当前位置:文档之家› 化工原理课程设计精馏塔(最终版)

化工原理课程设计精馏塔(最终版)

化工原理课程设计精馏塔(最终版)
化工原理课程设计精馏塔(最终版)

聊城大学化学化工学院

化工原理课程设计任务书

设计题目:乙醇——水筛板精馏塔工艺设计

(取至南京某厂药用酒精生产现场)

设计条件: 1. 常压操作,P=1 atm(绝压)。

2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿

程热损失,进精馏塔时原料液温度降为90℃。

3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为

40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分

率)。

5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝

器,泡点回流。

6.操作回流比R=(1.1——2.0)R

min

设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计

算和选型。

2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负

荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精流塔的设计说明书,包括设计结果汇总和对自己

设计的评价。

指导教师:时间

1设计任务

1.1 任务

1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒

精生产现场)

1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。

2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,

产量为40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%

(质量分率)。

5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶

采用全凝器,泡点回流。

6.操作回流比R=(1.1—2.0)

R。

min

1.1.3 设计任务

1.完成该精馏塔工艺设计,包括辅助设备及进出口接

管的计算和选型。

2.画出带控制点的工艺流程示意图,t-x-y相平衡

图,塔板负荷性能图,筛孔布置图以及塔的工艺条

件图。

3.写出该精馏塔的设计说明书,包括设计结果汇总

和对自己设计的评价。

1.2 设计方案论证及确定

1.2.1 生产时日

设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。

1.2.2 选择塔型

精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。筛板塔是降液管塔板中结构最简单的,它与泡罩塔相比较具有下列优点:生产能力大10-15%,板效率提高15%左右,而压降可降低30%左右,另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右,安装容易,也便于清洗检修[2]。因此,本设计采用筛板塔比较合适。

1.2.3精馏方式

由设计要求知,本精馏塔为连续精馏方式。

1.2.4 操作压力

常压操作可减少因加压或减压操作所增加的增、减压设备费用和操作费用,提高经济效益, 在条件允许下常采用常压操作,因此本精馏设计选择在常压下操作。

1.2.5加热方式

在本物系中,水为难挥发液体,选用直接蒸汽加热,可节省再沸器。

1.2.6 工艺流程

原料槽中的原料液先由离心泵送到预热器预热,再进精馏塔,精馏塔塔顶蒸汽经全凝器冷凝,泡点回流,塔顶产品输送进乙醇贮存罐,而再沸器则加热釜液,塔釜产品流入釜液贮存罐。

2 筛板式精馏塔的工艺设计

2.1 精馏塔的工艺计算

2.1.1乙醇和水的汽液平衡组成

相对挥发度 的计算:

塔顶产品浓度为92.4%,因此,可近似看成纯乙醇溶液;同理,塔底浓度为0.02%可近似看成纯水溶液。所以,塔顶温度为乙醇沸点为78.3o C,塔底温度为水的沸点96.0o C

表2-1查[2]

书得:不同温度下乙醇和水的汽液平衡组成如下表所示:

② 通过试差法求出塔顶、塔底、进料处、加料板的乙醇气相组成

17.05

.95903891.017.00.895.95--=

--进料板Y 0190

.05

.95900721.00190.00.895.95--=--进料板X

解得 X 进料板=0.0639 Y 进料板=0.355

③计算塔顶、塔底、进料处相对挥发度

计算公式为:Xa

Ya 1Xa 1Ya )()

(α--=

Y --=

--8943.03

.7815.788943.07815.015.7841.78 Y

=0.8292

8943

.015

.783.788943.07472.015.7841.78--=

--顶X X 顶=0.8094

17.05

.959617.005.95100--=

--顶Y 0190

.05

.9596019.005.95100--=

--底X 塔顶:α顶=1.123 塔底:α底=8.957 加料板:α加料板=8.063

④计算乙醇-水的平均相对挥发度:

乙醇-水的相对挥发度一般应用各温度下的挥发度的几何平均值或者算术平均值表示,

本设计中使用各温度下的几何平均值来表示。 α底顶αα==2.32

2.1.2全塔物料衡算

原料液中:设 A 组分-乙醇; B 组分-水

查[6]书和[7]书得:

乙醇的摩尔质量:M 乙=46.07 kg/kmol 水的摩尔质量: M 水=18.02 kg/kmol

826.002

.18/0759.007.46/9241.007

.46/9241.0=+=

D x

0000782.002.18/98.007.46/02.007

.46/02.0=+=W x

因为入口的原料液是上游为95——96℃的饱和蒸汽冷却至90o C 所得,因此,x F 的液相

组成就是95.5 o C 的气相组成。经查表得,95.5 o C 的饱和蒸汽进料液的摩尔组成为:

x F = 0.17

根据产量和所定工作时间,即日产40吨92.41%乙醇,每天24小时连续正常工作,则

原料处理量:D =3

401040.51(/)24(0.826546.070.1718.02)kmol h ?=??+?

206.000000782

.0826.00000782.017.0=--=--=W D W F X X X X F D h kmol /196.650F =

h kmol D F W /156.14040.51196.650=-=-=

求q 值

由表2-1乙醇-水的平衡数据用内差法求得原料进入塔时{90℃时}的气液相组成为:x A =0.0639 y A

=0.3554

由 F F x = L x A + V y A

和 F = L + V 得 L = 125.26(kmol/h ),

∴q = L /F = 0.6360

则:q 线方程为 y =

11

F x q

x q q ---= -1.747x+0.467 塔顶和塔釜温度的确定

由t-x-y 图可知: 塔顶温度t D =78.30℃,塔底温度t w = 96.00℃,

t=1/2(t D +t w )=87.15℃

回流比和理论塔板的确定

用内差法求得进料板的气液相组成(90℃进料)

