当前位置:文档之家› 多级放大电路电子技术课程设计

多级放大电路电子技术课程设计

多级放大电路电子技术课程设计
多级放大电路电子技术课程设计

潍坊大学电子技术课程设计说明书

题目:

系部:

专业:

班级:

学生姓名: 学号:

指导教师:

2013年月日

目录

第一章放大电路基础 (1)

1.1放大电路 (3)

1.1.1 放大电路组成 (3)

1.1.2 直流通路和交流通路 (4)

第二章放大电路工作状态分析 (5)

2.1 解析法确定静态工作点 (5)

2.2 电路参数对静态工作点的影响 (5)

2.2.1 Rb对Q点的影响 (5)

2.2.2 Rc对Q点的影响 (6)

2.2.3 UCC对Q点的影响 (6)

2.3 放大电路的动态分析 (6)

2.3.1 图解法分析动态特性 (6)

2.4 放大电路的非线性失真 (7)

2.4.1.由三极管特性曲线非线性引起的失真 (7)

2.4.2 工作点不合适引起的失真 (7)

2.5 共发射极放大电路的分析 (9)

2.5.1放大电路的性能指标 (9)

2.5.2 共e极放大电路 (10)

第三章两级放大电路设计 (12)

总结 (14)

第一章 放大电路基础

1.1放大电路

1.1.1 放大电路组成

三极管可以利用控制输入电流从而控制输出电流,达到放大的目的。 我们可利用三极管的上述特性来组成放大电路。三极管有三种基本连接方式如图1.1所示

(a)共(发)射极电路 (b)共集电极电路 (c)共基极电路

图1.1 放大电路中三极管的三种连接方法

图1.2 共发射极电路组成

u o

u o

(a )(b )

(c )

(1) 为保证三极管V 工作在放大区, 发射结必须正向运用; 集电结必须反向运用。图中Rb, UBB 即保证e 结正向运用; Rc, UCC 保证c 结反向运用。

(2)图中Rs 为信号源内阻;Us 为信号源电压;Ui 为放大器输入信号。电容C1为耦合电容, 其作用是: 使交流信号顺利通过加至放大器输入端,同时隔直流, 使信号源与放大器无直流联系。C1一般选用容量大的电解电容, 它是有极性的, 使用时, 它的正极与电路的直流正极相连, 不能接反。C2的作用与C1相似, 使交流信号能顺利传送至负载, 同时, 使放大器与负载之间无直流联系。

图1.3 单电源共发射极放大电路

1.1.2 直流通路和交流通路

图 1.3电路的直流通路和交流通路可画成如图 1.4(a)、(b)所示。

图1.4 基本共e 极电路的交、直流通路

放大电路的分析主要包含两个部分:

直流分析, 又称为静态分析, 用于求出电路的直流工作状态, 即基极直流电流IB; 集电极直流电流IC; 集电极与发射极间直流电压

UCE 。

交流分析, 又称动态分析, 用来求出电压放大倍数、

输入电阻和输出电阻三项

性能指标。

(b ) 交流通路

+U C C

U s

(a ) 直流通路

第二章 放大电路工作状态分析

2.1 解析法确定静态工作点

由图1.4(a)所示, 首先由基极回路求出静态时基极电流IBQ (2-1)

(2-2)

根据三极管各极电流关系, 可求出静态工作点的集电极电流ICQ :

(2-3)

(2-4)

2.2 电路参数对静态工作点的影响 2.2.1 Rb 对Q 点的影响

2 .1 电路参数对Q

点的影响

CC BE BQ b

U U I R -=0.60.8,0.7BE U V V =-取硅管: 0.10.3,0.2BE U V V

=-取锗管: CQ BQ

CEQ CC C c I I U U I R β==-再根据集电极输出回路可求出U CEQ

N

O C E

N

C E

(b ) R c 变化对Q 点的影响

(a ) R b 变化对Q 点的影响O

C E

(c ) U C C 变化对Q 点的影响

2.2.2 Rc对Q点的影响

R c的变化, 仅改变直流负载线的N点, 即仅改变直流负载线的斜率。R c减小, N

点上升, 直流负载线变陡, 工作点沿i

B =I

BQ

这一条特性曲线右移。R c增大, N点下降,

直流负载线变平坦, 工作点沿i

B =I

BQ

这一条特性曲线向左移。如图2 .1(b)所示。

2.2.3 UCC对Q点的影响

U CC 的变化不仅影响I

BQ

, 还影响直流负载线, 因此, U

CC

对Q点的影响较复杂。

U CC 上升, I

BQ

增大, 同时直流负载线M点和N点同时增大, 故直流负载线平行上

移, 所以工作点向右上方移动。

U CC 下降, I

BQ

下降, 同时直流负载线平行下移。所以工作点向左下方移动。如图

2 .1(c)所示。

实际调试中, 主要通过改变电阻R b来改变静态工作点, 而很少通过改变U

CC 来改变工作点。

2.3 放大电路的动态分析

2.3.1 图解法分析动态特性

1. 交流负载线的作法

Q

图2.2 交流负载线的画法

交流负载线具有如下两个特点:

(1) 交流负载线必通过静态工作点, 因为当输入信号u i 的瞬时值为零时, 如忽略电容C 1和C 2

的影响, 则电路状态和静态时相同。

(2) 另一特点是交流负载线的斜率由

表示。

过Q 点, 作一条 的直线, 就是交流负载线。

首先作一条 的辅助线(此线有无数条), 然后过Q 点作一条平行于

辅助线的线即为交流负载线, 如图2 - 7所示。 由于 , 故一般情况下交流负载线比直流负载线陡。

交流负载线也可以通过求出在u CE 坐标的截距,

再与Q 点相连即可得到。

(2-5)

连接Q 点和 点即为交流负载线。

2.4 放大电路的非线性失真

2.4.1.由三极管特性曲线非线性引起的失真

图2.3 三极管特性的非线性引起的失真

2.4.2 工作点不合适引起的失真

'L

R '/L

U I R ??='

