当前位置:文档之家› 智能温度测量仪的设计(1)

智能温度测量仪的设计(1)

智能温度测量仪的设计(1)
智能温度测量仪的设计(1)

华中科技大学文华学院

智能仪器课程设计

题目:智能型温度测量仪的设计

专业: 09电信3班

姓名:杨鑫

学号: 0901********

指导老师:夏银桥

智能型温度测量仪的设计

一、课程设计的目的

通过本课程设计,使我们掌握智能仪器的一般设计方法,熟悉系统硬件和软件的一般开发环境和开发流程,为设计和开发智能仪器打下坚实的基础。

二、设计任务及要求

设计功能要求:

①.配合电阻温度传感器,实现温度的测量;

②.具有开机自检、自动调零功能;

③.具有克服随机误差的数字滤波功能;

④. 使用220V/50Hz交流电源,设置电源开关、电源指示灯和电源保护功能设计;

主要技术指标:

①.测量温度范围:0~200℃

②.测量误差:≤1%

⑥.显示方式:4位LED数码管显示被测温度值

三、总体方案论证与选择

将集成温度传感器AD590(0℃时为0.2732mA)因温度变化,导致电流变化(0.001mA/℃),经OPA转换为电压变化输入ADC0804,输入电压Vin(0~5V之间)经过A/D转换之后,其值由8751处理,最后将其显示在D4,D3,D2,D1共四个七段显示器。其中包含了时钟显示电路。该温度测量仪可以实现温度的测量,数据的显示、储存以及日历时间的显示。

从功能要求看,系统功能并不复杂,52系列即8051单片机完全可以胜任主机的角色。

从测温范围看,电流型两线制集成温度传感器AD590可满足设计要求。

从测量误差看,普通运放和10位以上的A/D转换器可以满足精度要求。

方案1

集成电路温度传感器→测量放大电路→AD转换器→单片机→DA 转换器→放大器→输出

方案2

热电阻传感器→电压放大电路→AD转换器→单片机→DA 转换器→滤波器→输出

以上两个方案的主要区别是选用的传感器不同,两种传感器都具有测量精度较高的特点。热电阻传感器测温范围更宽,但需要非线性校正;集成电路温度传感器测温范围较窄,但线性很好,不需要非线性校正,软、硬件设计较简单。

四、系统总体原理框图

图2.6 系统总体原理框图

信号输入部分总体设计

五、各模块的方案设计 (1)、选择温度传感器器件

常用的热电传感器有热电阻、热电偶、集成温度传感器等。集成温度传感器实质上是一种半导体集成电路,它是利用晶体管的b-e 结压降的不饱和值VBE 与热力学温度T 和通过发射极电流I 的下述关

B E

V 系实现对温度的检测: ln e BE

s

J kT U a

q

J

式中,k —波尔兹常数; q —电子电荷绝对值。

集成温度传感器按输出信号可分为电压型和电流型两种,其输出电压或电流与绝对温度成线性关系。本次设计用到电流型两线制集成温度传感器AD590(0℃时为0.2732mA )。

AD590的主要特性如下:

(1)流过器件的电流(mA )等于器件所处环境的热力学温度(开尔文)度数,即: Ir/T=1mA/K

式中:Ir —流过器件(AD590)的电流,单位为mA ; T —热力学温度,单位为K 。

(2)AD590的测温范围为-55℃~+150℃。

(3)AD590的电源电压范围为4V~30V。电源电压可在4V~6V范围变化,电流Ir变化1mA,相当于温度变化1K。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。

(4)输出电阻为710M 。

(5)精度高。AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃范围内,非线性误差为±0.3℃。

(2)、选择单片机器件

单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。概括的讲:它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机了解计算机原理与结构的最佳选择。选择器件时应考虑其性能是否满足设计需求,是否具有良好的技术支持和文档支持,是否具有良好的性价比等,其核心是单片机的选型。在大多情况下,理应选择性价比高的单片机及其它器件,但在某些特殊场合,当性能成为决定因素时,应以性能优先原则选择所需的单片机或其它器件。单片机一般分为51系列和52系列,本次设计用到的是52系列即8051单片机。

在微机控制系统中,工业生产过程的被测控参数,如温度、压力、流量、液位、成份、速度等都是连续变化的量,习惯上称为模拟量,而计算机所需要的则是离散的数字量。因此,在过程控制及微机进行数据处理的系统中,必须首先把模拟量变成数字量。这样才能送到微机进行处理和运算,然后显示打印结果,或通过控制电路对现场进行控制。

(3)、放大器的设计

温度传感器的输出电压经过ISO100隔离放大(单增益)后,将输出电压送给测量放大器进行放大,以便放大后的输出电压和A/D转换器的量程相匹配。测量放大器的输入阻抗高,易于与各种信号源相匹配。它的输入失调电压、输入失调电流及输入偏置电流小,时间漂移小,因而稳定性好。它的共模抑制比大,适用于在大的共模电压背景下对微小差模信号的放大。它是一种高性能的放大器,常用于热电偶、应变

电桥、流量计量、生物测量以及其它有较大共模干扰下的本质上是直流缓变的微弱差模信号放大。本设计中选用了AD521,它是美国AD公司生产的第二代单片集成精密仪表放大器。AD521的特性参数如下:

(1) 可调范围为0.1~10000

(2) 温度稳定性为士(3士0.05G) PPM/℃

(3) 失调电压为0.5mV

(4) 差模输入电阻为3×109Ω

(5) 共模输入电压为6×109Ω

(6) 温漂系数为1.5uV/℃

(4)、A/D和D/A转换器设计

通常嵌入式单片机(MCU),由于设计用途的不同,并不是每一种都有A/D转换,即使有的带A/D转换,一般都是8位或10位分辨率,用户在使用这些芯片而又需要较高分辨率的A/D功能时,一般要外接专用的A/D芯片,如MAX110等。这些芯片虽然具有精度好、分辨率高,使用方便等优点,但价格很高,增大了系统成本,为此可使用各种A/D 转换技术构成廉价的A/D。一般A/D转换常用以下四种方式:

