当前位置:文档之家› 语音信号盲分离1

语音信号盲分离1

语音信号盲分离1
语音信号盲分离1

课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:信息工程学院

题目: 信息处理课群综合训练与设计——语音信号的盲分离

初始条件:

根据盲信号分离原理,用matlab采集两路以上的语音信号,选择合适的混合矩阵生成若干混合信号。选取合适的盲信号分离算法(如独立成分分析ICA等)进行训练学习,求出分离矩阵和分离后的语音信

要求完成的主要任务:

(1)用matlab做出采样之后语音信号的时域和频域波形图

(2)选择合适的混合矩阵,得到混合信号,并做出其时域波形和频谱图

(3)采用混合声音信号进行训练学习,求出分离矩阵,编写出相应的确matlab代码。

(4)用求出的分离矩阵从混合信号中分离出原语音信号,并画出各分离信号的时域波形和频谱图。

(5)对结果进行对比分析。

时间安排:

6.14~6.24:理论设计

6.5~6.6:安装调试或仿真

6.25~

7.1:撰写报告

7.2:答辩。

指导教师签名: 2012年 7月 02 日

系主任(或责任教师)签名: 2012年 7月02

目录

摘要 (2)

Abstract (3)

1 绪论 (4)

1.1研究背景与意义 (4)

1.2盲源分离的国内外研究进展 (4)

1.2.1线性瞬时混合信号 (4)

1.2.2非线性瞬时混合信号 (5)

2 语音信号的分析 (7)

2.1语音信号时域分析 (7)

2.2语音信号频域分析 (8)

2.3语音信号的MATLAB应用程序 (8)

2.3.1输入语言的MATLBA时域和频谱图程序分析 (8)

2.3.2混合语音信号的MATLBA时域和频谱图程序分析 (11)

3 盲分离的基本概念 (15)

3.1 盲分离的数学模型 (15)

3.2 盲源分离的基本方法 (15)

3.3 盲分离的目标准则 (17)

3.4 盲分离的研究领域 (18)

3.5 盲分离的研究内容 (19)

4 FastICA算法 (21)

4.1 数据的预处理 (21)

4.2 FastICA算法 (22)

4.3 分离后的信号的时域和频谱图 (25)

4.4对比分析 (26)

参考文献 (27)

附件1 整体程序 (28)

摘要

语音信号的分离近年来成为信号处理领域的一个研究热点,它在电话会议、助听器及便携设备、机器的语音识别方面有很多的应用与影响。而盲信号处理的方法常被用于语音分离中去,“盲”是指没有关于源信号本身以及传输信道的知识,盲分离的理论基础是独立分量分析,其可以广泛的被应用于通信、图像、语音、生物医学、雷达、地震、声纳等多种类型信号的处理。盲分离技术可以用于消除不需要的干扰以增加语音质量。

语音分离使得助听器有更强大的处理功能,使得接收信号分离出尽可能接近原始的语音。更适合于语音编码和基音检测。特别是在混合语音信号进行编码方面,传统的单通道方法处理起来十分困难,而混合语音可以看作多路语音信号的线性组合,其每一路语音信号都可视为独立分量,这正好与ICA 的假设相符。语音识别。机器的语音识别能力远不及人类,尤其是在有噪音和干扰的背景下。这时作为语音识别的前端处理,盲语音分离可以很好的去除干扰,不论是加性噪声还是其他不感兴趣的语音,这就大大增强了机器的识别率。“人类最重要的特性之一就是我们能够去聆听另一个人的言语并且互相交流,而且这种交流通常是在不止有一个人在场的情况下。我们每天都会经历到这一切,也认为这是理所当

然的。目前为止没有人手造的任何一台机器能够做到这些,即从数个混在一起的语音中提取出感兴趣的某一个来。”本文所研究的语音信号分离算法可以认为是模仿人类的语音分离能力,因此具有较大的应用前景和现实意义。

关键词:语音分离盲算法ICA

Abstract

Separation of speech signals in recent years become a hot research topic in the field of signal processing, in a conference call, hearing aids and portable devices, speech recognition machine has many applications and impact. Blind signal processing methods often used for speech separation "Blind" refers to no knowledge of the source signal and transmission channel, the theoretical basis of the blind source separation, independent component analysis, it can be applied to a wide range of communications, image, voice, biomedical, radar, seismic, sonara type of signal processing Blind source separation technique can be used to eliminate unwanted interference in order to increase the quality of voice.

Speech separation makes hearing aids more powerful processing capabilities, making the received signal separation as close as possible to the original voice. More suitable for speech coding and pitch detection. Especially in a mixed voice signal is encoded, the traditional single-channel approach is extremely difficult, and mixed voice can be seen as a linear combination of multi-channel voice signal, and each of its way voice signal can be regarded as independent component, which coincided withICA assumptions match. Speech recognition capabilities of the machine far less than human, especially in the context of noise and interference. Then as the front end of the speech recognition processing, blind speech separation can be very good to remove interference, whether it is the additive noise is not interested in voice, which greatly enhanced recognition rate of the machine.

