当前位置:文档之家› 北师大版高中数学必修5第二章《解三角形》之解三角形应用举例(二)

北师大版高中数学必修5第二章《解三角形》之解三角形应用举例(二)

北师大版高中数学必修5第二章《解三角形》之解三角形应用举例(二)
北师大版高中数学必修5第二章《解三角形》之解三角形应用举例(二)

第七课时§2.3.2解三角形应用举例(二)

一、教学目标

1、知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题。

2、过程与方法:本节课是解三角形应用举例的延伸。采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。作业设计思考题,提供学生更广阔的思考空间。

3、情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力。

二、教学重点:结合实际测量工具,解决生活中的测量高度问题。

教学难点:能观察较复杂的图形,从中找到解决问题的关键条件。

三、教学方法:探析归纳,讲练结合

四、教学过程

Ⅰ.课题导入

提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题

Ⅱ.探析新课

[范例讲解]

例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

分析:求AB长的关键是先求AE,在 ACE中,如能求出C点到建筑物顶部A的距离CA,再

测出由C 点观察A 的仰角,就可以计算出AE 的长。

解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上。由在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD = a ,测角仪器的高是h ,那么,在?ACD 中,根据正弦定理可得 AC = )sin(sin βαβ-a ,AB = AE + h= AC αsin + h = )

sin(sin sin βαβα-a + h

例2、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'?,在塔底C 处测得A 处的俯角β=501'?。已知铁塔BC 部分的高为27.3 m,求出山高CD(精确到1 m)

师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在?ABD 中求CD ,则关键需要求出哪条边呢?

生:需求出BD 边。

师:那如何求BD 边呢?

生:可首先求出AB 边,再根据∠BAD=α求得。

解:在?ABC 中, ∠BCA=90?+β,∠ABC =90?-α,∠BAC=α- β,∠BAD =α.根据正弦定

理, )sin(βα-BC = )

90sin(β+?AB , 所以 AB =)sin()90sin(βαβ-+?BC =)sin(cos βαβ-BC 解Rt ?ABD 中,得 BD =ABsin ∠BAD=)

sin(sin cos βααβ-BC ,将测量数据代入上式,得BD = )

1500454sin(0454sin 150cos 3.27'-'''????=934sin 0454sin 150cos 3.27'''???≈177 (m),CD =BD -BC ≈177-27.3=150(m) 答:山的高度约为150米.

师:有没有别的解法呢?生:若在?ACD 中求CD ,可先求出AC 。

师:分析得很好,请大家接着思考如何求出AC ?

生:同理,在?ABC 中,根据正弦定理求得。(解题过程略)

例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15?的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25?的方向上,仰角为8?,求此山的高度CD.

师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢?生:在?BCD 中

师:在?BCD 中,已知BD 或BC 都可求出CD,根据条件,易计算出哪条边的长?

生:BC 边

解:在?ABC 中, ∠A=15?,∠C= 25?-15?=10?,根据正弦定理,A BC sin = C

AB sin , BC =C

A A

B sin sin =??

10sin 15sin 5 ≈ 7.4524(km),CD=BC ?tan ∠DBC ≈BC ?tan8?≈1047(m) 答:山的高度约为1047米

Ⅲ.课堂练习:课本本节练习1、2

Ⅳ.课时小结:利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。

Ⅴ.课后作业:1、课本本节习题2-3B 组1、2题

2、为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30?,测得塔基B 的俯角为45?,则塔AB 的高度为多少m ? 答案:20+

3320(m) 五、教后反思:

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

人教版高一必修五解三角形单元试题及答案

高一必修5 解三角形单元测试题 1.在△ABC 中,sinA=sinB ,则必有 ( ) A .A=B B .A ≠B C .A=B 或A=C -B D .A+B= 2 π 2.在△ABC 中,2cosBsinA=sinC ,则△ABC 是 ( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形 3.在ABC ?中,若 b B a A cos sin =,则B 的值为 ( ) A . 30 B . 45 C . 60 D . 90 4.在ABC ?中,bc c b a ++=2 2 2 ,则角A 等于 ( ) A .60° B .45° C .120° D .30° 5.在△ABC 中,b =, ,C=600,则A 等于 ( ) A .1500 B .750 C .1050 D .750或1050 6.在△ABC 中,A:B:C=1:2:3,则a:b:c 等于 ( ) A .1:2:3 B .3:2:1 C . 2: D . 7.△ABC 中,a=2,A=300,C=450,则S △ABC = ( ) A B . C 1 D .11)2 8.在ABC ?中,角A 、B 、C 的对边分别为a 、b 、c ,则acosB+bcosA 等于 ( ) A . 2 b a + B . b C . c D .a 9.设m 、m +1、m +2是钝角三角形的三边长,则实数m 的取值范围是 ( ) A .0<m <3 B .1<m <3 C .3<m <4 D .4<m <6 10.在△ABC 中,已知a=x , A=450,如果利用正弦定理解这个三角形有两个解, 则x 的取值范围为 ( ) A . B .22 D .x<2 11.已知△ABC 中,A=600, ,c=4,那么sinC= ; 12.已知△ABC 中,b=3, B=300,则a= ; 13.在△ABC 中,|AB |=3,||=2,AB 与的夹角为60°,则|AB -|=____ __; 15.在ABC ?中,5=a , 105=B , 15=C ,则此三角形的最大边的长为__________;

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

高中数学-解三角形知识点汇总及典型例题1

解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角.

高中数学的必修五解三角形知识点归纳

解三角形 一.三角形中的基本关系: (1)sin()sin ,A B C += cos()cos ,A B C +=- tan()tan ,A B C +=- (2)sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++=== (3)a>b 则A>B则sinA>sinB,反之也成立 二.正弦定理: 2sin sin sin a b c R C ===A B .R 为C ?AB 的外接圆的半径) 正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 两类正弦定理解三角形的问题:

①已知两角和任意一边求其他的两边及一角. ②已知两边和其中一边的对角,求其他边角. (对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、无解)) 三.余弦定理: 222 2cos a b c bc =+-A 222 2cos b a c ac =+-B 222 2cos c a b ab C =+-. 注意:经常与完全平方公式与均值不等式联系 推论: 222 cos 2b c a bc +-A = 222 cos 2a c b ac +-B = 2 2 2 cos 2a b c C ab +-= .

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

高中数学论文应用三角形的面积巧解竞赛题

应用三角形的面积巧解竞赛题 三角形是几何中最基本的多边形。在求其它多边形问题时,经常把多边形问题化归成三角形 问题来求解。特别是三角形的面积,在解题中更是应用广泛。下面就举例说明。 一、知识点回顾: 三角形的面积公式: 三角形的面积等于底乘以其边上的高的一半。 性质: 1、等底同高的两个三角形,面积相等。 2、同底等高的两个三角形,面积相等。 3、等底等高的两个三角形,面积相等。 请同学们仔细体会解题过程中的“设而不求”的奇妙。 二、应用举例 例1、如图1所示,矩形ABCD 中,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,点P 在矩 形ABCD 内.若AB =4cm ,BC =6cm ,AE =CG =3cm ,BF =DH =4cm ,四边形AEPH 的面积为5cm 2 , 则四边形PFCG 的面积为_________cm 2 .08年浙江省初中数学竞赛初赛试题 解法1、如图2所示,连接EH 、HG 、GF 、FE , 在矩形ABCD 中, 因为,DH=BF ,BE=DG ,∠B=∠D , 所以,△BEF ≌△DGH , 所以,EF=GH , 同理可证,△AEH ≌△CFG , 所以,EH=GF , 所以,四边形EFGH 是平行四边形, 因为, S △AEH = 21×AE ×AH=21 ×2×3=3= S △CFG , S △DGH =21×DH ×GH=2 1 ×4×1=2 =S △DGH , 所以, S 四边形EFGH =24-2(3+2)=14,