/L U I R ??='//L c L R R R =''

CC CEQ CQ L U U I R =+'

CC U

I

(b ) 输出曲线簇上疏下密引起的失真

(c ) 输出曲线簇上密下疏引起的失真

放大电路存在最大不失真输出电压幅值U max 或峰-峰值U p - p 。

最大不失真输出电压是指: 当工作状态已定的前提下, 逐渐增大输入信号, 三极管尚未进入截止或饱和时, 输出所能获得的最大不失真输出电压。如u i 增大首先进入饱和区, 则最大不失真输出电压受饱和区限制, U cem =U CEQ -U ces ; 如首先进入截止区, 则最大不失真输出电压受截止区限制, U cem =I CQ ·R , 最大不失真输出电压值, 选取其中小的一个。如图

2.5所示,

图2.5 最大不失真输出电压

(a ) 截止失真(b ) 饱和失真

I C C Q

图2.4 静态工作点不合适产生的非线性失真

i C U 失真输出波形

2.5 共发射极放大电路的分析

2.5.1放大电路的性能指标

(2-6)

(2-7)

(2) 电流放大倍数A i。(2-8)

(3) 功率放大倍数A p。(2-9)

(4) 输入电阻r i。

(2-10) (5) 输出电阻r o。(2-11)

图2.6 r o测量原理图

(1) 电压放大倍数A u。O

u

i

U

A

U

=

O

us

s

U

A

U

=

O

i

i

I

A

I

=

O O

O

P u i

i i i

U I

P

A A A

P U I

===

i

i

i

U

r

I

=

2

2

o

U

r

I

=

R

L

2.5.2 共e 极放大电路

(1) 电压放大倍数

(2-12)

(2) 电流放大倍数

由等效电路图2.7(b )可得I i ≈I b , I o ≈I c =βI b , 则

(2-13)

图2.7 共e 极放大电路及其微变等效电路

U s

(b ) 等效电路

b

U (a ) 放大电路i

O u i

U A U ='

'

//O b L

L c L U I R R R R β=-=式中'

i b be L u

be U I r R A r β==-O

i i I A I =

O

i i

I A I β=

考虑R b 的作用, 电流在输入端存在分流关系。考虑负载R c 、R L 的影响, 电流在输出端也存在一个分流关系。 (3) 输入电阻r i :

由图2.7(b )可直接看出r i =R b ∥r i ′, 式中 由于 U i ′=I b r be ,所以 r i ′=r be 。当R b >>r be 时, 则

r i =R b ∥r be ≈r be (2-14)

(4) 输出电阻r o :

由于当U s =0时, I b =0, 从而受控源βI b =0, 因此可直接得出 r o =

R c 。

注意, 因r o 常用来考虑带负载R L 的能力, 所以, 求r o 时不应含R L

, 应将其断开。

(5) 源电压放大倍数

(2-15)

'

i

i b

U r I =

O i O i us u s s i s

i i

s s i i

us u s i U U U U A A U U U U U r U R r r A A

R r ==?==

+=+

第三章 两级放大电路设计

如图3.1,设12C E V =,晶体管50β=,300

bb r Ω'=,11100b R k Ω=,2139b R k Ω=,16c R k Ω=,1 3.9e R k Ω=,1239b R k Ω=,2224b R k Ω=,23c R k Ω=,2 2.2e R k Ω=,3L R k Ω=,

请计算u A 、i r 和o r 。

图3.1

解:

V 1管的直流通路如图3.2所示:

211121

1139120.70.7

100390.6843.9

b C

b b EQ e R E R R I mA

R ?--++===be1bb'EQ1

26mV

(1) 2.24

r r k I β=++≈Ω

同理可得:

2212222

224120.70.7

2439 1.762.2

b C

b b EQ e R E R R I mA R ?--++===

be2bb'EQ226mV

(1) 1.05

r r k I β=++≈Ω

图3.3

交流等效电路如图3.3所示:

2211

(//)

o b c L u i b be U I R R A U I r β-=

=

又有:1112222112222

(////)

(////)b c b b b c b b be I R R R I R R R r β-=

+

故:1122221122221

(////)(//)

1344(////)c b b c L u c b b be be R R R R R A R R R r r ββ--=

?≈+

11211//// 2.07i b b be r R R r k =≈Ω 23o c r R k ==Ω

总结

本次设计主要分析两级放大电路。从单级放大电路入手,然后在研究两级放大电路,在我们实际应用中,放大电路的输入信号都是很微弱的,一般为毫伏级或微伏级。为获得推动负载工作的足够大的电压和功率,需将输入信号放大成千上万倍。由于前述单级放大电路的电压放大倍数通常只有几十倍,所以需要将多个单级放大电路联结起来,组成多级放大电路对输入信号进行连续放大,这在实际生活中是非常重要的,而多级放大电路又是从两级放大电路演变起来的,所以两级放大电路在电子电路中有着很重要的地位。通过这次设计的思考和查阅资料我不仅对放大电路有了深一层的认识还对功率放大器有了更深的学习。

参考文献

[1]. 黄义源.电子技术.长沙:湖南大学出版社,1989.

[2]. 秦曾煌.电工学.下册.电子技术——七版.北京:高等教育出版社,2009.

[3].石生编著.电路基础分析2006版. 高等教育出版社

[4]. 康华光.电子技术基础(模拟部分).第四版.北京:高等教育出版社,1999.

[5]. 周淑敏.模拟电子技术实验教程.南京:东南大学出版社,2008.

[6].华永平.放大电路测试与设计.北京:机械工业出版社,2010.

[7]. 童诗白.模拟电子技术基础.第四版.北京:高等教育出版社,1980.

[8].徐以荣.电力电子技术基础.南京:东南大学出版社,1999.