Keyword:Speech Separation Blind algorithm ICA

1 绪论

1.1研究背景与意义

盲信号处理(Blind Signal Processing, BSP)作为计算智能学的核心研究内容,是20世纪最后十年迅速发展起来的一个新研究领域,是人工神经网络与统计信号处理以及信息理论相结合的产物,已经成为一些领域研究与发展的重要课题,它具有可靠的理论基础和许多方面的应用潜力。事实上,盲信号处理已成为重要的研究课题,并在许多领域得到发展,特别是在生物医学工程、医疗成像、语音增强、遥感、雷达与通信系统、地震勘探、地球物理学、计量经济学、数据挖掘等方面均具有突出的作用。盲信号处理技术原则上不利用任何训练数据,也没有关于卷积、滤波、混合系统参数的先验知识。而且随着盲信号处理技术的不断成熟,从传统的信号处理、神经元网络领域到通信、生物医学工程、地球物理、以及图像工程、控制工程等领域,盲信号处理技术正在得到越来越广泛的应用。因此,大力发展盲信号处理技术,不仅会积极地促进信号处理、神经网络的研究,而且也将会对多个领域新技术的发展起到一定的促进作用。

1.2盲源分离的国内外研究进展

1.2.1线性瞬时混合信号

较早进行盲源分离方法研究的是jutten和Herault, 1986年,他们提出了一种盲源分离方法,该方法基于反馈神经网络,通过选取奇次的非线性函数构成Hebb 训练,从而达到盲源分离的目的。但该方法不能完成多于两个源信号的分离,非线性函数的选取具有随意性,并且缺乏理论解释。

1991年,Juttcn, Herault以及Comon和Sorouchyari在杂志Signal Processing 上发表了关于盲信号分离的三篇经典文章,标志着盲源分离问题研究的重大进展.他们不仅提出了盲源分离中著名的H-J学习算法,而且设计了专门的CMOS集成芯片来实现他们的算法。H-J方法后来由Jutten和Herault、Comon, Cichocki 和Moszczynski以及其他研究者解释并发展。Tong和liu分析了盲源分离的可分

离性和不确定,并给出了一类基于高阶统计量的矩阵代数分方法。

1993年,Cardoso提出了基于高阶统计的联合对角化盲源分离方法,并应用于波束形成。

1995年,Bell和Sejnowsk基于信息理论,通过最大化输出非线性节点的熵,得出一种最大信息(Informatian Maximization,简记Infomax)传输的准则函数,并由此导出一种自适应盲源分离和盲反卷积方法,当该方法中非线性函数的选取逼近源信号的概率分布时,可以较好地恢复出源信号。该算法虽有其局限性,但在分离线性混合的语音信号方面非常有效。

1997年,Hyvarinen等基于源信号非高斯性测度,给出一类定点训练算法(fixed-point),该类算法可以提取单个具有正或负峰度的源信号。

1999年,Lee、Girolami和Sejnowski将信息最大化原则的独立分量分析作了进一步的扩展,实现了超高斯源信号和亚高斯源信号的盲源分离,这个方法选取两个不同的非线性函数分别实现超高斯信号和亚高斯信号的盲源分离。但是这个方法只局限于实现标准的独立分量分析,不能解决当源信号维数大于混合信号维数时的盲源分离向题,也不能实现具有噪音的独立分量分析。

1.2.2非线性瞬时混合信号

最近,人们已经开始研究存在噪声的混合和非线性混合信号的盲源分离问题。非线性盲源分离比线性情况的分离难度更大,目前基本还处在最初的摸索阶段。较早涉及非线性混合信号盲源分离的是Burel,1992年他用一个两层感知器和基于误差后向传输思想的无监督训练算法,得到一种盲源分离算法,可以用于非线性混合信号的盲源分离。

1994年,Krob和Benidir研究了利用高阶统计量解决多项式结构的非线性混合问题。

1995年,Deco和Brauer研究了一个基于V olume-Conserving结构的非线性变换的盲源分离。

1997年,Yang、Amari和Cichocki基于对于源信号各分量统计独立的假设,利用两层感知器网络结构得出基于最大熵( Minimum Entropy,简记ME)和最小互信息思想(Minimum Mutual information,简记MMI )的代价函数,并提出了反

向学习算法,当合理选择非线性函数时该算法可以分离出一些特定非线性混合的源信号。

1998年,Taleb、Jutten和Olympieff提出了一种非线性混合信号盲源分离算法,该算法基于熵,对于分离某些盲混合信号具有良好性能。

2001年,Valpola、Honkela和Karhunen提出了贝叶斯集合学习算法(Bayesian Ensemble Learning Algorithm ),该算法采用多层感知器神经元网络(MLP ),能够对非线性静态和动态过程实现盲源分离。Tan和Wang提出了基于遗传算法( Genetic Algorithm)的盲源分离方法,该算法利用遗传算法使信号非线性混合度最小化,然后对去除非线性后的数据进行线性分离,从而实现盲源分离。与传统的梯度算法相比,基于遗传算法的盲源分离方法有着更快的收敛速度和稳定性,能够在全局范围内寻找最优解。Tan、Wang和Zurada提出了径向基网络算法(Radial Basis Function Network Algorithm),使用径向基函数神经网络来逼近非线性混合的逆映射实现盲源分离。

