. 赵钧,哈尔滨工业大学出版社 《空间飞行器动力学与控制》,M.H.卡普兰 一、课程教学目的 《空间飞行器动力学》是一门航天工程专业学生的专业基础课。本课程主要研究空间飞行器动力学的基本概念、原理和应用,包括轨道动力学和姿态动力学两大部分,其主要任务是培养学生:建立空间飞行器动力学的基本概念,理解飞行器的运动与受力之间的关系,掌握空间飞行器动力学问题的基本分析方法;掌握应用空间飞行器动力学的基本理论,解决一般的空间飞行器动力学应用问题的基本技能;了解空间飞行器动力学理论、方法及其应用的最新发展;掌握使用相关的参考文献、计算机应用软件进行动力学问题研究分析的能力; 《空间飞行器动力学》是高等工科院校中航天工程类专业的一门主要课程。通过该课程的学习,学生可以初步掌握解决空间飞行器动力学问题的基本方法和技能,并了解其他空间飞行器应用问题的动力学依据,为日后从事空间飞行器的动力学及其他的空间飞行器应用专业的研究工作奠定初步的理论基础。 二、教学内容及基本要求 轨道动力学部分(上篇) 第一章绪论(1学时) 概论,齐奥尔科夫斯基公式,单级火箭的极限速度。 第二章空间飞行器的入轨(1学时) 运载火箭的运动方程式,纵向平面内的动力学方程,运载火箭导引规律。 第三章空间飞行器的轨道(4学时) 两体运动方程的建立、求解,中心引力场中的运动,四种基本轨道的轨道方程、 特性及时间方程。 第四章轨道的建立和星下点轨迹(2学时) 空间飞行器轨道建立的方法,轨道要素与发射参数的关系,星下点轨迹的描述。 第五章轨道机动(2学时) 轨道过渡的概念、分类和方法,脉冲机动,同平面的轨道过渡。 第六章星际航行(2学时) 星际航行,会合周期,发射窗口,影响球与圆锥曲线拼合法;星体的引力摄动。

相关主题
文本预览
相关文档 最新文档