多级放大电路设计及测试

3.16多级放大电路的设计与测试 一.实验目的 1.理解多级放大直接耦合放大电路的工作原理和设计方法。 2.学习并熟悉设计高增益的多级直接耦合放大电路的方法。 3.掌握多级放大器性能指标的测试方法。 4.掌握再放大电路中引入负反馈的方法。 二.实验预习与思考 基本要求: 用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知Vcc=+12V,Vee=-12V,要求设计差分放大器恒流源的射极电流Ieq3=1-1.5mA,第二放大级射极电流Ieq4=2-3mA;差分放大器的单端输出不失真电压增益至少大于10倍,主放大级的不失真电压增益不小于100倍;双端输入电阻大于10KOhm,输出电阻小于10Ohm,并保证输入级和输出级的直流电流为为零。 三.测试方法 静态工作点、增益、输入、输出阻抗、幅频特性等测试方法请参看前面的教学内容。 四.实验内容 用Multisim仿真设计结果,并调节电路参数以满足性能指标要求。给出仿真结果。 仿真实验电路: 测得放大电路单端输入电阻约为10KOhm,放大倍率3094.53倍。 由于放大倍率较大,如采用Ui=5mV,10kHz交流电,则放大电压Uo=Ui*Au=15.47V,超出了放大电路的最大输出,因此接下来的仿真实验采用交流电压为100uV,500Hz的交流电源。 测试电路: 2.电路放大倍率的测试

倍Au=3094.53总放大倍数: 测试电路:测试截图:差分输入,输出波形:主放大级输入、输出波形:总输入,输出波形:输入电阻测试2.Ri R U' U 10.372kOhm 49.085uV 10kOhm 100uV :测试电路:测试结果Ro=4.032hm 输出电阻: 370 1850 3.7K 18.5 37K 74K 185K 370K Au(dB) 69.790 69.811 69.798 69.328 67.71 65.573 54.922 46.614 分析电路: 测试结果:

多级放大电路知识题目解析

第四章多级放大电路习题答案 3.1 学习要求 (1)了解多级放大电路的概念,掌握两级阻容耦合放大电路的分析方法。 (2)了解差动放大电路的工作原理及差模信号和共模信号的概念。 (3)理解基本互补对称功率放大电路的工作原理。 3.2 学习指导 本章重点: (1)多级放大电路的分析方法。 (2)差动放大电路的工作原理及分析方法。 本章难点: (1)多级放大电路电压放大倍数的计算。 (2)差动放大电路的工作原理及分析方法。 (3)反馈的极性与类型的判断。 本章考点: (1)阻容耦合多级放大电路的静态和动态分析计算。 (2)简单差动放大电路的分析计算。 3.2.1 多级放大电路的耦合方式 1.阻容耦合 各级之间通过耦合电容和下一级的输入电阻连接。优点是各级静态工作点互不影响,可单独

调整、计算,且不存在零点漂移问题;缺点是不能用来放大变化很缓慢的信号和直流分量变化的信号,且不能在集成电路中采用阻容耦合方式。 静态分析:各级分别计算。 动态分析:一般采用微变等效电路法。两级阻容耦合放大电路的电压放大倍数为: u2u1o1o i o1i o u A A U U U U U U A === 其中i2L1r R =。 多级放大电路的输入电阻就是第一级的输入电阻,输出电阻就是最后一级的输出电阻。 2.直接耦合 各级之间直接用导线连接。优点是可放大变化很缓慢的信号和直流分量变化的信号时,且适宜于集成;缺点是各级静态工作点互相影响,且存在零点漂移问题,即当0i =u 时0o ≠u (有静态电位)。引起零点漂移的原因主要是三极管参数(I CBO ,U BE ,β)随温度的变化,电源电压的波动,电路元件参数的变化等。 3.2.2 差动放大电路 1.电路组成和工作原理 差动放大电路由完全相同的两个单管放大电路组成,两个晶体管特性一致,两侧电路参数对称,是抑制直接耦合放大电路零点漂移的最有效电路。 2.信号输入 (1)共模输入。两个输入信号的大小相等、极性相同,即ic i2i1u u u ==。在共模输入信号作用下,电路的输出电压0o =u ,共模电压放大倍数0c =A 。 (2)差模输入。两个输入信号的大小相等、极性相反,即id i2i12 1 u u u =-=。在共模输入信号作用下,电路的输出电压o1o 2u u =,差模电压放大倍数d1d A A =。 (3)比较输入。两个输入信号大小不等、极性可相同或相反,即i2i1u u ≠,可分解为共模信号和差模信号的组合,即:

微弱信号的多级放大电路课程设计报告

微弱信号的多级放大电路 课程设计报告 设计题目:微弱信号的多级放大电路 学院:信息工程学院 专业:网络工程 姓名:赵骞 组长:陈子宇学号: 201324070106 指导教师:杨云 成绩: 2015 年 07月02日

目录 第一章概述??????????????????????????????????????????????????????????????????????????????????????????2第二章知识扩展????????????????????????????????????????????????????????????????????????????????????3 2.1 低频电压放大器????????????????????????????????????????????????????????????????????3 2.2 集成运算放大器????????????????????????????????????????????????????????????????????5 第三章实验原理??????????????????????????????????????????????????????????????????????????????????7 第四章电路分析???????????????????????????????????????????????????????????????????????????????????8 4.1 仿真电路图??????????????????????????????????????????????????????????????????????????8 4.2两级放大电路静态工作点的测量?????????????????????????????????????????????????10 4.3两级电压放大倍数的测量?????????????????????????????????????????????????????????11第五章安装调试?????????????????????????????????????????????????????????????????????????????????14 5.1 安装调试过程????????????????????????????????????????????????????????????????????14 5.2 计算结果与分析?????????????????????????????????????????????????????????????????15第六章致谢????????????????????????????????????????????????????????????????????????????????????????17第七章心得体会?????????????????????????????????????????????????????????????????????????????????17 第一章概述