2 语音信号的分析

2.1语音信号时域分析

语音信号的时域分析就是分析和提取语音信号的时域参数。进行语音分析时,最先接触到并且也是最直观的是它的时域波形。语音信号本身就是时域信号,因而时域分析是最早使用,也是应用最广泛的一种分析方法,这种方法直接利用语音信号的时域波形。时域分析通常用于最基本的参数分析及应用,如语音的分割、预处理、大分类等。这种分析方法的特点是:①表示语音信号比较直观、物理意义明确。②实现起来比较简单、运算且少。③可以得到语音的一些重要的参数。④只使用示波器等通用设备,使用较为简单等。

MATLAB数据采集箱中提供的函数命令进行图像分析的函数命令:

wavrecord : wavrecord 利用Windows 音频输入设备记录声音,其调用形式为:wavrecord (n ,fs ,ch) 。利用Windows音频输入设备记录n个音频采样, 频率为fs Hz ,通道数为ch。采样值返回到一个大小为n*ch 的矩阵中。缺省时,fs = 11025 ,ch = 1。

waveplay: waveplay 利用Windows音频输出设备播放声音,其调用形为:waveplay(y ,fs) 。以采样频率fs向Windows 音频设备发送向量信号。标准的音频采样率有:8000、11025、22050 和44100Hz。

wavread :wavread 用于读取Microsoft 的扩展名为“.wav”的声音文件。其调用形式为: y = wavread (file) 。其作用是从字符串file 所指的文件路径读取wave 文件,将读取的采样数据送到y 中。Y的取值范围: [ -1 ,1 ] 。

sound:音频信号是以向量的形式表示声音采样的。sound 函数用于将向量转换为声音,其调用形式为:sound (y ,fs) ,作用是向扬声器送出向量y 中的音频信号(采样频率为fs) 。

通过Wavread和plot(x)函数即可显示图像的时域波形。

2.2语音信号频域分析

语音信号的频域分析就是分析语音信号的频域持征。从广义上讲,语音信号的频域分析包括语音信号的频谱、功率谱、倒频谱、频谱包络分析等,而常用的频域分析方法有带通滤波器组法、傅里叶变换法、线件预测法等几种。本文介绍的是语音信号的傅里叶分析法。因为语音波是一个非平稳过程,因此适用于周期、瞬变或平稳随机信号的标准傅里叶变换不能用来直接表示语音信号,而应该用短时傅里叶变换对语音信号的频谱进行分析,相应的频谱称为“短时谱”。

FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。

在MATLAB的信号处理工具箱中函数FFT和IFFT用于快速傅立叶变换和逆变换。函数FFT用于序列快速傅立叶变换,其调用格式为y=fft(x),其中,x 是序列,y是序列的FFT,x可以为一向量或矩阵,若x为一向量,y是x的FFT 且和x相同长度;若x为一矩阵,则y是对矩阵的每一列向量进行FFT。如果x 长度是2的幂次方,函数fft执行高速基-2FFT算法,否则fft执行一种混合基的离散傅立叶变换算法,计算速度较慢。函数FFT的另一种调用格式为y=fft(x,N),式中,x,y意义同前,N为正整数。函数执行N点的FFT,若x为向量且长度小于N,则函数将x补零至长度N;若向量x的长度大于N,则函数截短x使之长度为N;若x 为矩阵,按相同方法对x进行处理。

2.3语音信号的MATLAB应用程序

2.3.1输入语言的MATLBA时域和频谱图程序分析

[I1,fs1,bit]=wavread ('w1.wav'); %做输入声音1的时域图形

figure(1)

subplot(3,1,1);

plot(I1); %做原始语音信号的时域图形

title('输入声音1的时域图形'),

xlabel('时间(s)');

ylabel('幅值');

%做输入声音1的频谱图

y1=fft(I1,1024); %对信号做1024点FFT变换

f1=fs1*(0:511)/1024; %将横轴变为频率轴

figure(2)%频谱图

plot(f1,abs(y1(1:512)));

title('语音信号1频谱')

xlabel('数字角频率');

ylabel('幅度');

wavplay( I1 );%播放音乐1

%%%%%%%%%%%%%% 读入声音2的原始图像,并做出其时域和频谱图%%%%%%%%%%%%%%%%%%

[I2,fs2,bit2]=wavread ('w2.wav');

figure(1)

subplot(3,1,2);

plot(I2); %做原始语音信号的时域图形

title('输入声音2的时域图形'),

xlabel('时间(s)');

ylabel('幅值');