进料板位于平衡线上,则:{

355

.00639.0====进料板进料板Y y X x q q

618.10639

.0355.0355

.0826.0min =--=

--=

q

q q D x y y x R

R=1.5*R min =1.5*1.618=2.427

操作方程的确定

精馏段:h kmol D R L /318.9851.40427.2=?=?=

h kmol D R V /828.13851.40)1427.2()1(=?+=+=

提馏段:h kmol qF L L /387.223650.196*636.0318.98=+=+='

h kmol F q V V /247.67650.196*)636.01(828.138)1(=--=--='

、精镏段操作方程:b 292.0708.0826.0*828

.13851.40828.138318.981+=+=+=

+n D n n x Xn x V D x V L y 提镏段操作线方程:

000182.0322.30000782.0*247

.67140.156247.67387.2231-=-='-''=

+n w n n x Xn x V W x V L y 相平衡方程为:

n

n

n n n n n y y y y Xn x x y 32.132.2)1()1(1-=--=?-+=

αααα

板效率及实际塔板数的确定

(1)求αμL

平均温度 t ?=87.15 (0C)下

μA = 0.449mpas μB =0.3281 mpas 则μL =x F μA +(1-x F )μB

=0.17×0.449+(1-0.17)×0.3281 =0.3487mpas

αμL =2.35×0.3487=0.8194 (2)求板效率E T

由αμL =0.8194,由《化工原理(下)》164页图10-20查得 E T =51%,偏低;实际工作E T 有所提高,因此取E T =70%. (3)求实际板数

由 T

T E N N 1

-=

得 精馏段实际板数: N 精 =21/0.70=30(块) 提馏段实际板数: N 提 =7/0.70=10(块) 全塔板数: N=40块

2.2 精馏段物性衡算

2.2.1物料衡算

操作压强 P = 101.325

温度 t m t D =78.300C t F =900C t w =96.000C

∴t m =

015.842

90

30.782=+=+F D t t C 定性组成

(1)塔顶 y 1= X D = 0.826 查平衡曲线得到 x 1=0.810 (2)进料 y f =0.355 x f =0.0639 平均分子量 m M 查附表知: (1)塔顶:M

VDm

=0.826?46.07+(1-0.826)?18.02=41.189(mol g /) M

LDm

=0.810?46.07+(1-0.810)?18.02=40.730(mol g /) (2)进料: M

VFm

=0.355?46.07+(1-0.355)?18.02=27.978(mol g /)M

LFm

=0.0639?46.07+(1-0.0639)?18.02=19.810(mol g /)

平均分子量M

Vm =

2VFm VDm M M +=2978

.27189.41+=34.584(mol g /)

M

Lm =

2LFM LDM M M +=2

810

.19730.40+=30.270(mol g /)

平均密度m ρ 由[6]书和[7]书:1/LM ρ=a A /LA ρ+a B /LB ρ A 为乙醇 B 为水 塔顶:在78.30℃下:LA ρ=744.289(3/m kg ) LB ρ=972.870(3/m kg )

LMD

ρ1

=0.9241/744.289+(1-0.9241)/972.870 则LMD ρ=758.716(3/m kg )

进料:在进料温度90℃下:

LA ρ=729.9(3/m kg ) LB ρ=965.3(3/m kg )

a A =

149.002

.18)0639.01(07.460639.007

.460639.0=?-+??

LMF

ρ1

=

3

.965)

149.01(9.729149.0-+

则LMF ρ=921.0(3/m kg )

即精馏段的平均液相密度LM ρ=(758.716+921.0)/2=839.858(3/m kg ) 平均气相密度VM ρ=

RT

PM VM ==+??)15.27315.84(314.86

.34325.101 1.180(3/m kg ) 液体平均粘度LM μ

液相平均粘度依下式计算:μμi i lm x lg lg ∑=

(1)塔顶: 查[6]书和[7]书中图表求得在78.3℃下:A 是乙醇,B 是水

DA μ=0.504s mpa ?; DB μ=0.367s mpa ?; lg LD μ=0.826?lg(0.504)+0.174?lg(0.367) 则LD μ=0.477 (s mpa ?)

(2)进料: 在90℃下:

FA μ=0.428 s mpa ?; FB μ=0.3165s mpa ?。

lg lF μ=0.0639?lg(0.428)+(1-0.0639)?lg(0.3165) 则lF μ=0.3226 (s mpa ?)

lm μ=(LD μ+lF μ)/2=(0.477+0.3226)=0.3998

液体表面张力m σ

(1)塔顶: 查[6]书和[7]书求得在78.30℃下:

447.18=A σm mN / 974.62=b σm mN /

194.26974.62174.0447.18826.0=?+?=MD σ(m mN /)

(2)进料: 在90℃下:

29.17'=A σm mN / 79.60'

=b σ m mN /

01.5879.60)0639.01(29.170639.0=?-+?=MF σ(m mN /) 则 m σ=(MD σ+MF σ)/2=(26.194+58.01)/2=42.102(m mN /) 2.2.2气液体积流率的计算

由已知条件V =138.828h kmol / L =98.318h kmol / 得

S V =

VM VMvm ρ3600=180.136006

.34828.138??=1.131 (s m /3)

S L =

LM LM LM ρ3600=001.0858

.839360027

.303.101=??(s m /3)

2.3 塔和塔板主要工艺尺寸计算

2.3.1 塔板横截面的布臵计算 塔径D 的计算

参考化工原理下表10-1,取板间距H T =0.45m =L h 0.06m

H T -L h =0.45-0.06=0.39m

两相流动参数计算如下

LV F =

Vs

Ls v

L

ρρ ∴LV F =(

131

.1001.0)(

180.15

8.839)2/1=0.0236

参考化工原理下图10-42筛板的泛点关联得:C 20f =0.083

f C =2.02020??? ??σf C =0963.020102.42083.02

.0=?

??

??

u =f 5

.02

.02020???

?