多级交流放大器的设计

实验七多级交流放大器的设计 一.实验目的 1.学习多级交流放大器的设计方法。 2.掌握多级交流放大器的安装、调试与测量方法 二.预习要求 1.根据教材中介绍的方法,设计一个满足指标要求的多级交流放大器,计算出多级交流放大器中各元件的参数,画出标有元件值的电路图。 2.预习多级交流放大器的调试与测量方法,制定出实验方案,选择实验用的仪器设备。 三.实验原理 当需要放大低频范围内的交流信号时,可用集成运算放大器组成具有深度负反馈的交流放大器。由于交流放大器的级与级之间可以采用电容耦合方式,所以不用考虑运算放大器的失调参数和漂移的影响。因此,用运算放大器设计的交流放大器具有组装简单、调试方便、工作稳定等优点。 如果需要组成具有较宽频带的交流放大器,应选择宽带集成放大器,并使其处于深度负反馈。若要得到较高增益的宽带交流放大器,可用两个或两个以上的单级交流放大器级联组成。 在设计小信号多级宽带交流放大器时,输入到前级运算放大器的信号幅值较小,为了减小动态误差,应选择宽带运算放大器,并使它处于深度负反馈。由于运放的增益带宽积是一个常数,因此,加大负反馈深度,可以降低电压放大倍数,从而达到扩展频带宽度的目的。由于输入到后级运放的信号幅度较大,因此,后级运放在大信号的条件下工作,这时,影响误差的主要因素是运放的转换速率,运放的转换速率越大,误差越小。 四.设计方法与设计举例 1.设计方法与步骤: 169

170 (1)确定放大器的级数n 根据多级放大器的电压放大倍数A u Σ和所选用的每级放大器的放大倍数A ui ,确定多级 放大器的级数n 。 (2)选择电路形式 (3)选择集成运算放大器 先初步选择一种类型的运放,然后根据所选运放的单位增益带宽BW ,计算出每级放大 器的带宽。 ui Hi A BW f = (1) 并按(2)式算出。 121 ' -=n Hi Hi f f (2) 多级放大器的总带宽H f 必须满足: 'Hi H f f ≤ (3) 若'Hi H f f >,就不能满足技术指标提出的带宽要求,此时可再选择增益带宽积更高的 运放。一直到多级放大器的总带宽H f 满足(3)式为止。 当所选择的运放满足带宽要求后,对末级放大器所选用的运放,其转换速率R S 必须满足: om R U f S ?≥max 2π (4) 否则会使输出波形严重失真。 (4)选择供电方式 在交流放大器中的运放可以采用单电源供电或正负双电源供电方式。单电源供电与正 负双电源供电的区别是:单电源供电的电位参考点为负电源端(此时负电源端接地)。而正负双电源供电的参考电位是总电源的中间值(当正负电源的电压值相等时,参考电位为零)。 (5)计算各电阻值 根据交流放大器的输入电阻和对第一级电压放大倍数的要求,先确定出第一级的输入 电阻和负反馈支路的电阻,然后再根据第二级电压放大倍数的要求,确定出第二级的输入电阻和负反馈支路的电阻。按此顺序,逐渐地把每级的电阻值确定下来。 (6)计算耦合电容 当信号源的内阻和运放的输出电阻被忽略时,信号源与输入级之间、级与级之间的耦 合电容可按下式计算。 i L R f C π2)10~1(= (5) 上式中,i R 是耦合电容C 所在级的输入电阻。类似地输出电容可按下式计算。 L L R f C π2)10~1(= (6) 2.设计举例

模电设计多级放大器

前言 (2) 第一章放大器的概述 (2) 1.1多级放大器的功能 (2) 1.2.2设计任务及目标 (2) 1.2.3主要参考元器件 (3) 第二章电路设计原理与单元模块 (3) 2.1设计原理 (3) 2.2设计方案 (4) 2.3单元模块 (6) 第三章安装与调试 (6) 3.1电路的安装 (6) 3.2电路的调试 (7) 第四章实验体会 (7) 结论 (7) 致谢 (7) 参考文献 (8) 附录 (8)

前言 电子技术电路课程设计是从理论到实践的一个重要步骤,通过这个步骤使我们的动手能力有了质的提高,也使我们对电路设计理念的认识有了质的飞跃。本课程设计是对放大器对电压放大的基本应用,我们设计的二级低频阻容耦合放大器严格按照实验要求设计,能够充分满足的电压放大倍数、频带宽、输入输出电阻等实验要求的性能参数,这次课程设计让我们了解了类似产品的内部原理结构。设计时我和搭档设计了二级三极管放大电路、可变放大倍数的二级运算放大器电路等多种方案,由于考虑到器材的限制,我们最终采用了最为简洁的两级运算放大器电路,实现了用最少的元器件实现要求功能。 第一章放大器的概述 1.1多级放大器的功能 随着科技的进步,电子通讯产品越来越多的进入人们视野,小到耳机手机收音机,大到大型雷达都要利用到信号放大器,可以说信号放大器是现代通讯设备的核心器件之一,而多级放大器又是一级放大器的推广,可以克服单级放大器放大倍数不够等诸多问题。耦合形式多级放大电路的连接,产生了单元电路间的级联问题,即耦合问题。放大电路的级间耦合必须要保证信号的传输,且保证各级的静态工作点正确。 直接耦合——耦合电路采用直接连接或电阻连接,不采用电抗性元件。 直接耦合电路可传输低频甚至直流信号,因而缓慢变化的漂移信号也可以通过直接耦合放大电路。 电抗性元件耦合——级间采用电容或变压器耦合。 电抗性元件耦合,只能传输交流信号,漂移信号和低频信号不能通过。根据输入信号的性质,就可决定级间耦合电路的形式。 零点漂移是三极管的工作点随时间而逐渐偏离原有静态值的现象。产生零点漂移的主要原因是温度的影响,所以有时也用温度漂移或时间漂移来表示。工作点参 数的变化往往由相应的指标来衡量。一般将在一定时间内,或一定温度变化范围内的输出级工作点的变化值除以放大倍数,即将输出级的漂移值归算到输入级来表示的。 本设计主要完成:实验要求电压放大倍数大于100倍,实际参数200倍,频带要求为:30Hz~30KHz,实际参数20Hz~150KHz,要求输入电阻大于20千欧,实际为23千欧,要求输出电阻均低于10欧,实际为8欧。 1.2设计任务及要求1.2.1基本要求(1)电压放大倍数大于100倍;(2)电路的频带为:30Hz~30KHz;(3)输出电阻大于20千欧; (4)输出电阻小于10欧; 1.2.2设计任务及目标 (1)综合运用相关课程所学到的理论知识去独立完成课题设计;