%做输入声音2的频谱图

y2=fft(I2,1024); %对信号做1024点FFT变换

f2=fs2*(0:511)/1024; %将横轴变为频率轴

figure(3)%频谱图

plot(f2,abs(y2(1:512)));

title('语音信号2频谱')

xlabel('数字角频率');

ylabel('幅度');

wavplay( I2 );%播放音乐2

%%%% 读入声音3的原始图像,并做出其时域和频谱

图%%%%%%%%%

[I3,fs3,bit3]=wavread ('w3.wav');

figure(1)

subplot(3,1,3);

plot(I3); %做原始语音信号的时域图形

title('输入声音3的时域图形'),

xlabel('时间(s)');

ylabel('幅值'); %做输入声音3的频谱图

y3=fft(I3,1024); %对信号做1024点FFT变换

f3=fs3*(0:511)/1024; %将横轴变为频率轴

figure(4)%频谱图

plot(f3,abs(y3(1:512)));

title('语音信号3频谱')

xlabel('数字角频率');

ylabel('幅度');

wavplay( I3 );%播放音乐3

图2-1 三路输入声音的时域图形

图2-2三路声音的频谱

2.3.2混合语音信号的MATLBA时域和频谱图程序分析

s1 = wavread('w1.wav'); s1 = s1(1:N)';

s2 = wavread('w2.wav'); s2 = s2(1:N)';

s3 = wavread('w3.wav'); s3 = s3(1:N)';

s = [s1; s2; s3];

% 混合矩阵

A = [ 1 4 5

3.4 2.4 2

6 2 3.5];

x = A * s;

%做混合声音1的时域图

figure(8)

subplot(3,1,1);

plot(x(1,:)); %做原始语音信号的时域图形

title('混合声音1的时域图形'),

xlabel('时间(s)');

ylabel('幅值');

%做混合声音2的频谱图

y11=fft(x(1,:),1024); %对信号做1024点FFT变换f11=22050*(0:511)/1024; %将横轴变为频率轴figure(5)%频谱图

plot(f11,abs(y11(1:512)));

title('混合声音1频谱')

xlabel('数字角频率');

ylabel('幅度');

%做混合声音2的时域图

figure(8)

subplot(3,1,2);

plot(x(2,:)); %做原始语音信号的时域图形

title('混合声音2的时域图形'),

xlabel('时间(s)');

ylabel('幅值');

%做混合声音2的频谱图

y11=fft(x(1,:),1024); %对信号做1024点FFT变换f11=22050*(0:511)/1024; %将横轴变为频率轴figure(6)%频谱图

plot(f11,abs(y11(1:512)));

title('混合声音2频谱')

xlabel('数字角频率');

ylabel('幅度');

%做混合声音3的时域图

figure(8)

subplot(3,1,3);

plot(x(3,:)); %做原始语音信号的时域图形

title('混合声音3的时域图形'),

xlabel('时间(s)');

ylabel('幅值');

%做混合声音3的频谱图

y11=fft(x(1,:),1024); %对信号做1024点FFT变换f11=22050*(0:511)/1024; %将横轴变为频率轴figure(7)%频谱图

plot(f11,abs(y11(1:512)));

title('混合声音3频谱')

xlabel('数字角频率');

ylabel('幅度');

图2-3三种混合的时域图

图2-4混合声音的频谱

3 盲分离的基本概念

3.1 盲分离的数学模型

盲源分离原理可用如下图所示的数学模型来描述:

图3.1 盲源分离原理图

BBS 的数学模型如图3-1所示,其中()()

()[]

T n t s t s t s ,,1 =是n 维未知源信号向量,A 为未知混合系统, ()()()[]T

m t x t x t x ,,1 =是m 维的观测信号矢量,它们均源信号矢量的组合,并受到噪声矢量()()()[]T

m t n t n t n ,,1 =的干扰. 盲源分离的目的就是在源信号s 和混合系统A 均未知的情况下,仅由观测数据向量x 通过调整分离系统W ,使得输出y 是源信号s 的估计,即:

()s x W y == (3-1)

3.2 盲源分离的基本方法

盲源分离包含了线性瞬时混合和卷积混合两种盲源分离问题。解决盲源分离问题的重要方法一独立分量分析(Independent ComponentAnalysis ,ICA)通常以线性瞬时混合为模型,而盲解卷积则是一种更为实际的盲源分离问题,其混合模型是一种卷积混合,线性卷积混合模型比较接近实际,这是因为:(1)实际中每一个源信号不会同时到达所有的传感器,每一个传感器对不同的源延时不同,延时值的大小取决于传感器与源信号间的相对位置以及信号的传播速度;(2)源信号

s(t) 混合系统A + 分离系统W y(t) n(t)

x(t)

到达传感器是经过多途传播的,即多径效应。假设信号是线性组合的,则从传感器观测到的信号是源信号各种延时值的线性组合。解决此类问题的盲信号处理方法就是盲解卷积。特别地,ICA 方法也可被用于盲解卷积或盲均衡。此外,盲信号处理还包括许多重要内容,例如非线性BSS 或非线性ICA 问题、盲多用户检测以及盲波束形成等等。

尽管有许多不同的盲源分离算法可用,但它们的原理却都可以归纳为以下四个方法如图 3.2:

(1)最普遍的方法就是使用代价函数来衡量信号独立性和非高斯性或者稀疏性。当假信号具有统计独立性,且没有时间结构时,高阶统计量方法是求解盲源分离问题的基段(间接或直接的),这种方法对多于一个高斯分布的源信号不适用。

(2)如果源信号具有时序结构,则其有非零的时序相关数,从而可以降低对统计独立性的限制条件,用二阶统计量方法(SOS)就足以估计混合矩阵和源信号。这种(SOS)方法不允许分离功率谱形状相同或i.id(独立同分布)的源信号。