1计算式A/D。速度慢,结构简单,价格低。

2双积分式A/D。精度高,速度慢,能消除干扰和电源噪声。

3逐次逼近式A/D。速度高。

4并行转换A/D。速度最快,但成本高。

在与计算机相配接时,逐次逼近式A/D转换器使用最多,常用的有8位、10位、12位、16位等。位数越多,精度越高,价格也越高,应用时根据精度要求选用。

常用的8位A/D转换器有ADC0801、0803、0804等型号,有的还带8位多路开关,如ADC0808、0809等。转换方式可分为两种:

1软件转换方式——用A/D器件加上软件实现A/D转换。其特点是价格较低、速度慢、软件复杂。

2硬件转换方式——直接用A/D器件,其特点是速度快、价格高、硬件简单。

8位A/D

启动转换

P1 单片机

8031

8051

8751

P20

锁存器

V IN

A/D转换器硬件与单片机连接的方式

若A/D转换器中带锁存器,可与单片机直连;若A/D片中不带锁存器,则在单片机与A/D之间要家锁存器(如图2.3中显示),如74LS373等。

至于进入单片机后的信号如何处理,则要根据测试控制要求来决定。控制可用位控方式,也可用D/A转换方式等。

A/D转换与51单片机的接口

(5)、显示器及键盘的设计

单片机应用系统中使用的显示器主要有发光二极管显示器LED (Light Emitting Diode);液晶显示器LCD (Liquid Crystal Display);近年也有配置CRT显示器的。LCD和CRT器可进行图形设计,但接口比较复杂,成本也较高;LED显示器,价格便宜,配置灵活,与单片机接口方便,因此本设计中采用的是LED显示器。在电路中为8279扩展工/0控制的8位共阴极LED动态显示接口电路。由于所有8位段选线皆由一个1/0口控制,因此,在每一瞬间,8位LED会显示相同的字符。要想每位显示不同的字符,就必须采用扫描方法轮流点亮各位LED,记载每一瞬间只使某一位显示字符。在此瞬间,段选控制T/0口输出相

应字符段选码(字型码),而位选则控制工/0口在该显示为送入选通电平(因为LED为共阴,故应送低电平),以保证该位显示相应字符。如此轮流,使每位分时显示该位应显示字符。逐位轮流点亮各个LED,每一位停留lms,在10-20ms之内再一次点亮,重复不止,这样,利用人的视觉暂留好像六位LED同时点亮了。在此仪器的设计中,LED显示器的显示方式采用的是动态显示方式。

在本设计中采用8279可编程键盘、显示器接口芯片。8279芯片是一种专用于键盘、显示器的接口器件,它能对显示器自动扫描,能识别键盘上闭合键的键号,提高CPU的工作效率。8279包括键盘输入和输出两部分。键盘部分提供扫描工作方式,可以和具有64个按键和传感器的阵列相连。能自动消除抖动以及对n键同时按下采取保护。显示部分为发光二极管、荧光管及其它显示器提供了按扫描方式工作的显示接口,它为显示器提供多路复用信号可显示多达16位的字符或数字由于显示所需电流比8279输出的电流要大,所以在显示器前端用7407驱动器对8279的输出电流进行放大。8279的中断请求信号线IRQ 经反向驱动器74F04接至8031外部中断,这样,可通过中断方式对按键进行处理。

六、附录

(1)、总电原理图和电路的PCB图。

162738495

J 1D B 9

V C C T X D R X D

D 4

R 111K

C 1830p F

C 1930p F C 174.7u F

R 2710K

R S T

V C C

V C C

R 1i n

13

R 2i n

8

T 1i n 11T 2i n 10

V +

2

V -

6

V C C

16

R 1o u t

12

R 2o u t

9

T 1o u t 14T 2o u t 7C 1+1

C 1 -3C 2+

4C 2 -5

G N D

15

R S 232R S 232T T L T T L I C 1M A X 232

C 510u F

C 2104

C 4104C 1104

C 3104

V C C 123

J 4

电源输入

V C C

C 6100u F /16V C 13104C 16104C 15104C 1422u F /16V E X _L V

D /P 4.6/R S T 231

X 119X 2

18

R E S E T /P 4.7

9P 3.7/R D

17

P 3.6/W R 16P 3.2/I N T 012P 3.3/I N T 113P 3.4/T 0/C L K 014P 3.5/T 1/C L K 115P 1.0/A D C 0/C L C K 21P 1.1/A D C 12P 1.2/A D C 2/E C I /R X D 23P 1.3/A D C 3/C C P 0/T X D 24P 1.4/A D C 4/C C P 1/S S 5P 1.5/A D C 5/M O S I 6P 1.6/A D C 6/M I S O 7P 1.7/A D C 7/S C L K

8P 0.039P 0.138P 0.237P 0.336P 0.435P 0.534P 0.633P 0.732P 2.021P 2.122P 2.223P 2.324P 2.425P 2.526P 2.627P 2.728N A /P 4.4

29A L E /P 4.530P 3.1/T X D 11P 3.0/R X D 10I C 7S T C 12C 5A 16S 2或S T C 89C 52

X 111.0592T X D R X D D 1R 11k

W R I N T 1V C C I N T 0P 20P 21P 22P 23P 24P 25P 26P 27

R S T

R 231k

V C C

T 0T 1

123

4

56S 1K E Y 3V C C +15V

C O M

23V C G N D G N D J 5U S B 连接器

+15V

C 1147u F /25V C 12104R D

A 1

B 2C

3

E 14

E 25E 3

6

Y 015Y 114Y 213Y 312Y 411Y 510Y 69Y 7

7

I C 3

74H C 138

C S 1C S 2C S 3C S 4C S 5C S 6

P 25

P 26P 27V C C

片选译码器

O C 1

C 111

D 22D 33D 44D 55D 66D 77D 88D 91Q 192Q 183Q 174Q 165Q 156Q 147Q 138Q 12I C 9

74H C 573

12345678910

J 15P 3A D 0A D 1A D 2A D 3A D 4A D 5A D 6A D 7

C S 4L E

D 段锁存器

O C 1C 111D 22D 33D 44D 55D 66D 77D 88D 9

1Q 192Q 183Q 174Q 165Q 156Q 147Q 138Q

12I C 11

74H C 573

A D 0A D 1A D 2A D 3A D 4A D 5A D 6A D 7

C S 3L E

D 位锁存器

a b c d e f g d p

l e d 1l e d 2l e d 3l e d 4l e d 5l e d 6l e d 7l e d 88

9

10I C 4C 74H C 02

456

I C 4B 74H C 02

W R L E 1

L E 2L E 1L E 2

I N 11I N 22I N 33I N 44I N 55I N 66I N 77I N 88C O M 9D I O D E 10O U T 811O U T 712O U T 613O U T 514O U T 415O U T 316O U T 217O U T 118I C 12U L N 2803