??-??? ??V

V

L f C ρρρσ=5

.0180.1180.1858.8390963.0??? ??-=2.567(s m /) 本物系不易起泡,取泛点百分率为80%,可求出设计气速

n u '= 0.8*u =f 0.8?2.567=2.053(s m /) m u

Vs

D 838.0053

.214.3131

.144=??==

根据塔设备系列化规格,将D '圆整到D=1m 作为初选塔径,因此 重新校核流速u

)(441.11

1785.0131

.12m u n =??=

实际泛点百分率为

561.0567

.2441.1==f n u u 222

785.01785.04

m D A T =?==

π

塔板详细设计 选用单溢流,弓形降液管,不设进口堰。

因为弓形降液管具有较大容积,又能充分利用塔面积,且单溢流液体流径长,塔板效率高,结构简单,广泛用于直径小于2.2米的塔中。[4] (1)溢流装臵

取堰长w l =0.7D=0.7×1=0.7m, 选择平流溢流堰 出口堰高=w h OW L h h -,已取L h =0.06

W h 0=2.84×310-E 3

/2)(

w

h l L 由5

.2)

(w h

l L =3.544/7.05

.2=8.644

查化工原理下图10-48得:E=1.025

W h 0=2.84×310-×1.025(3.544/0.7)2/3

=0.00859m

=w h OW L h h -=0.06-0.00859=0.0514m 取=w h 0.06是符合的。

∴h L =h W +h OW =0.06+0.00859=0.0686m

修正后h L 对u n 影响不大,顾塔径计算不用修正. (2) 降液管宽度W d 与降液管面积A f 由w l /D=0.7查化工原理下图10-40得:

149

.0=D

W d

088.0=T f A A ∴ d W =0.149×1=0.149m 220691.014

088.0m A f =??

(3) 降液管底隙高度h O

因物系较清洁,不会有脏物堵塞降液管底隙,取液体通过降液管底隙速度

o

u '=0.07m/s.

m u l Ls h o w o 024.007

.070.0001

.0=?='?=

过小,取h o =0.04m (4)塔板布臵 取安定区宽度W S =0.08m, 取边缘区宽度W C =0.04m

()()m W W D x S d 271.008.0149.021

2=+-=--=

m W D

r C 46.004.05.02

=-=-=

??

? ?

?

+-=-r x r x r x A a 1222sin

1802π )(468.046.0271.0sin 46.0180271.046.0271.022

1222m =??? ?

??+-=-π (3)筛板数n 与开孔率? 初取mm d o 6=,

0.3=o

d t

呈正三角形排列 t =3.0*6=18MM 依下式计算塔板上的开孔率?

=

?101.0)

6/18(907.0/907.0220===)(d t Aa Ao =10.1% 则每层塔板上的开孔面积o A 为: 20473.0468.0101.0m A A a o =?==?

n =

4

200d A π=孔1674006.0*14.34

0473.02=? 2.3.2 筛板能校塔流体力学校核 1板压降的校核

(1)干板压降相当的液柱高度 取板厚mm 3=δ,

5.00

.60

.3==

o

d δ

,查化工原理下图10-45得: C o =0.74

911.230473

.0131.100===

A V u s m/s

h c =g 21*????

??????

??L

v o

o

C u ρρ2

=0.051???

? ??????

??L

v o

o C u ρρ2

=

m 0748.0858.839180.174.0911.23051.02

=??

? ????? ??液柱

(2)气体穿过板上液层压降相当的液柱高度h l )/(606.10691

.01785.0131.12

s m A A Vs u f T a =-?=-=

相应的气体动能因子 745.1180.1606.15.05.0=?==ρa a u F 查化工原理下图10-46得:β=0.58

m h h h h L ow w l 0398.00686.058.0)(=?==+=ββ液柱 (3)克服液体表面张力压降相当的液柱高度h σ

h δ=m d L 00341.010

6858.83981.910102.42481.943

3

0=?????=--ρσ ∴气体通过筛板压降相当的液柱高度即板压降: h p =h c +h L +h σ

m h p 1180.000341.00398.00748.0=++=

本设计系常压操作,对板压降本身无特殊要求。 液面落差

对于筛板塔,液面落差很小,且本设计的塔径和液流量均不大,故可忽略液面落差的影响。 1 液沫夹带量的校核 m h h L f 1715.05.2*0686.05.2==?=

Kg Kg h H u e f T

a v /0369.01715.045.0606.110102.42107.5107.52.3362

.36

液=??? ??-??=???? ??-?=---σ汽 0.0369<0.1Kg 液/Kg 气

故在设计负荷下不会发生过量液沫夹带。

3 溢流液泛条件的校核

溢流管中的当量清液高度可由式2

153.0???

? ??=∑o w S f

h l L h 计算液体沿筛板流动时,阻力损失很小,其液面落差?可忽略不计,即 0=?。

已知: 06.0=L h 86m , 0=?,

m h l L h o

w S f 000195.004.07.0001.0153.0153.02

2

=??? ???=???

? ??=∑

故降液管内的当量清液高度:

m h h h H f f L d 2403.01715.0000195.000686.0=+++=++?+=∑

乙醇-水混合液不易起泡,取φ=0.6,则降液管内泡沫层高度:

m H H d

fd 5.0400.06

.02403

.0<==

=

φ

不会产生溢流液泛。

液体在降液管内停留时间的校核

降液管内的停留时间 s L H A s

d f 60.16001

.02403

.00691.0=?=

=

τ>5s

不会产生严重的气泡夹带。

4 漏液点的校核 漏液点的孔速为:

v L L o ow h h C u ρρσ/)13.00056.0(4.4-+=

=018.1/858.839)00341.00686.013.00056.0(74.04.4?-?+? =9.155(m/s ) 筛孔气速o u =

)/(911.230473

.0131.10s m A V S == 塔板稳定系数 ()0.2~5.1612.2155

.9911

.23>===

ow o u u k 表明具有足够的操作弹性。

根据以上各项流体力学验算,可认为设计的塔径及各工艺尺寸合适。

2.4 精馏段塔板负荷性能图

注:以下计算常用3

/23)(

1084.2w h ow l L E h -?=得)(~s ow L h ,E ~~5.2w

h l L 经验计算, 取E=1.0 则3/23

)7.0(0.11084.2h ow

L h ???=-=Ls Ls 8462.07.036001084.23/23=??