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路 实验名称:负反馈放大电路设计 学院:信息工程学院 专业:信息工程班级: 组号:指导教师:田明 报告人:学号: 实验地点 N102 实验时间: 实验报告提交时间: 教务处制

一.实验名称: 负反馈放大电路设计 二.实验目的: 加深对负反馈放大电路原理的理解. 学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法. 三.实验仪器: 双踪示波器一台/组 信号发生器一台/组 直流稳压电源一台/组 万用表一台/组 四.实验容: 设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下: 闭环电压放大倍:30---120 输入信号频率围:1KHZ-------10KHZ. 电压输出幅度≥1.5V 输出电阻≤3KΩ 五.实验步骤: 1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集 成运算负反馈放大电路.

为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。本设计可以采用共发射极-共基极-共集电极放大电路。对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。本设计采用电压并联负反馈形式。 2.设计电路,画出电路图. 下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。 整体原理图如下: 从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给

东大模电实验三极管放大电路设计

东南大学电工电子实验中心 实验报告 课程名称:模拟电子电路基础 第三次实验 实验名称:三极管放大电路设计 院(系):专业: 姓名:学号: 实验室: 105 实验组别: 同组人员:实验时间:2015年05月04日评定成绩:审阅教师:

实验三三极管放大电路设计 一、实验目的 1.掌握单级放大电路的设计、工程估算、安装和调试; 2.了解三极管、场效应管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、 增益、幅频特性等的基本概念以及测量方法; 3.了解负反馈对放大电路特性的影响。 4.掌握多级放大电路的设计、工程估算、安装和调试; 5.掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流毫伏表、 函数发生器的使用技能训练。 二、预习思考: 1.器件资料: 上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表: 注:额——表示Absolute maximum ratings,最大额定值。 2.偏置电路: 图3-3中偏置电路的名称是什么?简单解释是如何自动调节晶体管的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么? 答: ①图3-1偏置电路名称:分压式偏置电路。 ②自动调节晶体管电流Ic以实现稳定直流工作点的作用的原理: 当温度升高,会引起静态电流ICQ(≈IEQ)的增加,此时发射极直流电位UEQ=IEQ*RE 也会增加,而由于基极电位UBQ基本固定不变,因此外加在BJT发射结上的电压UBEQ=UBQ-UEQ将减小,迫使IEQ减小,进而抑制了ICQ的增加,使ICQ基本维持不变,达到自动稳定静态工作点的目的。同理,当温度降低时,ICQ减小,UEQ同时减小,而UBEQ则上升促使IEQ增大,抑制了ICQ 的减小,进而保证了Q点的稳定。 ③若R1、R2取得过大,则不能再起到稳定工作点的作用。这是因为在此情况下, 流入基极的电流不可再忽略,UB不稳定导致直流工作点不稳定。

多级低频电压放大器设计报告

多级低频电压放大器设计 姓 名 学 号 院、系、部 班 号 完成时间 ※※※※※※※※ ※ ※ ※ ※※ ※※ ※ ※ ※ ※ ※※※※※ 2013级 模拟电子技术课程设计

摘要 本设计采用二级高通运算放大器的设计思路,分别设计了二级运算放大电路、可变放大倍数的二级运算放大电路等多种方案,并应用放大器对电压放大的特点,要求电压在满足放大倍数的前提下,对大于10KHz高频的信号进行选取,并运用多级反相放大器对电压进行放大。并且多级电压放大倍数等于组成它的各级电路电压放大倍数之积。其输入电阻是第一级的输入电阻,输出电阻是末级的输出电阻。在求解某一级的电压放大倍数时应将后级输入电阻作为负载。我们经常听广播,当我们选台时其实是对不同的频率的信号进行选择,对信号的选择这时我们就要用到多级低频电压放大器的实现。根据所选信号的频率范围可分为低通、高通、带通、带阻。这其中带通是允许每一段频带范围内的信号通过,而将此频带以外的信号阻断,而消除高频段和低频段的干扰和噪声,经常用与抗干扰设备的组成中。 由于多级放大倍数等于各级放大倍数之积算出所需要的电路,并通过对设计的电路图经过Multisim仿真运行后,得到了放大倍数大于600倍,频率大于10KHz的符合要求的高频输出波,因此可以确定此次电路设计可以满足要求。 关键词:多级放大滤波

目录 第1章设计任务与要求.....................错误!未定义书签。第2章方案与论证. (1) 第3章设计电路图......................错误!未定义书签。第4章调试分析.. (3) 第5章结论与心得 (4) 参考文献 (5)

多级放大电路的设计报告报告

电工电子技术课程设计报告 题目:多级放大电路的设计 二级学院机械工程学院 年级专业 14 动力本 学号 1401250029 学生姓名周俊 指导教师张云莉 教师职称讲师 报告时间:2015.12.28

目录 第一章.基本要求和放电电路的性能指标 (1) 第二章.概述和任务分析 (5) 第三章.电路原理图和电路参数 (6) 第四章.主要的计算过程 (9) 第五章.电路调试运算结果 (11) 第六章.总结 (12) 制作调试步骤及结果 (12) 收获和体会 (13) 第七章.误差和分析 (14) 第八章.参考文献 (15)