V C C

e 1d 2d p

3c 4g 5b 7

G 38G 29f 10a

11G 112

G 4

6

L E D 14L E D -S M

e 1d 2d p

3

c 4g 5b 7G 3

8

G 29

f 1

0a 11

G 112

G 4

6L E D 24L E D -S M

R 37100R 36100R 35100R 34100R 33100R 32100R 30100R 29100A D 0A D 1A D 2A D 3A D 4A D 5A D 6A D 7

P 10P 11P 12P 13P 14P 15P 16P 17T X D R X D

1

23456J 6C O N 3V C C

P 10

P 11R 121k R 9

1k V C C

T V S 1P 6K E 6.8A

R 2330A L E 单片机

R S 232接口

电源输入

程序下载接口

12345678J 20C O N 8

A D 0A D 112345678J 23C O N 8

A D 2A D 3A D 4A D 5A D 6A D 7

C S 0C 20104C 8104C 9104

3261

57

4I C 5741

R 3

10K

R 4

100

R 5

10K

R 6510

R P 110K R 7510V C C

V C C C ?

0.2u

R 8

30K R 1030K

R 1810K R 1310K

R 14

10K R 15510+5V

R 16

510I N P O R T

1

2

3

I C 4D A 74H C 02

12

3U 1A 74081

2

3U 2A 74136

3

21

4

11

I C 2A

L M 324A

3214

11

I C 4A L M 324A

V C C

B I N

B I N A &B B I N A Y B

J D Q ?

J D Q -T 71

T 0T ?9012

D ?

D 1

R 171K

10K

R 18

V C C P 12

A &

B A Y B T 1

(2)、流程图及源程序:

#include "reg51.h"

#include "intrins.h"

#define Disdata P1

#define discan P3

#define uchar unsigned char

#define uint unsigned int

sbit DQ=P3^7;

sbit DIN=P1^7;

uint h;

uchar code ditab[16]=

{0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x08,0x08, 0x09,0x09};

//

uchar code

dis_7[12]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0xff,0xbf}; uchar code scan_con[4]={0xfe,0xfd,0xfb,0xf7};

uchar data temp_data[2]={0x00,0x00};

uchar data display[5]={0x00,0x00,0x00,0x00,0x00};

void delay(uint t)

{

for(;t>0;t--);

}

scan()

{

char k;

for(k=0;k<4;k++)

{

Disdata=dis_7[display[k]];

if(k==1){DIN=0;}

discan=scan_con[k];delay(90);discan=0xff;

}

}

ow_reset(void)

{

char presence=1;

while(presence)

{

while(presence)

{

DQ=1;_nop_();_nop_();

DQ=0;

delay(50);

DQ=1;

delay(6);

presence=DQ;

}

delay(45);

presence = ~DQ;

}

DQ=1;

}

void write_byte(uchar val)

{

uchar i;

for (i=8; i>0; i--)

{

DQ=1;_nop_();_nop_();

DQ = 0;_nop_();_nop_();_nop_();_nop_();_nop_(); DQ = val&0x01;

delay(6);

val=val/2;

}

DQ = 1;

delay(1);

}

uchar read_byte(void)

{

uchar i;

uchar value = 0;

for (i=8;i>0;i--)

{

DQ=1;_nop_();_nop_();

value>>=1;

DQ = 0;

_nop_();_nop_();_nop_();_nop_();

DQ = 1;_nop_();_nop_();_nop_();_nop_();

if(DQ)value|=0x80;

delay(6);

}

DQ=1;

return(value);

}

read_temp()

{

ow_reset();

write_byte(0xCC);

write_byte(0xBE);

temp_data[0]=read_byte();

temp_data[1]=read_byte();

ow_reset();

write_byte(0xCC);

write_byte(0x44);

}

work_temp()

{

uchar n=0;

if(temp_data[1]>127)

{temp_data[1]=(256-temp_data[1]);temp_data[0]=(256-temp_data[0]);n=1;} display[4]=temp_data[0]&0x0f;display[0]=ditab[display[4]];

display[4]=((temp_data[0]&0xf0)>>4)|((temp_data[1]&0x0f)<<4);//

display[3]=display[4]/100;

display[1]=display[4]%100;

display[2]=display[1]/10;

display[1]=display[1]%10;

if(!display[3]){display[3]=0x0A;if(!display[2]){display[2]=0x0A;}}

if(n){display[3]=0x0B;}

}

main()

{

Disdata=0xff;

discan=0xff;

for(h=0;h<4;h++){display[h]=8;}

ow_reset();

write_byte(0xCC);

write_byte(0x44);

for(h=0;h<500;h++)

{scan();}

while(1)

{

read_temp();

work_temp();

for(h=0;h<500;h++)

{scan();}

}

}

七、心得体会

通过课程设计意识到要从现在开始养成那种细心的好习惯,这对以后的设计非常有帮助。再者通过这次课程设计锻炼了自己的查资料的能力,也体会到了成功带来了的喜悦。

再次反过来思考这个设计,整个设计简单明了,可以根据此设计应用到实际中去,但是与实际完整的产品相比,仍有区别,距离还较远,有些功能还不完善,需要进一步改进和提高。

八、参考文献

[1] 王迎旭;单片机原理与应用[J].北京.机械工业出版社.2004

[2] 徐科军;自动检测和仪表中的共性技术[J].清华大学出版.2002

[3] 松井邦彦;传感器实用电路设计与制作[J].科学出版社.1999

[4] 张友德;单片微型机原理、应用与实验[M].复旦大学出版

社.2001

[5] 胡汉才;单片机原理及系统设计[M].请华大学出版社.1997

[6] 吴金戌;8051单片机实践与应用[M].清华大学出版社.2001

[7] 刘国荣;单片微型计算机技术[J]. 机械工业出版社.200

智能温度检测仪

智能仪器原理及应用题目一:智能温度检测仪 学生姓名 专业 学号 同组同学 指导教师 学院 二〇一六年十一月九号 2016-2017学年第一学期成绩:

一、设计要求 1.1、题目任务要求 选用温度传感器PT100,恒流源电路、放大电路、A/D转换电路和数码管,采用MCS-51 系列单片机实现温度信号的采集、处理和显示。 1.2、设计具体功能要求 1、三线制PT100及恒流源驱动电路设计; 2、放大和比较电路设计,实现-10°C~+100°C转换为0~+5V电压输 出; 3、ADC芯片的选取及和单片机接口设计; 4、多位数码管动态显示设计; 5、编写数据处理程序和标度变换程序。 二、设计题目介绍及分析 温度是自然界中和人类打交道最多的物理参数之一,无论是在生产实验场所,还是在居住休闲场所,温度的采集或控制都十分频繁和重要,而且,网络化远程采集温度并报警是现代科技发展的一个必然趋势。由于温度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温传感器就会相应产生。传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。 由于PT100热电阻的温度与阻值变化关系,人们便利用它的这一特性,发明并生产了PT100热电阻温度传感器。它是集温度湿度采集于一体的智能传感器。温度的采集范围可以在-200℃~+200℃,湿度采集范围是0%~100%。pt100温度传感器是一种将温度变量转换为可传送的标准化输出信号的仪表。主要用于工业过程温度参数的测量和控制。带传感器的变送器通常由两部分组成:传感器和信号转换器。传感器主要是热电偶或热电阻;信号转换器主要由测量单元、信号处理和转换单元组成(由于工业用热电阻和热电偶分度表是标准化的,因此信号转换器作为独立产品时也称为变送器),有些变送器增加了显示单元,有些还具有现场总线功能。此次我们利用MCS-51系列单片机结合温度传感器技术设计这一智能温度检测仪。实现-10°C~+100°C温度范围内的温度检测。

基于单片机的温湿度测量仪设计

单片机课程设计报告 题目:基于单片机的温湿度仪表设计 班级:智能科学与技术1201班

学生姓名:文波 学号:120407130 指导教师:朱建光 成绩: 工业大学 摘要 温度和湿度是两个最基本的环境参数,人们生活与温湿度息息相关。在日常生活、工业、医学、环境保护、化工、石油等领域,经常需要对环境温度和湿度进行测量和控制。准确测量温湿度在生物制药食品加工、造纸等行业更是至关重要。因此,研究温湿度的测量方法和装置具有重要的意义。 随着科技的不断发展,单片机技术已经普及到我们的工作、生活、科研等各个领域。已经成为一种比较成熟的技术。由于单片机集成度高、功能强、可靠性高、体积小、功耗低、使用方便等优点,目前已经渗透到我们工作和生活的方方面面。 本设计STC89C52为主要控制器件,以DHT11为数字温度传感器的新型数字温湿度计。本设计主要包括硬件电路的设计和系统软件的设计。

目录 第一章目标及主要任务 (3) 第二章硬件设计 (3) 2.1系统设计方案 (3) 2.2 STC89C52介绍 (4) 2.3 DHT11数字传感器介绍 (5) 2.4电路设计 (7) 第三章软件设计 (11) 3.1 系统软件主程序流程 (11) 3.2 DHT11数据采集流程 (13) 第四章结论与调试 (13)

附录(程序清单) (14) 参考文献 (22) 第一章目标及主要任务 在本次课程设计中,为实现对温湿度的检测与显示,主要利用以STC89C52为核心构架硬件电路,DHT11温湿度传感器采集环境温度及湿度信息(温度检测围:0℃至+50℃。测量精度:2℃.;湿度检测围:20%-90%RH检测精度:5%RH),数码管直接显示温度和湿度(显示方式:温度:两位显示;湿度:两位显示);同时利用C语言编程实现温湿度信息的显示功能。 扩展功能:可设置温湿度报警值,温湿度超过设置的响应报警值,会发出报警信号。 第二章硬件设计 2.1 系统设计方案

智能型温度测量控制系统

河北农业大学 毕业论文﹙设计﹚开题报告 题目智能型温度测量控制系统-开题报告 学生姓名学号 所在院(系)信息工程学院 专业班级通信工程2010140 指导教师 2014年02月23日

题目基于单片机的温度控制系统设计 一、选题的目的及研究意义 温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用,是工业对象中主要的被控参数之一。在单片机温度测量系统中的关键是测量温度、控制温度和保持温度。在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。提高查阅资料、语言表达能力和理论联系实际的技能。 当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。应用领域非常的广泛,①冷冻库,粮仓,储罐,电信机房,电力机房,电缆线槽等测温和控制领域。 ②轴瓦,缸体,纺机,空调等狭小空间工业设备测温和控制。③汽车空调,冰箱,冷柜以及中低温干燥箱等。④太阳能供热,制冷管道热量计量,中央空调分户热能计量等。温度是一种最基本的环

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

手持温度测量仪设计方案

手持温度测量仪设计方案 第1章绪论 1.1 温度测量的背景和现代技术 温度测量在物理实验、医疗卫生、食品生产等领域,尤其在热学实验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中,有特别重要的意义。现在所使用的温度计通常都是精度为1℃和0.1℃的水银、煤油或酒精温度计。这些温度计的刻度间隔通常都很密,不容易准确分辨,读数困难,而且它们的热容量还比较大,达到热平衡所需的时间较长,因此很难读准,并且使用非常不方便。DS18B20与传统的温度传感器相比,能够直接读出被测温度。而在传统的远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外现场的电磁环境都非常恶劣,各种干扰信号较强,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,数字温度传感器DS18B20是一款性能优异的数字式传感器,具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网、能较好地解决传统测温装置普遍存在的携带不便、易损坏、易受干扰等不足,可广泛的应用于工业控制中的各种温度监控。 1.2 研究方法 本论文是用单片机的相关知识设计一个实用的手持式温度控制系统。首先,我们查阅了大量的关于温度测量的资料,从而确定了用哪个单片机芯片和用哪类温度传感器,以及用何种液晶显示器。通过研究比较,我们选择89C51芯片,DS18B20温度传感器,以及1602液晶显示器和PQ05RF11的+5V稳压集成电路。为了达到预期的成果,我们首先熟悉和了解了DS18B20的工作原理和于单片机的接口编程,其次我们也熟悉和了解了89C51单片机和1602液晶显示器的工作原理和它的显示编程,并进行硬件连线,并进行调试。

智能仪器 温度测量..