(3)第三种方法即采用非平稳性(Ns)和二阶统计量(SOS)。由于源信号主要随时间有不同的变化,就可以考虑利用二阶非平稳性。Matsuoka 等人首先考虑了非平稳性,并证‘明在盲源分离中可以应用简单的解相关技术。与其他方法相比,基于非平稳性信息的方法能够分离具有相同功率谱形状的有色高斯源,然而,却不能够分离具有相同非平稳特性的源信号。

(4)第四种方法运用了信号的不同多样性,典型的是时域多样性、频域多样

相互独立、非高

斯、ICA 时序结构、线性可预测

时频、谱和空间多样性

非稳态、时变方差 图3.2 盲源分离算法种类

性(谱或时间相干性”)或者时频域多样性,更一般的,即联合空间一时间一频率(STF)多样性。

自从BSS和ICA的概念产生以来,人们几乎是不加区分地使用这两个概念。但是,如果深入研究BSS和ICA的基本原理和作用对象,两者之间的区别和联系是显而易见的。

Comon对ICA给出了较严格的定义:对于观测信号矢量,存在一个线性变换,使得观测信号在线性变换下各分量的统计独立性最大化。这一过程称之为ICA过程。

与此对应,可以给出BSS的如下定义:对于观测信号矢量,存在线性变换w,使得全局矩阵G的各行及各列中只有一个非零元素(不妨称之为广义对角矩阵),即G=PD。其中P为置换阵;D为对角阵,从而实现信号分离。

ICA的目的是通过线性变换使得观测信号的各个分量的统计独立性最大化。通常用输出信号的互信息、熵等作为统计独立性的量度,如基于信息论的Informax算法、Amari的自然梯度算法等。如果源信号之间具有统计独立性,那么可以通过ICA实现信号的分离。

BSS考察的是在什么条件下可以使全局矩阵实现广义对角化,而不去衡量输出信号的统计独立性是否达到最大化。因此BSS并不一定要求源信号是统计独立的。例如AMUSE、GED算法只要求源信号具有统计不相关性。如果源信号是统计独立的,那么BSS的输出信号也一定是统计独立的,这时BSS和ICA等价。

从作用对象看,ICA除了可以用于多源信号的分离外,还可以用于其它多维数据的分析,例如图像的特征提取、经济数据分析等。而BSS不仅仅局限于瞬时混合信号的分离,还包括实际应用中更重要的卷积混合信号的分离。

可以说ICA是实现BSS的一种方法,而BSS是ICA的一个具体的应用。

3.3 盲分离的目标准则

根据源信号不同的特征,盲源分离的实现方法有很多,但它们的原理可以归纳为以下四种准则:

(1)独立分量分析(Independent Component Analysis,ICA):当假设源信号各分量间彼此统计独立,且没有时间结构时,在某一分离准则下通过对神经网络权值

的反馈调整,使得变换后信号的不同分量之间的相依性最小,也即输出达到尽可能的独立。这种方法对多于一个高斯分布的源信号不适用(因为高斯信号的线性叠加仍是高斯信号),这是近年来盲源分离的主要解决方法。

(2)主分量分析(Principal Component Analysis,PCA)的方法:在尽可能保持原始变量更多信息的前提下,导出一组零均值随机变量相对少的不相关线性组合(主分量),并由此恢复出对源信号的估计。

(3)二阶非平稳性:即采用非平稳性和二阶统计量。由于源信号随时间有不同的变化,所以可以考虑利用二阶非平稳性,应用简单的解相关技术实现盲源分离。与其他方法相比,它能够分离具有相同功率谱形状的有色高斯源,然而却不能分离具有相同非平稳特性的源信号。

(4)运用信号的不同多样性,典型的是时域多样性、频域多样性或时频域多样性,更一般的,即联合空间-时间-频率多样性,如果源信号具有不同的时频域多样性,信号的时频域特征不完全重叠,那么可以通过屏蔽时频域的单个源信号或干扰信号,并从一个(或多个)传感器信号中提取源信号,然后再在时频域中合成,然而这些情况下,通常需要一些源信号的先验知识,所以这种分离只能是一种半盲分离。

3.4 盲分离的研究领域

在BSS问题的研究和发展过程中,基于其不同的应用环境,进行了不同角度的扩展,形成了不同的研究领域,可以对BSS的研究领域做如下的分类:依据信号混合方式不同,盲信号的混合方式有瞬态线性混合、卷积混合、非线性混合等方式,针对不同的混合方式需要采用不同的分离方法。在瞬态线性混合方式下,观测信号是原始信号在相同时刻的线性叠加,即不同信号到达各个传感器的时间差别可以忽略不计,此时混合矩阵是实矩阵,盲分离过程等价于寻找混合矩阵的逆矩阵过程。如果信道的传输延迟等对观测信号的影响较大,观测信号是原始信号在过去不同时刻的线性叠加,则属于卷积混合方式,此时的传递通道矩阵可以用有限长冲激响应滤波器模型来构造,盲解卷过程就需要利用相应的解卷滤波器实现。如果信号所处的环境是动态变化的且具有非线性特征,则需要利用非线性特征函数实现盲分离。