? ????-2/3

2.4.1 过量液沫夹带线

依下式计算: v e =σ6107.5-????

? ??-f T

a h H u 3.2

(2-1)

式中:a u =

f T S A A V -=0691

.01785.02

-?S

V =S V 397.1 h

f

=5.2(h w +h ow )=8462.00502.0(5.2+)3

/2s L =3

/21155.2126.0s

L +

令v e =0.1kg 液/kg 气,由σ= 42.1?103-m N /, H T =0.45m

代入式(2-1)得:0.1=3

610102.42107.5--??(3/21155.20.12645.0397.1s

L Vs --)2

.3 整理得: 3

/293.1183.1s

s L V -=

在操作范围中,任取几个s L 值,根据上式算出s V 值列于表2-3中:

2.4.2溢流液泛线

由式]2[T w d

H h H ≤-φ

和 f f ow w d h h h h H ∑++?++= 联立求解。

(1)σh h h h L c p ++=

c h =051.0(

o o c u )2(L v ρρ)=051.0(o o s A C V )2L

v ρρ

=051.0(0473.074.0?s V )2(858

.83918.1)=2

0585.0s V

l h =β(h w +h ow )=3

/23

/24908.00291.0)8462.00502.0(58.0s

s

L L +=+

故 h p =2

0578.0s V +3

/24908.00291.0s L ++00409.0

=2

0578.0s V +3/24908.0s

L + 0.0332

(2)h

d

=0.153(

0h l L w s )2=153.0(04

.07.0?s L )2=2

2.195s L 则: =+)0502.045.0(6.02

0578.0s V +3

/24908.0s L +0.0332+0.0502+0.84623

/2s

L +195.22

s L

整理得: s V 2=3.19-23.13L 3

/2s -3377.16L 2s (2-18)

取若干s L 值依(2-18)式计算s V 值,见表2-4,作出液泛线 (参见2-1图)

表2-4

2.4.3液相上限线

取液体在降液管中停留时间为5秒。 则 s L man =

τ

f

T A H =

5

0691

.045.0?=00622.0(s m /3)

在s

L man

=00622.0s m /3

处作出垂线得液相负荷上限线,可知在图上 它为与气体流量 V S 无关的垂直线。(参见图2-1) 2.4.4漏液线(气相负荷下限线)

由 h L =h w +h ow =0.0502+0.8462s

L 3

/2,

u ow =

o s A V min

.代入下式]2[求漏液点气速式: u ow =4.4C o v L L h h ρρδ/]13.00056.0[-+

o s A V min =4.4?0.74180

.1858.839]00341.08462.00502.013.00056.0[3

/2-++)(s L

将A o =0.0476 代入上式并整理得 =Ao

Vs min

3.2563/2292.78206.6Ls +

V s

min =0.1543

/2292.78026.6s

L +

据上式,取若干个s L 值计算相应s V 值,见表2-5,作漏液线 (参见图2-1)

2.4.5液相下限线 取平顶堰堰上液层高度h

ow

=6mm ,作为液相负荷下限条件,低于此下限,则不能

保证板上液流分布均匀。 则

h ow =2.84?103-E (

w

h

l L )3/2 0.006=2.84?10

3

-?1.01(

7

.03600Ls )3/2

整理得: 4min ,1088.5-?=s L s m /3

在图上4min ,1088.5-?=s L s m /3处作垂线即为液相下限线。(见图2-2) 2.4.6 操作线

P 点为操作点,其坐标为:

s m V Vs h

/131.13600

3==

, s m Ls /001.03= OP 为操作线,OP 与液泛线的交点对应气相负荷为V s,ma ;n ,与漏夜线的交点对应气相负荷为V s,min .可知:

精馏段的操作弹性=

,max ,min

1.70

4.360.39

s s V V =

= 图2-1

2.5 提馏段物性衡算

2.5.1物料衡算

操作压强 P = 101.325

温度 t m t D =78.300C t F =900C t w =96.00C

∴t m =

932

90

962=+=+tf tw 0C 定性组成

(1)塔斧 W x =0.OOO0782查相平衡图得到:W y =0.0014 (2)进料 y f =0.355 x f =0.0639 平均分子量 m M 查附表知: (1)塔斧:M

VWm

=0.0014?46.07+(1-0.0014)?18.02=18.059(mol g /) M

LWm

=0.0001?46.07+(1-0.0001)?18.02=18.02(mol g /) (2)进料: M

VFm

=0.355?46.07+(1-0.355)?18.02=27.99(mol g /)

M

LFm

=0.0639?46.07+(1-0.0639)?18.02=19.81(mol g /)平均分子量

M

Vm =

2VFm VWm M M +=18.0527.99

2+=23.02(mol g /)

M

Lm =

2LFM LWM M M +=18.0219.81

2

+=18.92(mol g /)

平均密度m ρ 由式]3[:1/LM ρ=a A /LA ρ+a B /LB ρ 塔斧:查[6]书和[7]书在96.0℃下:A 乙醇 B 水

LA ρ=722.38(3/m kg ) LB ρ=961.16(3/m kg )

LMW

ρ1

=0.0000782/722.38+(1-0.0000782)/961.16 则

LMW ρ=961.135(3/m kg ) 进料:在进料温度90℃下:

LA ρ=729.9(3/m kg ) LB ρ=965.3(3/m kg )

a A =

149.002

.18)0639.01(07.460639.007

.460639.0=?-+??