所以,S △EPH + S △PGF =7, 因为,四边形AEPH 的面积为5cm 2 , 所以,S △EPH =2, 所以,S △PGF =5, 所以,S △PGF + S △CFG =5+3=8, 即四边形PFCG 的面积为8cm 2 。 解法2、如图3所示,连接PA 、PC , 过点P 分别作MN ∥AB ,交AD 于点M ,交BC 于点N ; OR ∥BC ,交AB 于点O ,交DC 于点R , 则四边形ABNM 、四边形OBCR 都是矩形, 设PM=x ,PN=4-x ,PO=y ,PR=6-y , 因为, S △PAH = 21×PM ×AH=21 ×2×x=x , S △PAE =21×AE ×PO=21×3×y=2 3 y , 因为,四边形AEPH 的面积为5cm 2 , 所以,x+2 3 y=5, S △PFC = 21×FC ×PN=21 ×2×(4-x)= 4-x , S △PCG =21×CG ×PR=21×3×(6-y)=9-2 3 y , 因为,四边形PFCG 的面积= S △PFC+ S △PCG =4-x+9-2 3 y =13-(x+ 2 3 y )=13-5=8, 即四边形PFCG 的面积为8cm 2 。 解法2、如图3所示,连接PA 、PC , 过点P 分别作MN ∥AB ,交AD 于点M ,交BC 于点N ; OR ∥BC ,交AB 于点O ,交DC 于点R , 则四边形ABNM 、四边形OBCR 都是矩形, 设PM=x ,PN=4-x ,PO=y ,PR=6-y , 因为, S △PAH = 21×PM ×AH=21 ×2×x=x , S △PAE =21×AE ×PO=21×3×y=2 3 y ,

高中数学必修五第一章解三角形知识点总结及练习题

第一章 解三角形 1、正弦定理: 在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有: 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 注意:正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。 2、已知两角和一边,求其余的量。 ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解

注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式: 111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理: 在C ?AB 中,有2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论: 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状: 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >. 7、正余弦定理的综合应用: 如图所示:隔河看两目标A 、B, C 并测得∠ACB=75O , ∠BCD=45O , ∠ADC=30O ,

(完整版)必修五-解三角形-题型归纳

构成三角形个数问题 1在 ABC 中,已知a x,b 2,B 45°,如果三角形有两解,则x 的取值范围是( ) A. 2 x 2\f2 B. X 2 血 C . V2 x 2 D. 0x2 2 ?如果满足 ABC 60 , AC 12 , BC k 的厶ABC 恰有一个,那么k 的取值范围是 3.在 ABC 中,根据下列条件解三角形,其中有两个解的是( ) A* CJ = S J fr = 10^ A = 45" E ? 口 = 60 r £* = S1 B = 6(T * C. a — 7 > £> = 5 ? A - &0= D ? 口二 14# 6 - 20 , -4-45"心 求边长问题 A. 5 B 5?在△ ABC 中, a 1,B 450, S ABC 2,则 b = _________________ 三. 求夹角问题 6.在 ABC 中, ABC -, AB 2,BC 3,则 sin BAC () 4 10 10 3 10 5 A. 10 B 5 C 10 D 5 7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若 4.在 ABC 中,角 A, B,C 所对边 a,b,c ,若 a 3,C 1200 , ABC 的面积S 15 3 4

1 2 2 2 acosB bcosA csinC, S -(b c a ),则/ B=() 4 A. 90° B . 60° C . 45° D . 30° 四.求面积问题 &已知△ ABC中,内角A,B, C所对的边长分别为a,b,c.若a 2bcosA, B -,c 1,则 3 △ ABC的面积等于( ) 书书书书 A B------ B ■ C i D i +11 8 6 4 2 A 9.锐角ABC中,角A、B、C的对边分别是a、b、c,已知cos2C j (i)求sinC的值; (n)当a 2, 2si nA si nC时,求b的长及| ABC的面积. 10?如图,在四边形ABCD 中,AB 3,BC 7J3,CD 14, BD 7, BAD 120 (1 )求AD边的长; (2)求ABC的面积.