对信号的处理角度不同,BSS可在时域、频域或时频域进行研究。时域盲分离比较直观,但不能利用信号的频谱特征,在瞬态线性混合情况下应用较多;频域盲分离可以将时域上的卷积运算转化为频域上的直接乘积形式,从而可以利用时域盲分离算法解决盲解卷/盲均衡问题,但频域上的尺度与交互不确定性问题以及较大的计算量是阻碍信号进行频域盲分离的主要障碍。利用信号的时频特性进行盲分离,可以充分利用时域和频域分析的优点,其主要困难在于时频点的合理选择。

信号本身的属性有平稳信号与非平稳信号之分、窄带信号与宽带信号的差别。平稳信号的盲分离,常需要利用信号的高阶统计量信息;而对于非平稳信号,如语音信号,则利用信号的二阶时间相关属性实现盲分离;宽带信号通常要先分解为多个窄带信号,逐个进行盲分离。

根据源信号数目与观测信号数目的关系,可分为适定盲分离、超定盲分离、欠定盲分离。当前很多算法都是在适定条件下推导得到的,它是指源信号数目和观测信号数目相等的情况;当观测信号数目大于源信号数目时,称为超定盲分离,超定盲分离通常采用降低观测信号维数,进而进行适定条件下盲分离的方法;欠定盲分离,又称超完备盲分离,是近年来的研究热点和重点,它是源信号数目大于观测信号数目的情况,这相当于信源在经过混合信道后,发生了有损压缩,因此采用传统的ICA通过对混合系统求伪逆的过程已无法恢复出源信号,这些丢失的信息只能通过一些先验、假设或限制条件(如:独立性、稀疏性等)进行弥补。

根据对算法的性能要求,盲分离可以分为离线批处理和自适应在线处理等方式。离线批处理方式可以利用信号的各阶统计量信息,通过特征值分解等运算获得盲信号的分离矩阵,其优点是可以充分利用观测信号的样本数据,能够获得较为精确的解,缺点是计算量大,分离时间长,且对信息的存储空间要求高;而自适应的在线处理方式是基于单次观测样本进行盲分离系统的更新迭代,计算量低,适用于实时性要求较高的场合,如在线故障诊断等。

3.5 盲分离的研究内容

盲源分离的基本框架是根据某种优化准则,先选出合适的目标函数,然后通过某种优化算法来搜索目标函数的极值点,其中优化准则保证了算法实现的可能

语音信号的盲分离

课程设计任务书 学生:专业班级:通信1103 指导教师:许建霞工作单位:信息学院 题目: 语音信号的盲分离 初始条件:Matlab软件、PC机 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)设计任务 根据盲信号分离原理,用matlab采集两路以上的语音信号,选择合适的混合矩阵生成若干混合信号。选取合适的盲信号分离算法(如独立成分分析ICA等)进行训练学习,求出分离矩阵和分离后的语音信号。 设计要求 (1) 用matlab做出采样之后语音信号的时域和频域波形图 (2) 选择合适的混合矩阵,得到混合信号,并做出其时域波形和频谱图 (3) 采用混合声音信号进行训练学习,求出分离矩阵,编写出相应的确matlab代码。 (4) 用求出的分离矩阵从混合信号中分离出原语音信号,并画出各分离信号的时域波形和频谱图。 (5) 对结果进行对比分析。 时间安排:

指导教师签名:2014年 6 月10 日 系主任(或责任教师)签名:2014 年 6 月10 日 摘要 盲信号处理(Blind Signal Processing,BSP)是指从观测到的混合信号中,在没有任何先验条件的情况下,恢复出未知的源信号过程。盲信号分离已成为信号处理学界和通信工程学界共同感兴趣的一个极富挑战性的研究热点问题,并获得了迅速的发展。 盲分离根据信号源的不同可以分为确定信号盲分离、语音信号盲分离和图像盲分离等,本设计主要讨论语音信号的盲分离。 语音信号的盲分离主要是利用盲源分离(Blind Signal Separation,BSS)技术对麦克风检测到的一段语音信号进行处理,本文重点研究了以语音信号为背景的盲处理方法,在语音和听觉信号处理领域中,如何从混有噪声的的混叠语音信号中分离出各个语音源信号,来模仿人类的语音分离能力,成为一个重要的研究问题。根据盲信号分离原理,本设计用matlab采集3路语音信号,选择合适的混合矩阵生成若干混合信号。 具体实现主要结合独立分量分析ICA技术,选取混合矩阵对3个语音信号进行混合,并从混合信号中分离出原语音信号,最后画出各分离信号的时域波形和频谱图和原来的信号进行比较。此外还运用PCA算法进行了混合语音信号的分离实现,最终对两种算法进行比较。 关键字:盲信号处理;语音信号;盲源分离BSS;独立分量分析ICA技术

matlab语音信号采集与初步处理要点

《matlab与信号系统》实验报告 学院: 学号: 姓名: 考核实验——语音信号采集与处理初步 一、课题要求 1.语音信号的采集 2.语音信号的频谱分析 3.设计数字滤波器和画出频率响应 4.用滤波器对信号进行滤波 5.比较滤波前后语音信号的波形及频谱 6.回放和存储语音信号 (第5、第6步我放到一起做了) 二、语音信号的采集 本段音频文件为胡夏演唱的“那些年”的前奏(采用Audition音频软件进行剪切,时长17秒)。运行matlab软件,在当前目录中打开原音频文件所在的位置,采用wavread函数对其进行采样,并用sound函数可进行试听,程序运行之后记下采样频率和采样点。 利用函数wavread对语音信号的采集的程序如下: clear; [y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放 程序运行之后,在工作区间中可以看到采样频率fs=44100Hz,采样点bits=16