第一章.基本要求和放电电路的性能指标 1. 基本要求: 用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知V CC =+12V, -V EE =-12V ,要求设计差分放大器恒流源的射极电流I EQ3=1~1.5mA ,第二 级放大射极电流I EQ4=2~3mA ;差分放大器的单端输入单端输出不是真电压增益至 少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10k Ω,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。设计并仿真实现。 2. 放电电路的性能指标: 第一种是对应于一个幅值已定、频率已定的信号输入时的性能,这是放大电路的基本性能。第二种是对于幅值不变而频率改变的信号输出时的性能。第三种是对应于频率不变而幅值改变的信号输入时的性能。 1.1第一种类型的指标: 1.放大倍数 放大倍数是衡量放大电路放大能力的指标。它定义为输出变化量的幅值与输入变化量的幅值之比,有时也称为增益。虽然放大电路能实现功率的放大,然而在很多场合,人们常常只关心某一单项指标的放大的倍数,比如电压或者电流的放大倍数。由于输出和输入信号都有电压和电流量,所以存在以下四中比值: (1-1) 1.

第3章多级放大电路习题解答

第3章自测题、习题解答 自测题3 一、选择: 选择:(请选出最合适的一项答案) 1、在三种常见的耦合方式中,静态工作点独立,体积较小是( )的优点。 A )阻容耦合 B) 变压器耦合 C )直接耦合 2、直接耦合放大电路的放大倍数越大,在输出端出现的漂移电压就越( )。 A) 大 B) 小 C) 和放大倍数无关 3、在集成电路中,采用差动放大电路的主要目的是为了( ) A) 提高输入电阻 B) 减小输出电阻 C) 消除温度漂移 D) 提高放大倍数 4、两个相同的单级共射放大电路,空载时电压放大倍数均为30,现将它们级连后组成一个两级放大电路,则总的电压放大倍数( ) A) 等于60 B) 等于900 C) 小于900 D) 大于900 5、将单端输入——双端输出的差动放大电路改接成双端输入——双端输出时,其差模电压放大倍数将( );改接成单端输入——单端输出时,其差模电压放大倍数将( )。 A) 不变 B )增大一倍 C) 减小一半 D) 不确定 解:1、A 2、A 3、C 4、C 5、A C 二、填空: 6、若差动放大电路两输入端电压分别为110i u mV =,24i u mV =,则等值差模输入信号为 id u = mV ,等值共模输入信号为ic u = mV 。若双端输出电压放大倍 数10ud A =,则输出电压o u = mV 。 7、三级放大电路中,已知1230u u A A dB ==,320u A dB =,则总的电压增益为 dB , 折合为 倍。 8、在集成电路中,由于制造大容量的 较困难,所以大多采用 的耦合 方式。 9、长尾式差动放大电路的发射极电阻e R 越大,对 越有利。 10、多级放大器的总放大倍数为 ,总相移为 ,

多级负反馈交流放大电路的课程设计(模电)

※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※ 电子技术课程设计报告书 课题名称 姓名 学号 院、系、部 专业 指导教师 201 年月日 多级负反馈交流放大器的电路设计

彭佳伟 (湖南城市学院通信与电子工程学院通信工程专业,湖南益阳,41300) 1.设计目的 (1)进一步掌握放大三极管的使用方法; (2)进一步掌握中放大电路和反馈网络的设计思想。 2.设计思路 (1)从原理出发选定设计方案; (2) 设计采用负反馈网络电路和采用三级放大电路; (3)确定各级参数。 3.设计过程 (1)电路设计方框图及功能描述 图1 负反馈放大电路的基本框架 (2)电路的设计 如图2所示是一个三级放大电路,信号从输入级经电容耦合与一级放大电路的基极相连,放大后从集电极输出直接和下一级放大电路的基极相连。发射极的电阻和旁路电容保证了电路对交直流的反馈,集电极的电阻提供合适的静态工作点。信号经二级放大电路放大后由集电极输出经电容耦合后与下一级电路相连。同时电阻Rb1与上级电路形成电流并联负反馈,Rc2稳定该级电路的静态工作点。第三级为共集电极放大电路,所以信号由发射极输出经电容耦合作用与负载同时 = 基本放大电路 反馈网络 输入信号 净输入 输出信号 反馈信

R f3级放大电路形成电压串联负反馈使整个电路稳定 C410μF Rc115kΩ R2 3.3kΩ Rb151kΩRf2 51kΩ RE22.2kΩ RE12kΩRF151kΩ Q1 D42C1 Rc26.8kΩRb3213kΩ Q2D42C1 CE2 100μF Cf 10μF RF35.1kΩ Q3 D42C1 C3 100μF Rb3122kΩ Re32kΩ CE1100μF RL 1kΩ VCC 12V C110μF C2 10μF 图2 多级负反馈式放大电路 (3)确定第一级电路的参数 电路如图3示为了提高输入电阻而又不致使放大倍数太低,应取 E1I =0?5mA , 并选1β=50,则be1r ='be1r +(1+1β)E1T I U =300+(50+1)5026?Ω?≈95K 2利用同样的原则,可得'c1 be1 1F11be1c1'1u1R r R )1(r R A ?≈++?=βββ????? ? ? ??+F 1 be 11 R r 11β 为了获得高输入电阻,而且希望u1A 也不要太小,并与第二级的阻值一致以 减少元器件的种类,取Ω=51R F1,Ω?=3K 3R c1',Ω=15K R c1。选1V U E1=,

多级放大电路的分析与设计

摘要 电子设备中,往往需要放大微弱的信号,这主要是通过放大电路实现的。基本放大电路由单个晶体管或场效应管构成,为单级放大电路,其电压放大倍数可以达到几十倍。而当信号非常微弱时,单级放大电路无法满足放大需求,此时我们把若干个单级放大电路串接在一起,级联组成多级放大电路。 本文主要研究多级放大电路的分析与设计,根据各级电路级间耦合方式的不同,分别设计了直接耦合放大电路、阻容耦合放大电路和光耦合放大电路,分析了电路的静态工作点、电压放大倍数、输入电阻和输出电阻等指标特性。在此基础上,讨论了差分放大电路以及消除互补输出级交越失真的方法。 最后,以前面的讨论为基础,设计了一款具有差分输入的多级放大电路,对电路性能指标进行了设定,并分析了各部分的作用。