LMF

ρ1

=

3

.965)

149.01(9.729149.0-+

则LMF ρ=921.0(3/m kg ) 即提馏段的平均液相密度LM ρ=(961.135+921.0)/2=941.067(3/m kg ) 平均气相密度VM ρ=

RT PM VM =)

(15.27393*314.802

.23*325.101+=0.766(3/m kg ) 液体表面张力m σ

(1)塔釜: 查[6]书和[7]书得在96.0℃下:

σ=16.688m mN / B σ=58.99m mN /

σmv=0.0014*16.688+(1-0.0014)*58.99=58.930(m mN /)

(2) 进料: 查[6]书

[7]书得在90℃下:

29.17'=A σm mN / 79.60'

=b σ m mN /

01.5879.60)0639.01(29.170639.0=?-+?=MF σ(m mN /)

则 m σ=(Mw σ+MF σ)/2=(58.930+58.01)/2=58.47(m mN /) 液体平均粘度LM μ (3)塔釜:

查[6]书和[7]书得在96.0℃下:

WA μ=0.391s mpa ?; WB μ=0.2977s mpa ?; lg LW μ=0.0014?lg(0.391)+0.9986?lg(0.2977) 则LW μ=0.295(s mpa ?)

(4)进料:

查[6]书和[7]书得在90℃下:

FA μ=0.388 s mpa ?; FB μ=0.290s mpa ?。

lg lF μ=0.0639?lg(0.388)+(1-0.0639)?lg(0.290) 则lF μ=0.3226 (s mpa ?)

LM μ= (LW μ+LF μ)/2 = (0.295+0.3226)/2 =0.309(s mpa ?)

2.5.2气液体积流率的计算

由已知条件V =70.11h kmol / L =226.6h kmol / 得

Vs =

VM Mvm V ρ3600==766

.0*360002

.23*387.670.562 (s m /3)

Ls =

LM LM M L ρ3600==067

.941*360092

.18*387.2230.00125(s m /3)

2.6 塔和塔板主要工艺尺寸计算

2.6.1 塔板横截面的布臵计算 塔径D 的计算

参考化工原理下表10-1,取板间距H T =0.3m =L h 0.06m

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

化工原理课程设计精馏塔详细版

广西大学化学化工学院 化工原理课程设计任务书 专业:班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 6.操作回流比R=(1.1——2.0)R 。 min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间

1设计任务 1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

化工原理课程设计说明书(换热器的设计)

中南大学 化工原理课程设计 2010年01月22日 <

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①@ 14 ②物性数据的确定……………………………………………… ③总传热系数的计算 (14) ④传热面积的计算 (16) ⑤工艺结构尺寸的计算 (16) ⑥换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、? 33十、课程设计的收获及感想………………………………………… 十一、附表及设计过程中主要符号说明 (37) 十二、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 # 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 【 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

化工原理课程设计样本

成绩 化工原理课程设计 设计说明书 设计题目:万吨/年苯—甲苯连续精馏装置工艺设计 。 姓名陈端 班级化工07-2班 学号 006 】 完成日期 2009-10-30 指导教师梁伯行

化工原理课程设计任务书 (化工07-1,2,3,4适用) 一、设计说明书题目: — (万吨/年) 苯 - 甲苯连续精馏装置工艺设计说明书 二、设计任务及条件 (1).处理量: (3000+本班学号×300) Kg/h (每年生产时间按7200小时计); (2). 进料热状况参数:( 2班)为, (3). 进料组成: ( 2班) 含苯为25%(质量百分数), (4).塔底产品含苯不大于2%(质量百分数); (5). 塔顶产品中含苯为99%(质量百分数)。 装置加热介质为过热水蒸汽(温度及压力由常识自行指定), 装置冷却介质为25℃的清水或35℃的循环清水。 三、【 四、设计说明书目录(主要内容) 要求 1)前言(说明设计题目设计进程及自认达到的目的), 2)装置工艺流程(附图) 及工艺流程说明 3)装置物料衡算 4)精馏塔工艺操作参数确定 5)适宜回流比下理论塔板数及实际塔板数计算 6)精馏塔主要结构尺寸的确定 7)精馏塔最大负荷截面处T-1型浮阀塔板结构尺寸的确定 8)、 9)装置热衡算初算确定全凝器、再沸器型号及其他换热器型号 10)装置配管及机泵选型 11)适宜回流比经济评价验算(不少于3个回流比比较) 12)精馏塔主要工艺和主要结构尺寸参数设计结果汇总及评价 13)附图 : 装置工艺流程图、装置布置图、精馏塔结构简图(手绘图)。 五、经济指标及参考书目 1)6000元/(平方米塔壁)(塔径~乘, 塔径~乘, 塔径以上乘, 2)4500元/(平方米塔板), 3)# 4)4000元/(平方米传热面积), 5)16元/(吨新鲜水), 8元/(吨循环水), 6)250元/(吨加热水蒸汽), 设备使用年限10年, 7)装置主要固定资产年折旧率为10% , 银行借贷平均年利息%。 8)夏清陈常贵主编《化工原理》(上. 下) 册修订本【M】天津; 天津大学 出版社2005 9)贾绍文《化工原理课程设计》【M】天津; 天津大学出版社2002

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计乙醇水精馏塔设计

化工原理课程设计 题目:乙醇水精馏筛板塔设计 设计时间:2010、12、20-2011、1、6

化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2 图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4)