《智能仪器》实验报告 实验项目温度测量 实验时间 同组同学 班级11111 学号1111111 姓名11111 2014年4月

实验二温度测量 一、实验目的 了解常用的集成温度传感器(AD590)基本原理、性能;掌握测温方法以及数据采集和线性标度变换程序的编程方法。 二、实验仪器 智能调节仪、PT100、AD590、温度源、温度传感器模块,传感器实验箱(一);“SMP-201 8051模块”、“SMP-204 块块模块”、“SMP-101 8位A/D模块”、“SMP-401 块块块示模块”。三、实验原理 集成温度传感器AD590是把温敏器件、偏置电路、放大电路及线性化电路集成在同一芯片上的温度传感器。其特点是使用方便、外围电路简单、性能稳定可靠;不足的是测温范围较小、使用环境有一定的限制。AD590能直接给出正比于绝对温度的理想线性输出,在一定温度下,相当于一个恒流源,一般用于-50℃-+150℃之间温度测量。温敏晶体管的集电极电流恒定时,晶体管的基极-发射极电压与温度成线性关系。为克服温敏晶体管U b电压生产时的离散性、均采用了特殊的差分电路。本实验仪采用电流输出型集成温度传感器AD590,在一定温度下,相当于一个恒流源。因此不易受接触电阻、引线电阻、电压噪声的干扰,具有很好的线性特性。AD590的灵敏度(标定系数)为1 A/K,只需要一种+4V~+30V电源(本实验仪用+5V),即可实现温度到电流的线性变换,然后在终端使用一只取样电阻(本实验中为传感器调理电路单元中R2=100Ω)即可实现电流到电压的转换,使用十分方便。电流输出型比电压输出型的测量精度更高。 在实验一的基础上进行电压测量、标定、线性变换,最后显示出对应温度。 图2-1 温度传感器模块原理图 四、实验内容与步骤 1.参考“附录实验PT100温度控制实验”,将温度控制在500C,在另一个温度传感器插孔中插入集成温度传感器AD590。 2.将±15V直流稳压电源接至实验箱(一)上,温度传感器实验模块的输出Uo2接实验台

最新智能型温度监测仪课程设计

开封大学 《智能仪器原理及应用》 课程设计 学生姓名:王明霞 学号:2011061745 学院:电子电气工程学院 专业:应用电子技术 班级:(11)应电班 题目:智能型温度测量仪 指导教师:董卫军 职称:教师 截止日期:2013.11.25~2013.12.1

2013 年11月27 日 智能型温度测量仪 一、设计目的 智能仪器是一种典型的微处理器应用系统,它是计算机技术、现代测量技术和大规模集成电路相结合的产物,无论是在测量速度、精确度、灵敏度、自动化程度,还是在性价比等方面,都是传统仪器不可比拟的。通过对本次的课程设计来使同学们掌握如何去选择元器件来适应不同的电路的设计,从而对更多的元件功能及性能有更多的了解。更重要的是培养学生基于单片机应用系统的分析和设计能力和专业知识综合应用能力,同时提高学生分析问题和解决问题的能力以及实际动手能力,为日后工作奠定良好的基础。 二、设计任务和设计要求 ⑴.功能要求 ①.配合温度传感器,实现温度的测量; ②.具有开机自检、自动调零功能; ③.具有克服随机误差的数字滤波功能; ④. 使用220V/50Hz交流电源,设置电源开关、电源指示灯和电源保护功能。 ⑵.主要技术指标 ①.测量温度范围:0~150℃ ②.测量误差:≤1% ⑥.显示方式:4位LED数码管显示被测温度值。 三、总体方案论证与选择 方案一:AD590传感器→转换器→ADC0809→AT89C51→四位数码管显示 方案二:热电阻温度传感器→转换器→ADC0809→AT89C51→四位数码管显示方案三:DS18B20→转换器→ADC0809→AT89C51→四位数码管显示这三种方案的不同之处主要是传感器的不同:方案一中的传感器是一种已经IC化的温度感测器,它会将温度转换为电流。它的测温范围为-55℃~+150℃,