2.1直接耦合多级放大电路的设计 2.1.1 设计原理 根据设计要求,本设计主要采用两级放大,为了传递变化缓慢的直流信号,可以把前级的输出端直接接到后级的输入端。这种连接方式称为直接耦合。如图2.1所示。直接耦合式放大电路有很多优点,它既可以放大和传递交流信号,也可以放大和传递变化缓慢的信号或者是直流信号,且便于集成。实际的集成运算放大器其内部就是一个高增益的直接耦合多级放大电路。直接耦合放大电路,由于前后级之间存在着直流通路,使得各级静态工作点互相制约、互相影响。因此,在设计时必须采取一定的措施,以保证既能有效地传递信号,又要使各级有合适的工作点。

图2.1 直接耦合两级放大电路 通常在第二级的发射极接入稳压二极管,这样既提高了第二级的基级电位,也使第一级的集电极静态电位抬高,脱离饱和工作区,可以使整个电路稳定正常的工作,稳定三极管的静态工作点。 但是在一个多级放大电路的输入端短路时,输出电压并非始终不变,而是会出现电压的随机漂动,这种现象叫做零点漂移,简称零漂。产生零漂的原因有很多,主要是以下两点:一方面,由于元器件参数,特别是晶体管的参数会随温度的变化而变化;另一方面,即使温度不变化,元器件长期使用也会使远见老化,参数就会发生变化,由温度引起的叫做温漂,由元器件老化引起的叫做零漂,在多级放大电路中,第一级的影响尤为严重,它将被逐级放大,以至影响整个电路的工作,所以零漂问题是直接耦合放大电路的特殊问题。 解决零漂的方法有很多种,例如引入直流负反馈来稳定静态工作点,以减小零漂;利用温度补偿元件补偿放大管的零点漂移,利用热敏电阻或二极管来与工作管的温度特性相补偿;利用工作特性相同的管子构成对称的一种电路—差动放大电路,这是最为行之有效的方法,故本次设计采用差动放大电路来设计实现。

多级放大电路习题参考答案

第四章多级放大电路习题答案3.1学习要求 (1)了解多级放大电路的概念,掌握两级阻容耦合放大电路的分析方法。 (2)了解差动放大电路的工作原理及差模信号和共模信号的概念。 (3)理解基本互补对称功率放大电路的工作原理。 3.2学习指导 本章重点: (1)多级放大电路的分析方法。 (2)差动放大电路的工作原理及分析方法。 本章难点: (1)多级放大电路电压放大倍数的计算。 (2)差动放大电路的工作原理及分析方法。 (3)反馈的极性与类型的判断。 本章考点: (1)阻容耦合多级放大电路的静态和动态分析计算。 (2)简单差动放大电路的分析计算。 3.2.1多级放大电路的耦合方式 1.阻容耦合 各级之间通过耦合电容和下一级的输入电阻连接。优点是各级静态工作点互不影响,可单独调整、计算,且不存在零点漂移问题;缺点是不能用来放大变化很缓慢的信号和直流分量变化的信号,且不能在集成电路中采用阻容耦合方式。 静态分析:各级分别计算。

动态分析:一般采用微变等效电路法。两级阻容耦合放大电路的电压放大倍数为: 其中i2L1r R =。 多级放大电路的输入电阻就是第一级的输入电阻,输出电阻就是最后一级的输出电阻。 2.直接耦合 各级之间直接用导线连接。优点是可放大变化很缓慢的信号和直流分量变化的信号时,且适宜于集成;缺点是各级静态工作点互相影响,且存在零点漂移问题,即当0i =u 时0o ≠u (有静态电位)。引起零点漂移的原因主要是三极管参数(I CBO ,U BE ,β)随温度的变化,电源电压的波动,电路元件参数的变化等。 3.2.2差动放大电路 1.电路组成和工作原理 差动放大电路由完全相同的两个单管放大电路组成,两个晶体管特性一致,两侧电路参数对称,是抑制直接耦合放大电路零点漂移的最有效电路。 2.信号输入 (1)共模输入。两个输入信号的大小相等、极性相同,即ic i2i1u u u ==。在共模输入信号作用下,电路的输出电压0o =u ,共模电压放大倍数0c =A 。 (2)差模输入。两个输入信号的大小相等、极性相反,即id i2i12 1u u u =-=。在共模输入 信号作用下,电路的输出电压o1o 2u u =,差模电压放大倍数d1d A A =。 (3)比较输入。两个输入信号大小不等、极性可相同或相反,即i2i1u u ≠,可分解为共模信号和差模信号的组合,即: 式中u ic 为共模信号,u id 为差模信号,分别为: 输出电压为: 3.共模抑制比 共模抑制比是衡量差动放大电路放大差模信号和抑制共模信号的能力的重要指标,定义为A d 与A c 之比的绝对值,即: 或用对数形式表示为:

多级放大电路课程设计报告..