高中数学解三角形最值

高中数学解三角形最值 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 三角形中的最值(或范围)问题 解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决。 类型一:建立目标函数后,利用三角函数有界性来解决 例1.在△ABC 中, ,,a b c 分别是内角,,A B C 的对边,且2asinA =(2b+c )sinB+(2c+b )sinC. (1) 求角A 的大小;(2)求sin sin B C +的最大值. 变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ?=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边. (1) 求角C 的大小;(2)求sin sin A B +的最大值. 解:由m n ?=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC 所以cosC=21 ,从而C=60 故sin sin sin sin(120)O A B A A +=+-=3sin(60 +A) 所以当A=30 时,sin sin A B +的最大值是3 变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。 解:根据题意得:

【高中数学】解三角形基本题型

解三角形 解三角形 正弦定理的基本运用 1、 △A BC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为 。 2、 在△ABC 中,b cos A =a cos B ,则三角形为 。 3、 已知△ABC 中,a =10,B =60°,C =45°,则c = 。 4、 在△ABC 中,已知150,350,30==?=c b B ,那么这个三角形是 。 5、 在ABC ?中,?===452232B b a ,,,则A 为 。 6、 在△ABC 中,A =60°,C =45°,b =2,则此三角形的最小边长为 。

余弦定理的基本运用 1、 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于 。 2、 已知△ABC 的面积2,32,3===b a S ,解此三角形。 3、 在△ABC 中,1326+===c b a ,,,求A 、B 、C 。 4、 在△ABC 中,化简b cos C +c cos B = 。 5、 在△ABC 中,化简 ) cos cos cos (222c C b B a A c b a abc ++++。 正余弦定理的综合运用 1、已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和 B 。 2、在△ABC 中,c =22,tan A =3,tan B =2,试求a 、b 及此三角形的面积。 3、在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于 。

4、已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为。 5、△ABC中,A=60°,b=1,这个三角形的面积为3,则△ABC外接圆的直径 为。 6、在△ABC中,BC=3,AB=2,且 )1 6 ( 5 2 sin sin + = B C ,A=。

高中数学必修五 第一章 解三角形知识点归纳

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

最新专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题 解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理: 2sin sin sin a b c R A B C ===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)2 2 2 2 2 2 sin sin sin sin sin A B A B C a b ab c +-=?+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=?+=(恒等式) (3) 22sin sin sin bc B C a A = 2、余弦定理:2 2 2 2cos a b c bc A =+- 变式:()()2 2 21cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的 最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: sin sin cos cos a b A B A B A B >?>?>?< 其中由cos cos A B A B >?<利用的是余弦函数单调性,而sin sin A B A B >?>仅在一个三角形内有效. 5、解三角形中处理不等关系的几种方法 (1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 【经典例题】 例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形 中, ,

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

完整word版,人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1. 锐角△ABC 中,已知a =√3,A =π 3,则b 2+c 2+3bc 的取值范围是( ) A. (5,15] B. (7,15] C. (7,11] D. (11,15] 2. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sinA =2sinBcosC ,则△ABC 的形状为( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3. 在△ABC 中,∠A =60°,b =1,S △ABC =√3,则 a?2b+c sinA?2sinB+sinC 的值等于 ( ) A. 2√39 3 B. 263 √3 C. 8 3√3 D. 2√3 4. 在△ABC 中,有正弦定理:a sinA =b sinB =c sinC =定值,这个定值就是△ABC 的外接圆 的直径.如图2所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点 M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( ) A. λ先变小再变大 B. 仅当M 为线段EF 的中点时,λ取得最大值 C. λ先变大再变小 D. λ是一个定值 5. 已知三角形ABC 中,AB =AC ,AC 边上的中线长为3,当三角形ABC 的面积最大 时,AB 的长为( ) A. 2√5 B. 3√6 C. 2√6 D. 3√5 6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边, b = c ,且满足sinB sinA =1?cosB cosA .若 点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,平面四边形OACB 面积的最大值是( ) A. 8+5√34 B. 4+5√34 C. 3 D. 4+5√32 7. 在△ABC 中,a =1,b =x ,∠A =30°,则使△ABC 有两解的x 的范围是( ) A. (1,2√3 3 ) B. (1,+∞) C. (2√3 3 ,2) D. (1,2) 8. △ABC 的外接圆的圆心为O ,半径为1,若AB ????? +AC ????? =2AO ????? ,且|OA ????? |=|AC ????? |,则△ABC 的面积为( ) A. √3 B. √32 C. 2√3 D. 1 9. 在△ABC 中,若sinBsinC =cos 2A 2,则△ABC 是( )