三、语音信号的频谱分析 先画出语音信号的时域波形,然后对语音号进行快速傅里叶变换,得到信号的频谱特性。语音信号的FFT频谱分析的完整程序如下: clear; [y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放 n = length (y) ; %求出语音信号的长度 Y=fft(y,n); %傅里叶变换 subplot(2,1,1); plot(y); title('原始信号波形'); subplot(2,1,2); plot(abs(Y)); title('原始信号频谱'); 程序结果如下图: 四、设计数字滤波器和画出频率响应 根据语音信号的特点给出有关滤波器的性能指标: 1)低通滤波器性能指标,fp=1000Hz,fc=1200 Hz,As=100dB,Ap=1dB; 2)高通滤波器性能指标,fc=4800 Hz,fp=5000 Hz As=100dB,Ap=1dB。

孙烽原 基于MATLAB的线性盲信号分离算法的研究

毕业论文(设计)材料 题目:基于 MATLAB 的线性盲信号分离算 法的研究 学生姓名:孙烽原 学生学号:0908030229 系别:电气信息工程学院 专业:电子信息工程 届别:2013 指导教师:张大雷

填写说明 1、本材料包括淮南师范学院本科毕业论文(设计)任务书、开题报告以及毕业论文(设计)评审表三部分内容。 2、本材料填写顺序依次为: (1)指导教师下达毕业论文(设计)任务书; (2)学生根据毕业论文(设计)任务书的要求,在文献查阅的基础上撰写开题报告,送交指导教师审阅并签字认可; (3)毕业论文(设计)工作后期,学生填写毕业论文(设计)主要内容,连同毕业论文(设计)全文一并送交指导教师审阅,指导教师根据学生实际完成的论文(设计)质量进行评价; (4)指导教师将此表连同学生毕业论文(设计)全文一并送交评阅教师评阅。 3、指导教师、评阅教师对学生毕业论文(设计)的成绩评定均采用百分制。 4、毕业论文(设计)答辩记录不包括在此表中。

一、毕业论文(设计)任务书 要求完成的主要任务及达到的目标 顾名思义,盲信号是指未知的、有杂乱无章特征的信号,人们难以得知源信号以及源信号的结合形式。对于盲信号的处理是通信时代比较前沿的技术之一,从接收信号中尽力还原源信号的技术称为盲源分离、盲信号提取。这已经称为通信信号学术领域的研究焦点。盲信号处理如今广泛被语音识别、语音增强、图像处理、通信系统、地震探测、遥感、数据挖掘、计量经济学、医学成像等领域所应用。根据传输介质的不同混合方式,盲信号处理有线性瞬时混合信号盲处理、线性卷积混合信号盲处理、非线性混合信号盲处理三种。本研究主要讨论有线性瞬时混合信号忙处理的计算方法。 ?对盲信号处理学各类算法的了解和掌握; ?对有线瞬时混合信号忙处理方法的熟悉和精通; ?对于MATLAB软件的熟练操作; ?实现用MATLAB软件实现对线性盲信号分离算法。 在此基础上巩固、加深和扩大MATLAB应用的知识面,进一步了解用此款软件对数字信号处理、数字图像处理、工程设计等的应用。加深对盲信号处理知识的掌握深度,加强对线性盲信号分离算法的理解,提高综合及灵活运用所学知识研究各类数学算法的能力。学会查阅书籍,并且要能够熟练的运用数学软件、编写程序、仿真、处理信号问题的方法、内容及步骤。学会对课题设计方案的分析、选择、比较。 工作进度要求

基于matlab的语音信号的采集与处理

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 目录 第1章前言 ................................................................................................... 错误!未定义书签。第2章语音信号分析处理的目的和要求 ................................................... 错误!未定义书签。 2.1MATLAB软件功能简介................................................................. 错误!未定义书签。 2.2课程设计意义 .................................................................................. 错误!未定义书签。第3章语音信号的仿真原理..................................................................... 错误!未定义书签。第4章语音信号的具体实现..................................................................... 错误!未定义书签。 4.1语音信号的采集................................................................................ 错误!未定义书签。 4.2语音信号加噪与频谱分析................................................................ 错误!未定义书签。 4.3设计巴特沃斯低通滤波器................................................................ 错误!未定义书签。 4.4用滤波器对加噪语音滤波................................................................ 错误!未定义书签。 4.5比较滤波前后语音信号波形及频谱................................................ 错误!未定义书签。第5章总结................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录................................................................................................................. 错误!未定义书签。