电子课程设计报告 题目:多级放大电路 姓名: 年级专业:2010电信(双学位)指导老师 计算机与信息学院电信专业 2011年7月2日

摘要 【摘要内容】在我们日常生活和科学研究等工作中,常常会遇到放大电路。这些放大电路的形式不通,性能指标也不同,使用的元器件也不相同,但它们都是用来进行信号的放大,其基本工作原理都是一样的。在这些放大电路中,单管放大电路时构成各种复杂电路的基本单元。本文以几个简单的放大电路为例,介绍放大电路的组成原理、工作原理、性能指标及计算方法。 本着从简单到复杂的分析思想逐步对电路进行剖析,化整为零,化零为整分析电路的工作原理和各个放大登记的输入输出电阻和静态工作点。通过这次设计的思考和查阅资料我不仅对放大电路有了深一层的认识还对功率放大器有了更深的学习。通过此次研究加深在放大电路上的理解,使其在工作学习中运用的更加熟练。 【关键词】:放大电路原理;多级放大电路的概述;运行参数,放大倍数,静态工作点,输入、输出电阻;

目录 摘要 (2) 第一章放大电路基础 (3) 1.1 第一种类型的指标:.............................................................................................. ..4 1.2 第二种类型的指标.................................................................................................. ..6 1.3 第三种类型的指标:.............................................................................................. ..6 第二章基本放大电路 .. (7) 2.1 BJT 的结构 (7) 2. 2 BJT的放大原理 (8) 第三章多级放大电路 (9) 3.1 多级放大电路的概述 (9) 3.2 耦合形式 (9) 3.3 放大电路的静态工作点分析 ............................................................................... . (11) 3.4 设计电路的工作原理 (12) 3.5 计算参数 .......................................................................................................... .. (13) 总结......................................................................................................................... (14) 参考文献 ................................................................................................................ (14)

第三章 多级放大电路答案

科目:模拟电子技术 题型:填空题 章节:第三章多级放大电路 难度:全部 ----------------------------------------------------------------------- 1. 某放大器由三级组成,已知各级电压增益分别为16dB,20dB,24dB,放大器的总增益为 60dB 。 2. 某放大器由三级组成,已知各级电压增益分别为16dB,20dB,24dB,放大器的总电压放大倍数为 103。 3. 在差动式直流放大电路中,发射极电阻Re的作用是通过电流负反馈来抑制管子的零漂,对共模信号呈现很强的负反馈作用。 4. 在双端输入、输出的理想差动放大电路中,若两输入电压U i1=U i2,则输出电压U o= 0 。 5. 在双端输入、输出的理想差动放大电路中,若U i1=+1500μV,U i2=+500μV,则可知差动放大电路的差模输入电压U id= 1000uV 。 6. 多级放大电路常用的耦合方式有三种,它们是直接耦合、阻容耦合和变压器耦 合。 7. 多级放大电路常用的耦合方式有三种,它们是直接耦合、阻容耦合和变压器耦合。 8. 多级放大电路常用的耦合方式有三种,它们是阻容耦合、直接耦合和变压器耦合。 9. 多级放大电路常用的耦合方式有三种,其中直接耦合方式易于集成,但存在零点漂移现象。 10. 多级放大电路常用的耦合方式有三种,其中直接耦合方式易于集成,但存在零点漂移现象。 11. 若三级放大电路的A u1=A u2=30dB,A u3=20 dB,则其总电压增益为 80 dB。 12. 若三级放大电路的A u1=A u2=30dB,A u3=20 dB,则其总电压放大倍数折合为 104倍。 13. 在多级放大电路中,后级的输入电阻是前级负载电阻的,而前级的输出电阻则也可视为后级的信号源内阻。 14. 在多级放大电路中,后级的输入电阻是前级的负载电阻,而前级的输出电阻则也可视为后级的信号源。 15. 在实际应用的差动式直流放大电路中,为了提高共模抑制比,通常用恒流源 代替发射极电阻Re,这种电路采用双电源供电方式。 16. 在实际应用的差动式直流放大电路中,为了提高共模抑制比,通常用恒流源代替发射极电阻Re,这种电路采用双电源供电方式。 科目:模拟电子技术 题型:选择题 章节:第三章多级放大电路 难度:全部 ----------------------------------------------------------------------- 1. 一个放大器由两个相同的放大级组成。已知每级的通频带为10kHz,放大器的总通频带是: D 。 A、10kHz; B、20kHz; C、大于10kHz; D、小于10kHz; 2. 设单级放大器的通频带为BW1,由它组成的多级放大器的通频带为BW,则(A )

小信号多级放大电路设计-模电课程设计报告

机械与电气工程学院 《模拟电子技术》课程设计报告 姓名: 学号: 班级: 指导教师:

课题名称:小信号多级放大电路设计 一、设计目的 1.通过本课程设计,掌握晶体管放大电路工作原理。 2.熟悉简单模拟电路的设计方法和主要流程。 3.学习模拟电路的制作与调试方法。 二、设计要求 1.输入电压:Vi p-p =30mV。 2.输入电阻:10k~40k。 3.频率特性:100HZ~100kHZ。 4.总谐波失真度(THD)≦3%。 5.供电电压:15V。 6.电压增益:100倍。 7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。 8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。 三、方案设计 1.负反馈的类型 在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。 2.负反馈对放大电路性能的影响 (1)引入负反馈使增益下降 闭环增益表达式为 =A/(1+AF) A f 其中D=1+AF为反馈深度。深度负反馈D>>1条件下

A f ≈1/F (2)负反馈提高增益的稳定性易得: d A f / A f =d A/(1+AF)*A=d A/D*A 上式表明,反馈越深,闭环增益的稳定性越好。(3)负反馈对输入电阻和输出电阻的影响 串联负反馈使R i 增加,并联负反馈使R i 下降。程度取决于反馈深度: R if =(1+AF)R i (串联负反馈) R if = R i /(1+AF)(并联负反馈) 电压负反馈使R o 下降,电流负反馈使R o 增加。程度上取决于反馈深度: R of =(1+AF)R o (电流负反馈) R of =R o /(1+AF) (电压负反馈) (4)负反馈展宽频带 基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为: f Hf =(1+AF)f H f Lf =f L /(1+AF) 3.方案确定 输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。输出电阻:<1k,不是太小,则输出级不需要引入共集电路。电压增益:100倍,且题目要求必须要有两级共射电路,则电路分为两级共射放大。频率特性:100HZ~100kHZ,每一级的电容耦合,本来用10uF,但是通频带在仿真的时候下限只能达到290HZ,上限能达到4.5MHZ。所以用47uF电容耦合,能展宽通频带。 四、电路设计 设计电路图如图1所示

相关主题
文本预览
相关文档 最新文档