1概述 (5) 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2设计说明书 (7) 2.1 流程简介 (7) 2.2 工艺参数选择 (8) 3 工艺计算 (9) 3.1物料衡算 (9) 3.2理论塔板数的计算 (10) 3.2.1 查找各体系的汽液相平衡数据 (10) 如表3-1 (10) 3.2.2 q线方程 (9) 3.2.3 平衡线 (11) 3.2.4 回流比 (12) 3.2.5 操作线方程 (12) 3.2.6 理论板数的计算 (12) 3.3 实际塔板数的计算 (13) 3.3.1全塔效率ET (13) 3.3.2 实际板数NE (14) 4塔的结构计算 (15) 4.1混合组分的平均物性参数的计算 (15) 4.1.1平均分子量的计算 (15) 4.1.2 平均密度的计算 (16) 4.2塔高的计算 (17) 4.3塔径的计算 (17) 4.3.1 初步计算塔径 (17) 4.3.2 塔径的圆整 (18) 4.4塔板结构参数的确定 (19) 4.4.1溢流装置的设计 (19) 4.4.2塔盘布置(如图4-4) (20) 4.4.3 筛孔数及排列并计算开孔率 (21) 4.4.4 筛口气速和筛孔数的计算 (21) 5 精馏塔的流体力学性能验算 (22) 5.1 分别核算精馏段、提留段是否能通过流体力学验算 (22) 5.1.1液沫夹带校核 (22) 5.2.2塔板阻力校核 (23) 5.2.3溢流液泛条件的校核 (25) 5.2.4 液体在降液管内停留时间的校核 (26) 5.2.5 漏液限校核 (26) 5.2 分别作精馏段、提留段负荷性能图 (26) 5.3 塔结构数据汇总 (29) 6 塔的总体结构 (30) 7 辅助设备的选择 (31) 7.1塔顶冷凝器的选择 (31) 7.2塔底再沸器的选择 (32) 7.3管道设计与选择 (33)

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

化工原理课程设计模板-换热器

化工原理课程设计 学院: 班级: 姓名: 学号:(长号) 指导教师: 2016年11月

化工原理课程设计 《列管式换热器》设计任务书 班级姓名 一、设计题目:列管式柴油冷却器的工艺设计 二、设计任务及操作条件 (1)设计任务 非标准系列列管式柴油冷却器的工艺设计。 说明:对于非标准系列列管式换热器的设计,因是非标,显然不能按照标准系列列管式换热器在标准系列规格中进行选型设计,而应按照非标准系列列管式换热器的设计程序进行。 (2)操作条件 ①处理能力(班级×0.3)×104t/a柴油 ②设备型式列管式换热器(或立式、或卧式)。 ③操作条件 柴油入口温度:100+班级+学号℃,出口温度:25+班级+学号℃冷却介质:自来水,入口温度:29 ℃,出口温度:49 ℃ 允许压降:不大于105Pa 每年按330天计,每天24h连续运行 已知柴油的有关物性数据:密度ρ1=994kg/m3;定压热比容c p,1=2.22kJ/(kg·℃);热导率λ1=0.14W/(m·℃);黏度μ1=7.15×10-4 Pa·s 三、设计项目(说明书格式) 1、封面、任务书、目录。 2、设计方案简介:对确定的换热器类型进行简要论述。 3、换热器的工艺计算: 1)确定物性数据 2)估算传热面积 3)工艺结构尺寸 4)换热器核算:包括传热面积核算和换热器压降核算 4、换热器的机械设计 5、绘制列管式换热器结构图(CAD)。 6、对本设计进行评述。 7、参考文献 成绩评定指导教师 2016年月日

课程设计内容1设计方案简介 1.1选择换热器类型 1.2冷热流体流动通道的选择 2工艺设计计算 2.1 确定物性数据 2.2估算传热面积 2.3 工艺结构尺寸 2.3.1 管径和管内流速 2.3.2 管程数和传热管数 2.3.3 管子排列方式和分程方法 2.3.4 平均传热温差校正及壳程数 2.3.5 壳体内径 2.3.6 折流板 2.4 换热器核算 2.4.1 传热面积校核 2.4.2 换热器内流体流动阻力 2.5 换热器主要结构尺寸和计算结果 3换热器机械设计 3.1 壳体壁厚 3.2 管板尺寸 3.3 接管尺寸 3.4 换热器封头选择 3.5 膨胀节选择(根据设计可选可不选) 3.6其他部件 4评述 4.1 可靠性评价 4.2 个人感想 5参考文献 附表换热器主要结构尺寸和计算结果 附录换热器结构图 时间安排: 2016-11-1 发任务书,设计指导 6 2016-12-0 完成计算 6 2016-12-1 完成初稿(包括绘图) 6

化工原理课程设计计算示例

化工原理壳程设计计算示例 一浮阀塔工艺设计计算示例 拟设计一生产酒精的板式精馏塔。来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。 设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。 一、塔形选择及操作条件的确定 1.塔形:选用浮阀塔 2.操作条件: 操作压力:常压;其中塔顶:1.013×105Pa 塔底:[1.013×105+N(265~530)Pa] 进料状态:饱和液体进料 加热方式:用直接水蒸气加热 热能利用:拟采用釜残液加热原料液 二、工艺流程

三、有关工艺计算 首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由 2 3971.1/H O kg m ρ=,3735/kg m ρ=乙醇 参考资料(一),查出相应泡点温度及计算平均分子量。 同理求得0.779D x = 0.0002 W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=?+-?=乙醇水 同理求得:39.81/D M kg kmol =,18.1/D M kg kmol = 1. 最小回流比及操作回流比的确定 由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此, min(1)0.7790.516 0.7690.5160.174 D q q q x y R y x --= = =-- 又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得' 0.55q x =,' 0.678q y =,

化工原理课程设计

化工原理课程设计 课程名称: ____填料塔设计____ 设计题目: ____水吸收丙酮____ 院系: ___ 化工学院_____ 学生姓名: _____ 马学成______ 学号: ____ 201007042____ 专业班级: ____化艺1001班____ 指导教师: ______张玉洁______