智能型数字显示温度控制器使用说明书

XMT-2000 智能型数字显示温度控制器使用说明书 此产品使用前,请仔细阅读说明书,以便正确使用,并妥善保存,以便随时参考。 操作注意 为防止触电或仪表失效,所有接线工作完成后方能接通电源,严禁触及仪表内部和改动仪表。 断电后方可清洗仪表,清除显示器上污渍请用软布或棉纸。显示器易被划伤,禁止用硬物擦拭或触及。 禁止用螺丝刀或书写笔等硬物体操作面板按键,否则会损坏或划伤按键。 1.产品确认 本产品适用于注塑、挤出、吹瓶、食品、包装、印刷、恒温干澡、金属热处理等设备的温度控制。本产品的PID参数可以自动整定,是一种智能化的仪表,使用十分方便,是指针式电子调节器、模拟式数显温控仪的最佳更新换代产品。本产品符合Q/SQG01-1999智能型数字显示调节仪标准的要求。 请参照下列代码表确认送达产品是否和您选定的型号完全一致。 XMT□-□□□□-□ ①②③④⑤⑥ ①板尺寸(mm)3:时间比例(加热) 5:下限偏差报警 省略:80×160(横式) 4:两位PID作用(继电器输出) 6:上下限偏差报警 A:96×96 5:驱动固态继电器的PID调节⑤输入代码 D:72×72 6:移相触发可控硅PID调节 1:热电偶 E:96×48(竖式) 7:过零触发可控硅PID调节 2:热电阻 F:96×48(横式) 9:电流或电压信号的连续PID调节 W:自由信号 G:48×48 ④报警输出⑥馈电变送输出 ②显示方式 0:无报警 V12:隔离12V电压输出 6:双排4位显示 1:上限绝对值报警 V24:隔离24V电压输出 ③控制类型 2:下限绝对值报警 GI4:隔离4-20mA变送输出 0:位式控制3:上下限绝对值报警 2:三位式控制 4:上限偏差报警 2.安装 2.1 注意事项(5)推紧安装支架,使仪表与盘面结合牢固。 (1)仪表安装于以下环境 (2)大气压力:86~106kPa。2.3 尺寸 环境温度:0~50℃。 相对湿度:45~85%RH。 (3)安装时应注意以下情况 H h 环境温度的急剧变化可能引起的结露。 腐蚀性、易燃气体。 直接震动或冲击主体结构。 B l 水、油、化学品、烟雾或蒸汽污染。 b b’ 过多的灰尘、盐份或金属粉末。 空调直吹。阳光的直射。 热辐射积聚之处。 h’ 2.2 安装过程(1)按照盘面开孔尺寸在盘面上打出用来安装单位:mm 仪表的矩形方孔。型号 H×B h×b×1 h’×b’ (2)多个仪表安装时,左右两孔间的距离应大 XTA 96×96 92×92×70 (92+1)×(92+1) 于25mm;上下两孔间的距离应大于30mm。 XTD 72×72 68×68×70 (68+1)×(68+1) (3)将仪表嵌入盘面开孔内。 XTE 96×48 92×44×70 (92+1)×(44+1) (4)在仪表安装槽内插入安装支架 XTG 48×48 44×44×70 (44+1)×(44+1) 3.接线 3.1接线注意 (1)热电偶输入,应使用对应的补偿导线。 (2)热电阻输入,应使用3根低电阻且长度、规格一致的导线。 (3)输入信号线应远离仪表电源线,动力电源线和负荷线,以避免引入电磁干扰。 3.2接线端子 4.面板布置 ①测量值(PV)显示器(红) ?显示测量值。 ?根据仪表状态显示各类提示符。 ②给定值(SV)显示器(绿) ?显示给定值。 ?根据仪表状态显示各类参数。 ③指示灯 ?控制输出灯(OUT)(绿)工作输出时亮。 ?自整定指示灯(AT)(绿) 工作输出时闪烁。 ?报警输出灯1(ALM1)(红)工作输出时亮。 ?报警输出灯2(ALM2)(红)工作输出时亮。 ④SET功能键 ?参数的调出、参数的修改确认。 ⑤移位键 ?根据需要选择参数位,控制输出的ON/OFF。 ⑥▲、▼数字调整键 ?用于调整 数字,启动/退出自整定。

温度测控仪设计-毕业设计

温度测控仪设计 学生:XXX 指导教师:XXX 容摘要:本文主要介绍了智能温度测量仪的设计,包括硬件和软件的设计。先对该测量仪进行概括性介绍,然后介绍该测量仪在硬件设计上的主要器件:“Pt100热电阻”、AT89C51单片机和LCD显示器以及描述测量仪的总体结构原理。在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D 转换器进行温度信号的采集。总体来说,该设计是切实可行的。 关键词:温度 Pt100热电阻 AT89C51单片机 LCD显示器

Design of and control instrument Abstract: This paper describes the design of the intelligent temperature measuring instrument, including hardware and software design. Be the first general description of the measuring instrument, and then describes the hardware design of the measuring instrument's main device: "Pt100 thermal resistance", AT89C51 microcontroller and LCD display, and describe the principle of measuring the overall structure. In this design, as is the PT100 platinum resistance temperature sensor, temperature measurement using constant current method, through the microcontroller to control, amplifier, A/D converter for temperature signal acquisition. Overall, the design is feasible. Keywords:temperature Pt100 thermal resistance AT89C51 microcontroller LCD monitor .

智能温度检测仪

智能仪器原理及应用 题目一:智能温度检测仪 学生姓名 _____________________________ 专业 _________________________ 学号 _________________________ 同组同学 _____________________________ 指导教师 _____________________________ 学院 _________________________ 二O—六年十一月九号 2016-2017学年第一学期成绩: 一、设计要求 仁仁题目任务要求 选用温度传感器PT100,恒流源电路、放大电路、A/D转换电路与数码管,采用MCS-51系列单片机实现温度信号得采集、处理与显示。 仁2、设计具体功能要求 1、三线制PT100及恒流源驰动电路设计; 2、放大与比较电路设计,实现T0° C>100° C转换为0~+5V电压输出; 3、ADC芯片得选取及与单片机接口设计; 4、多位数码管动态显示设计; 5、编写数据处理程序与标度变换程序。

二、设计题目介绍及分析 温度就是自然界中与人类打交道最多得物理参数之一,无论就是在生产实验场所,还就是在居住休闲场所,温度得采集或控制都十分频繁与重要,而且,网络化远程釆集温度并报警就是现代科技发展得一个必然趋势。由于温度不管就是从物理量本身还就是在实际人们得生活中都有着密切得关系,所以温传感器就会相应产生。传感器主要用于测量与控制系统,它得性能好坏直接影响系统得性能。温度传感器从使用得角度大致可分为接触式与非接触式两大类,前者就是让温度传感器直接与待测物体接触,而后者就是使温度传感器与待测物体离开一定得距离,检测从待测物体放射出得红外线,达到测温得目得。 由于PT100热电阻得温度与阻值变化关系,人们便利用它得这一特性,发明并生产了PT100热电阻温度传感器。它就是集温度湿度采集于一体得智能传感器。温度得采集范围可以在-200°C?+200°C,湿度采集范围就是0%?100%o pt100温度传感器就是一种将温度变量转换为可传送得标准化输出信号得仪表。主要用于工业过程温度参数得测量与控制。带传感器得变送器通常由两部分组成:传感器与信号转换器。传感器主要就是热电偶或热电阻;信号转换器主要由测量单元、信号处理与转换单元组成(由于工业用热电阻与热电偶分度表就是标准化得,因此信号转换器作为独立产品时也称为变送器),有些变送器增加了显示单元,有些还具有现场总线功能。此次我们利用MCS-51系列单片机结合温度传感器技术设计这一智能温度检测仪。实现T0° C>100° C温度范围内得温度检测。 三、设计方案论证 智能温度检测仪得设计,包括硬件与软件得设计。具体包括:三线制PT100 及恒流源驱动电路设计、放大与比较电路设计,实现T0° C~+100° C转换为0~+5V电压输出、ADC芯片得选取及与单片机接口设计、多位数码管动态显示设计、编写驱动程序、编写 数据处理程序与标度变换程序。在本设计中,就是以电阻PT100作为温度传感器,釆用恒流测温得方法,通过单片机进行控制,用放大器、A/D转换器进行温度信号得采集。 本设计系统主要包括温度信号采集单元、单片机数据处理单元、温度显示单元。系统得总结构框图如图3-1所示。 MCS-51单片机