高中数学解三角形练习及详细答案

解三角形练习 题一:在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(). A.43B.2 3 C. 3 D. 3 2 题二:在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=23,c=22,1+tan A tan B= 2c b,则C =(). A.30°B.45° C.45°或135°D.60° 题三:在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________. 题四:在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cos A-a cos C=0.求角A的大小. 题五:在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为________. 题六:在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C. 求证:a,b,c成等比数列. 题七:某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港

口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇. (1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值. 题八:如图,在△ABC中,已知B=π 3,AC=43,D为BC边上一点.若AB=AD,则△ADC的 周长的最大值为________. 题九:如图,在△ABC中,点D在BC边上,AD=33,sin∠BAD=5 13,cos∠ADC= 3 5. (1)求sin∠ABD的值; (2)求BD的长. 题十:如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)(). A.2.7 m B.17.3 m C.37.3 m D.373 m 题十一:在△ABC中,若sin2A+sin2B < sin2C,则△ABC的形状是(). A.锐角三角形B.直角三角形

椭圆标准方程+焦点三角形面积公式(高三复习)

椭圆标准方程+焦点三角形面积公式(高三复 习) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

椭圆焦点三角形面积公式的应用 性质1(选填题课直接用,大题需论证): 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一 点,θ=∠21PF F ,则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:2(cos 2212 22 1r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典型例题 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 例2 已知P 是椭圆 19252 2=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若2 1 | |||2121= ?PF PF ,则△21PF F 的面积为( )

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

必修五解三角形练习题

一.选择题(共10小题) 1.在△ABC中,sinA=sinB是△ABC为等腰三角形的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 2.在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是() A.(2,+∞)B.(0,2)C.(2,2)D.(,2) 3.在锐角△ABC中,若C=2B,则的范围() A.B.C.(0,2)D. 4.在△ABC中,下列等式恒成立的是() A.csinA=asinB B.bcosA=acosB C.asinA=bsinB D.asinB=bsinA 5.已知在△ABC中,若αcosA+bcosB=ccosC,则这个三角形一定是()A.锐角三角形或钝角三角形B.以a或b为斜边的直角三角形C.以c为斜边的直角三角形D.等边三角形 6.在△ABC中,若cosAsinB+cos(B+C)sinC=0,则△ABC的形状是()A.等腰三角形B.直角三角形 C.等腰直角三角形D.等腰或直角三角形 7.在△ABC中,内角A,B,C所对的边分别为a,b,c,且=,则∠B为() A.B.C.D. 8.在△ABC中,已知sinA=2sinBcosC,则该三角形的形状是() A.等边三角形B.直角三角形 C.等腰三角形D.等腰直角三角形 9.△ABC的内角A、B、C的对边分别为a、b、c,,,b=1,则角B 等于() A.B.C.D.或

10.在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是()A.x>2 B.x<2 C.D. 二.填空题(共1小题) 11.(文)在△ABC中,∠A=60°,b=1,△ABC的面积为,则 的值为. 三.解答题(共7小题) 12.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB (1)求角C的大小; (2)求△ABC的面积的最大值. 13.在△ABC中,角A,B,C所对边分别为a,b,c,已知bccosA=3,△ABC的面积为2. (Ⅰ)求cosA的值; (Ⅱ)若a=2,求b+c的值. 14.在△ABC中,角A、B、C的对边分别是a、b、c,且=. (1)求角B的大小; (2)△ABC的外接圆半径是,求三角形周长的范围.

相关主题
文本预览
相关文档 最新文档