化工原理课程设计任务书 (一)设计题目:水吸收空气中的丙酮填料塔的工艺设计(二)设计条件 1.生产能力:每小时处理混合气体8000Nm3 /h 2.设备形式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气体中含丙酮6%(体积比) 6.丙酮的回收率为99% 7.每年按330天计,每天按24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa。 (三)设计步骤及要求 1.确定设计方案 (1)流程的选择 (2)初选填料的类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、丙酮在水中的扩散系数(2)气相密度、粘度、表面张力、丙酮在空气中的扩散系数

(3)丙酮在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。4.填料层高度计算 5.填料层压降核算 如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体再分布装置 (3)填料支撑装置 (4)气体的入塔分布. (四)参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版 2、《现代填料塔技术》王树盈中国石化出版 3、《化工原理》夏清天津科学技术出版 (五)计算结果列表(见下页)

化工原理课程设计模板123

目录 第一章前言 (1) 1.1 精馏及精馏流 (1) 1.2 精馏的分类 (2) 1.3精馏操作的特点 (2) 1.3.1沸点升高 (2) 1.3.2物料的工艺特性 (2) 1.3.3节约能源 (2) 1.4 相关符号说明 (4) 1.5相关物性参数 (6) 1.5.1苯和甲苯的物理参数............................... .6 第二章设计任务书. (7) 第三章设计内容 (8) 3.1设计方案的确定及工艺流程的说明 (8) 3.2全塔的物料衡算 (8) 3.2.1原料液及塔顶底产品含苯的摩尔分率 (8) 3.2.2原料液及塔顶底产品的平均摩尔质量 (8) 3.2.3料液及塔顶底产品的摩尔流率 (9) 3.3塔板数的确定 (9) 3.3.1平衡曲线的绘制 (9) 3.4塔的精馏段操作工艺条件及计算 (12) 3.4.1平均压强p m (12) 12 3.4.2平均温度t m..................................... M (13) 3.4.3平均分子量 m 3.4.4 液体的平均粘度和液相平均表面张力 (14) 3.5 精馏塔的塔体工艺尺寸计算 (16)

3.5.1塔径的计算 (16) 3.5.2精馏塔有效高度的计算 (18) 3.6塔板工艺结构尺寸的设计与计算 (18) 3.6.1溢流装置计算 (18) 3.6.2塔板布置 (19) 3.6.3气象通过塔板压降的计算 (21) 3.7塔板负荷性能图 ................................ ..23 3.7.1漏液线 (23) 3.7.2 雾沫夹带线 (23) 3.7.3 液相负荷下限线 (24) 3.7.4 液相负荷上限线 (24) 3.7.5液泛线 (25) 第四章附属设备的选型及计算 (27) 4.1接管——进料管 (27) 4.2法兰 (27) 4.3筒体与封头 (27) 4.4 人孔 (28) 4.5热量衡算 (28) 参考文献 (31) 课程设计心得 (32)

化工原理课程设计模板

化工原理课程设计 1 引言 塔设备是化工﹑石油化工﹑生物化工﹑制药等生产过程中广泛应用的气液传质设备。根据塔内气液接触构件的结构形式,可以分为板式塔和填料塔。 本设计的目的是设计符合设计任务的苯-甲苯分离过程板式精馏塔以及附属设备。通过设计工艺流程草图板式塔主体设备计算及选型、辅助设备的计算及选型等阶段,最终完成各项参数的设计、验算,认为设计符合设计任务要求。并作出相关装配图和工艺流程图。 2 设计方案简介 确定设计方案总的原则是在可能的条件下,尽量采用科学技术上的最新成就,使生产达到技术上最先进、经济上最合理的要求,符合优质、高产、安全、低消耗的原则。为此,必须具体考虑如下几点、满足工艺和操作的要求、满足经济上的要求、保证安全生产。在化工原理课程设计中,对第一个原则作较多的考虑,对第二个原则只作定性的考虑,而对第三个原则只要求作一般的考虑。 本设计按以下几个阶段进行: 1)设计方案确定和说明。根据给定任务,对精馏装置的流程、操作条件、主要设备 型式及其材质的选取等进行论述。 2)蒸馏塔的工艺计算,确定塔高和塔径。 3)塔板设计:计算塔板各主要工艺尺寸,进行流体力学校核计算。接管尺寸、泵等, 并画出塔的操作性能图。 4)管路及附属设备的计算与选型,如再沸器、冷凝器。 5)抄写说明书。 6)绘制精馏装置工艺流程图和精馏塔的设备图。 本设计任务将采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸汽加热,塔底产品经冷

化工原理课程设计终稿

化工原理课程设计终稿 成绩华北科技学院环境工程系《化工原理》课程设计报告设计题目分离乙醇-正丙醇二元物系浮阀式精馏塔的设计学生姓名张帆学号200801034215指导老师孙春峰专业班级化工B082班教师评语设计起止日期:2011年6月14日至2011年6月26日化工原理课程设计化工原理课程设计任务书 1.设计题目:分离乙醇—正丙醇二元物系浮阀式精馏塔的设计 2.原始数据及条件:进料:乙醇含量45%,其余为正丙醇分离要求:塔顶乙醇含量99%;塔底乙醇含量% 生产能力:年处理乙醇-正丙醇混合液25000吨,年开工7200小时操作条件:间接蒸汽加热;塔顶压强(绝压);泡点进料;R=5 3.