温度测量数显控制仪的设计实现

电子电路实验3 综合设计总结报告 题目:温度测量数显控制仪的设计实现 班级: 学号: : 成绩: 日期:

一、摘要 本次实验制作一个温度控制的数字显示控制仪器,主要分为温度采集、电阻/电压转换器、A/D转换器、控制电路和显示电路这五个模块。温度采集部分用pt100铂电阻来实现,当温度变化时,铂电阻的阻值发生变化,铂电阻的每一个阻值都与温度一一对应,电阻/电压转换器将铂电阻的阻值转化成容易测量的电压值,在京A/D转化器将模拟电压值转换为数字电压值,最终由数码管显示。当温度超过设定值之后,系统自动启动报警装置,蜂鸣器响起,发光二极管常亮,小风扇随之转动以达到降温效果。本实验成果能够满足对温度测量精度要求较高的场所的需求,其测量围为-50℃~200℃,精度允许误差为±1℃,精度较高。

二、设计任务 2.1 设计选题 选题十五温度测量数显控制仪的设计实现 2.2 设计任务要求 设计一个可在一定温度围进行温度测量与控制的温度测量数显控制仪。 该仪器测量温度的围为-50~200℃,能够对温度值进行数字显示(可显 示温度测量值和设定温度值两种),其测量误差为±1℃。 当超过某一设定温度上限值时(如30℃),能声光报警,并启动风扇。三、方案设计与论证 电路可由温度采集(传感器)、电阻/电压转换器、A/D转换器、控制电路和显示电路组成。温度由pt100铂电阻采集,经过一个比例放大器将电阻值转换为电压值,为了增加带载能力同时又不改变电压值,在其后增加一个电压跟随器。A/D转换器集成在芯片ICL7107中,输出的数字信号直接显示在数码管上。控制电路用比较器与电压跟随器输出相连,当电压超过一定值之后控制电路工作。系统方框图见图1。 图1 系统方框图 此方案A/D转换器使用ICL7107,部设有参考电压、七段译码器、独立模拟开关、逻辑控制、显示驱动、自动调零、参考源和时钟系统等功能。满足本选题的技术指标要求,而且硬件电路结构简单,易于实现。 四、电路单元参数的选定和设计实现 4.1温度采集 温度采集电路采用pt100铂电阻,该电阻在不同的温度下显示不同的电阻

智能温度检测系统的研究

第33卷第3期2015年 7月 沈阳师范大学学报(自然科学版) J ournal o f Shen y an g Normal Universit y(Natural Science Edition) Vol.33No.3 Jul.2015 文章编号:16735862(2015)03040904 智能温度检测系统的研究 张玉梅1,周腾蛟2,曲延华1,秦宏1 (1.沈阳工程学院自动化学院,沈阳 110136;2.沈阳师范大学教务处,沈阳 110034) 摘要:提出一种基于射频技术的无线温度检测系统,以智能温度传感器和C y cloneⅡ系列 芯片实验平台为基础,通过对控制系统的软件调试和硬件检测等多种操作方式,设计出最优的智 能温度检测系统三这种智能温度检测系统具有可自动调节二多点采集二传输距离远二精准度高二使 用便捷等特点三目前,对此系统的研究具有非常重要的理论意义和实践价值三因此,智能温度检 测系统应用越来越广泛,特别适用于蔬菜大棚二居室二办公室等室内场所三 关键词:温度采集;温度检测系统;智能控制;温度传感器 中图分类号:TM13文献标志码:A doi:10.3969/j.issn.16735862.2015.03.020 0 引言 温度是表现物体冷热程度最直接的物理量,它与人们的日常生活二生产关系密不可分三随着温度监测技术的飞速发展,它已被广泛应用于工业生产二科学研究等领域中,在各种领域中,温度亦是非常重要的运行参数,能直接关系到生产的正常进行和安全保障三所以,温度的多点检测及控制技术在工业生产和日常生活中占据极其重要的地位,准确的智能温度检测及控制技术的研究亦越发成为现代温度控制系统发展的主流方向三特别是近年来,无线温度检测及基础控制已渐渐与人们的日常工作二生产生活密不可分,基于这样的前提,设计一个良好的温度检测控制智能系统具有一定的必要性三本文设计了硬件与软件想结合,通过采集检测电路二控制系统的比例因子来进行基础控制的无线测温系统,拟采用现场可编程门阵列二单片机等核心芯片来进行温度信号的检测和控制[1]三此程序简单二所需资源少,系统响应快,性能指标能达到很好的效果[2]三 1系统的整体思路 要开发出好的智能温度控制系统,首先要对整个系统进行总体设计,在设计中基于几个原则: 1)整体方案设计二局部细节完善三将所想设计的温度检测控制系统分为多个功能模块来进行设计三总的电路系统划分成多个功能独立二结构简单二互相之间又有电气关系联系的功能模块三分别加以实现,最后进行电气连接形成整合温控系统三 2)广范围适用二超高性价功能目的设计三设计电路适合于工用及普遍民用生活领域,结构简单,操作性强,比较容易实现,在达到性能指标精度的前提下,追求电路系统的超高性价比三 3)稳定性二可靠性实现三在软硬件支持的前提下,具有掉电保护功能,检测仿真研究中尽可能多模拟多组参数,提高参数的有效性三采用知名公司先进的芯片作为处理器三提高整个系统的稳定性二可靠性三 4)易实现性三考虑到应用的场合领域,尽量完善整个温度检测系统,使其操作简单,界面简单易懂,即使是家用,对于老人与小孩亦不需要像操作人员那样具备多精深的领域技术知识[36]三 收稿日期:20150510三 基金项目:辽宁省教育厅科学研究一般项目(LJ2013287);沈阳工程学院科技项目(LGYB1405)三 作者简介:张玉梅(1977),女,辽宁葫芦岛人,沈阳工程学院讲师,硕士三

智能温度测量仪论文(DOC)

现代仪器课程设计智能化温度仪器设计 Design of Intellecturalized Temperature Instrument 所在学院:机械工程学院 所在系所:测控技术与仪器系 专业班级:测控 学生姓名: 学生学号: 指导老师:

江苏大学测控技术与仪器系 2011-12-30 智能化温度仪器设计 Design of Intellecturalized Temperature Instrument 任务指标:实时测量现场温度,测温范围-20℃~50℃,测量精度±0.5℃,仪器采用便携式结构,能显示测量温度,并有非线性补偿与滤波功能。 摘要:本次课程设计采用铂电阻PT100作为传感器测量外界温度。将铂电阻接入电桥测量现场温度,再经差动放大电路放大成0~5V的电压信号。然后通过ADC0809将采集到的模拟信号转变数字信号,再将数字信号送入AT89C52单片机通过编程实现非线性补偿与滤波功能,最后经LED显示器显示测量温度。 关键字:铂电阻,温度测量,实时显示。 Abstract: This course is designed with a PT100 platinum resistance temperature sensor outside. Access to bridge the platinum resistance temperature measurement site, and then zoom through the differential amplifier circuit into a voltage signal 0 ~ 5V. Then will be collected ADC0809 analog signals into digital signals and then digital signal into the AT89C52 microcontroller programmed to non-linear compensation and filtering, and finally through the LED display shows the temperature measurement. Keywords: platinum resistance, temperature measurement, real-time display.

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

数显温度测量仪电路设计

,,,….大学 课程设计说明书 2011/2012 学年第 1 学期 学院:电子与计算机科学技术学院 专业:电子科学与技术 学生姓名:JJJJK 学号:VHGGHJHH 课程设计题目:数显温度测量仪电路设计 起迄日期:2011年12月19 日~ 2012年1 月5日课程设计地点:电子科学与技术系机房 指导教师:KLJKLJ 系主任:JKL 下达任务书日期: 2011年 12月 19日

目录: 1. 课程设计目的 (3) 2. 课程设计内容和要求 (3) 3. 设计方案 (3) 4. 设计流程图 (5) 5. 工作原理 (6) 5.1 测温部分 (6) 5.2 温度检测电路模块 (7) 5.3电压放大电路模块 (8) 5.4 温度数字显示 (9) 6. 课程设计总结 (15) 7. 参考文献 (16) 8. 附录 (17)

一.课程设计目的 (1)、了解数显温度测量仪电路的基本实现原理; (2)、掌握计数器、显示等中规模数字集成器件的逻辑功能和使用方法; (3)、掌握利用protel绘制电路原理图与制作PCB图的方法。 (4)、Protues仿真。 二.课程设计内容和要求 (1)查阅所用器件技术资料,详细说明设计的数显温度测量仪电路工作流程; (2)温度测量范围:20℃~100℃,测量精度为0.1℃,数字显示位数四位。 (3)选择适当的传感器,设计恰当的放大电路,且具有调零电路。 (4)为减少或消除干扰,电路应具有低通功能。 三.设计方案 本次课程设计任务为数显温度测量仪:测温范围20℃—100℃,用CC7107(ICL7107可用 位数字电压表显示。测温传感器铂-100热电阻(Pt-100)。热电阻变换TC7107代替)组装31 2 电路用全桥测量电路。通过网上查找资料以及自身理解我选择用ICL7107芯片,经过铂金属的传热和中间电路将热信号转换为电压信号再经放大后输入到ICL7107芯片,最后经数字显示电路将温度信号显示。 采用铂金属温度传感器来检测温度的变化,铂金属温度传感器的电阻值会随着外界温度的变化而变化,并且近似为线性关系。利用这种线性关系,可以组成温度测量电路。从这个电路中将会得到跟随外界温度变化而变化的带有当前温度特征的电压信号。 温度测量电路模块输出的电压信号的伏值一般较小,不能直接用于后续电路模块的输入信号。因此,要在温度测量电路模块后面加上电压放大电路。将温度测量电路输出的带有当前温度特征的电压信号进行放大,使得其输出的电压伏值能够满足后续电路模块的输入要求。 放大电路模块输出的电压信号分为两路:一路直接用于数字显示电路模块的输入信号,从而得到直观的温度数据。另一路将输出的电压信号作为继电器驱动电路模块中的电压比较器的一个输入信号。

智能温度测量仪课程设计

智 能 温 度 测 量 仪 课 程 设 计 报 告 专业:电气工程及其自动化 班级:10级电气1班 姓名:柴冬 学号:14894029 Pt100温度传感器 温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。 热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,

这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。 热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。 非接触式温度传感器主要是被测物体通过热辐射能量来反映物体温度的高低,这种测温方法可避免与高温被测体接触,测温不破坏温度场,测温范围宽,精度高,反应速度快,既可测近距离小目标的温度,又可测远距离大面积目标的温度。目前运用受限的主要原因一是价格相对较贵,二是非接触式温度传感器的输出同样存在非线性的问题,而且其输出受与被测量物体的距离、环境温度等多种其它因素的影响。 本设计的要求是采用“PT100”热电阻,测温范围是-200~+600℃,精度0.5%,具体的型号选为WZP型铂电阻。 AT89C51单片机 AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 LCD显示器 液晶显示器是一种采用了液晶控制透光度技术来实现色彩的显示器。和CRT 显示器相比,LCD的优点是很明显的。由于通过控制是否透光来控制亮和暗,当色彩不变时,液晶也保持不变,这样就无须考虑刷新率的问题。对于画面稳定、无闪烁感的液晶显示器,刷新率不高但图像也很稳定。LCD显示器还通过液晶控制透光度的技术原理让底板整体发光,所以它做到了真正的完全平面。

相关主题
文本预览
相关文档 最新文档