设计任务:完成该精馏塔的各工艺设计,包括设备设计及辅助设备选型。画出带控制点的工艺流程图、塔板版面布置图、精馏塔设计条件图。写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。- 2 - 化工原理课程设计目录第一章绪论 4 第二章塔板的工艺设计 5 精馏塔全塔物料衡算5 有关物性数据的计算 5 理论塔板数的计算12 塔径的初步计算14 溢流装置15 塔板分布、浮阀数目与排列1 6 第三章塔板的流体力学计算18 、气相通过浮阀塔板的压降18 、淹塔19 、雾沫夹带20 、塔板负荷性能图20 物沫夹带线20 液泛线21 相负荷上限21 漏液线

22 相负荷下限22 浮阀塔工艺设计计算结果23第四章塔附件的设计25 接管............................................................... ............................................... 25 筒体与封头............................................................... ................................... 27 除沫器............................................................... ........................................... 27 裙座............................................................... ............................................... 27 人孔............................................................... ............................................... 27 第五章塔总体高度的设计............................................................... ........................ 28 塔的顶部空间高度............................................................... ....................... 28 塔的顶部空间高度............................................................... ....................... 28 塔总体高

化工原理课程设计精馏塔详细版模板

重庆邮电大学 化工原理课程设计任务书 专业: 班级: 姓名: 学号: 设计时间: 设计题目: 乙醇——水筛板精馏塔工艺设计 设计条件: 1. 常压操作, P=1 atm( 绝压) 。 2. 原料来至上游的粗馏塔, 为95——96℃的饱和蒸汽。因沿 程热损失, 进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%( 质量分率) 的药用乙醇, 产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%( 质量分 率) 。 5.塔釜采用饱和水蒸汽加热( 加热方式自选) ; 塔顶采

用全凝 器, 泡点回流。 6.操作回流比R=( 1.1——2.0) R min。 设计任务: 1. 完成该精馏塔工艺设计, 包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图, t-x-y相平衡图, 塔板负荷性能图, 筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书, 包括设计结果汇总和对自己 设计的评价。 指导教师: 时间 1设计任务 1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计

1.1.2 设计条件 1.常压操作, P=1 atm( 绝压) 。 2.原料来至上游的粗馏塔, 为95-96℃的饱 和蒸气。因沿程热损失, 进精馏塔时 原料液温度降为90℃。 3.塔顶产品为浓度92.41%( 质量分率) 的药 用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大 于0.03%(质量分率)。 5.塔釜采用饱和水蒸气加热( 加热方式自 选) ; 塔顶采用全凝器, 泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计, 包括辅助设备及 进出口接管的计算和选型。 2.画出带控制点的工艺流程示意图, t-x-y相 平衡图, 塔板负荷性能图, 筛孔布置图 以及塔的工艺条件图。 3.写出该精馏塔的设计说明书, 包括设计结 果汇总和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日

甲醇-水精馏化工原理课程设计

《化工原理课程设计》报告 10000kg/h 甲醇~水 精馏装置设计

一、概述 (3) 1.1 设计依据 (3) 1.2 技术来源 (3) 1.3 设计任务及要求 (3) 二、计算过程 (4) 1 设计方案及设计工艺的确定 (4) 1.1 设计方案 (4) 1.2.设计工艺的确定 (4) 1.3、工艺流程简介 (4) 2. 塔型选择 (5) 3. 操作条件的确定 (5) 3.1 操作压力 (5) 3.2 进料状态 (5) 3.3加热方式的确定 (6) 3.4 热能利用 (6) 4. 有关的工艺计算 (6) 4.1精馏塔的物料衡算 (9) 4.1.1 原料液及塔顶、塔底产品的摩尔分率 (9) 4.1.2 原料液及塔顶、塔底产品的平均摩尔质量 (10) 4.1.3物料衡算 (10) 4.2 塔板数的确定 (10) 4.2.1 理论板层数NT的求取 (10) 4.2.3 热量衡算 (12) 4.3 精馏塔的工艺条件及有关物性数据的计算 (14) 4.3.1 操作压力的计算 (14)

4.3.3 平均摩尔质量的计算 (15) 4.3.4 平均密度的计算 (15) 4.3.5 液相平均表面力的计算 (16) 4.3.6 液体平均粘度的计算 (17) 4.4 精馏塔的塔底工艺尺寸计算 (18) 4.4.1塔径的计算 (18) 4.4.2 精馏塔有效高度的计 (19) 4.5 塔板主要工艺尺寸的计算 (19) 4.5.1溢流装置的计算 (19) 4.5.2 塔板布置 (21) 4.6 筛板的流体力学验算 (24) 4.6.1 塔板压降 (24) 4.6.2 液面落差 (25) 4.6.3 液沫夹带 (26) 4.6.4 漏液 (26) 4.6.5 液泛 (27) 4.7 塔板负荷性能图 (27) 4.7.1、液漏线 (27) 4.7.2、液沫夹带线 (28) 4.7.3、液相负荷下限线 (29) 4.7.4、液相负荷上限线 (29) 4.7.5、液泛线 (29) 5.热量衡算 (32) 5.1塔顶换热器的热量衡算 (33)

《化工原理课程设计》指南(doc 8页)

《化工原理课程设计》指导书 一、课程设计的目的与性质 化工原理课程设计是化工原理课程的一个实践性、总结性和综合性的教学环节,是学生进一步学习、掌握化工原理课程的重要组成部分,也是培养学生综和运用课堂所学知识分析、解决实际问题所必不可少的教学过程。 现代工业要求相关工程技术人员不仅应是一名工艺师,还应当具备按工艺要求进行生产设备和生产线的选型配套及工程设计能力。化工原理课程设计对学生进行初步的工程设计能力的培养和训练,为后续专业课程的学习及进一步培养学生的工程意识、实践意识和创新意识打下基础。 二、课程设计的基本要求 (1)在设计过程中进一步掌握和正确运用所学基本理论和基本知识,了解工程设计的基本内容,掌握设计的程序和方法,培养发现问题、分析问题和解决问题的独立工作能力。 (2)在设计中要体现兼顾技术上的先进性、可行性和经济上的合理性,注意劳动条件和环境保护,树立正确的设计思想,培养严谨、求实和科学的工作作风。 (3)正确查阅文献资料和选用计算公式,准确而迅速地进行过程计算及主要设备的工艺设计计算。 (4)用简洁的文字和清晰的图表表达设计思想和计算结果。 三、设计题目 题目Ⅰ:在生产过程中需将3000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅱ:在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅲ:在生产过程中需将7000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。

相关主题
文本预览
相关文档 最新文档