盲源分离 开题报告

一、研究背景及意义 语音信号的分离近年来成为信号处理领域的一个研究热点,它在电话会议、助听器及便携设备、机器的语音识别方面有很多的应用与影响。而语音信号常使用盲信号处理的方法分离。 盲信号处理(Blind Source Processing)作为一种新兴的信号处理方法,逐步发展并得到了越来越多的关注。盲信号处理与现代信号处理朝向非平稳、非高斯、非线性的发展方向相吻合,有利于复杂信号的分析以及处理,其研究对象主要为非高斯信号。它在传统信号处理方法的基础上结合了信息论、统计学和人工神经网络的相关思想。如图1所示,所谓的“盲分离”是指在没有关于源信号本身以及传输信道的知识,对数据及系统参数没有太多先验知识的假设的情况下,如何从混迭信号(观测信号)中分离出各源信号的过程。它能适用于更广泛的环境,为许多受限于传统信号处理方法的实际问题提供了崭新的思路。 图1 盲分离的概念 在科学研究和工程应用中,很多观测信号都可以假设成是不可见的源信号的混合,如通信信号、图像、生物医学信号、雷达信号等等。例如经典的“鸡尾酒会”问题,在一个充满宾客的宴会厅里,我们每个人都会听到来自不同地方的声音,如音乐,歌声及说话声等,正常的人类拥有在这种嘈杂环境下捕捉到所感兴趣的语音的能力。可以看到,盲信号处理同传统信号处理方法最大的不同就在于用它致力于用最少的信息得到理想的处理结果。

盲信号分离可以有不同的分类方法。 根据所处理信号的不同,可以分为声纳信号盲分离,雷达信号盲分离,通信信号盲分离,语音信号盲分离,脑电信号盲分离等。 根据盲处理领域的不同,可以分为时域盲分离和频域盲分离。 根据传输信道的情况,可以分为无噪声,有加性噪声,有乘性噪声等。 根据源信号在传输信道中被混合方式的不同,可以分为瞬时混合,卷积混合,非线性混合等。 根据源信号和观测信号数目的不同,可以分为正定盲分离,欠定盲分离,过定盲分离等。 本文研究的主要内容是正定不含噪的卷积混合语音信号的频域盲分离 方法。 总的来说,盲信号分离是一种仅利用观测到的混合信号来估计源信号的方法,它是以独立分量分析(Independent Component Analysis,ICA)为理论基础的。与传统信号处理方法如FIR 滤波,小波分析等不同的是,它不要求有关于源信号本身以及信号传输通道的知识。受益于这种“盲”的条件,盲信号分离对多个领域有很大的促进作用,特别是它在声纳、雷达、通信、语音、图像等方面的应用对军事,国防科技的发展起着非常重要的作用。近十多年来,各国学者在盲信号分离领域展开了深入的研究,有了一系列的成果。本课题就是在这样的背景下对语音信号进行盲分离的研究,以探索新的算法,新的应用。 二、研究的基本内容,拟解决的主要问题 1.研究的基本内容 本课题详细研究语音分离的基本理论,重点研究卷积混合频域解法模型框架下的语音信号分离算法。 基于时域实值瞬时混合模型的盲分离算法已经研究的比较充分,但是在语音信号在现实中往往是卷积混合,而且在频域分离方法中信号是复值的,本文将研究利用复值信号特征的瞬时混合盲分离算法,对不同的复数域盲分

基于MATLAB的线性盲信号分离算法的研究

毕业论文(设计) 论文题目:基于MATLAB的线性盲信号分离算法的研究 学生姓名:孙烽原 学号:0908030229 所在院系:电气信息工程学院 专业名称:电子信息工程 届次:2013届 指导教师:张大雷

淮南师范学院本科毕业论文(设计) 诚信承诺书 1.本人郑重承诺:所呈交的毕业论文(设计),题目《 》是本人在指导教师指导下独立完成的,没有弄虚作假,没有抄袭、剽窃别人的内容; 2.毕业论文(设计)所使用的相关资料、数据、观点等均真实可靠,文中所有引用的他人观点、材料、数据、图表均已注释说明来源; 3. 毕业论文(设计)中无抄袭、剽窃或不正当引用他人学术观点、思想和学术成果,伪造、篡改数据的情况; 4.本人已被告知并清楚:学院对毕业论文(设计)中的抄袭、剽窃、弄虚作假等违反学术规范的行为将严肃处理,并可能导致毕业论文(设计)成绩不合格,无法正常毕业、取消学士学位资格或注销并追回已发放的毕业证书、学士学位证书等严重后果; 5.若在省教育厅、学院组织的毕业论文(设计)检查、评比中,被发现有抄袭、剽窃、弄虚作假等违反学术规范的行为,本人愿意接受学院按有关规定给予的处理,并承担相应责任。 学生(签名): 日期:年月日

目录 前言 (2) 1 概述 (2) 1.1盲信号处理的概念与分类 (3) 1.2盲处理概念 (4) 1.3盲信号处理的分类 (4) 1.4盲信号处理的应用 (4) 2 盲信号分离的基础 (4) 2.1盲信号的预处理 (5) 2.2信号的去均值处理 (5) 2.3盲信号分离原理 (5) 2.4盲信号分离的方法 (6) 3 盲分离的算法和仿真结果 (6) 3.1最大信噪比的盲信号分离算法 (6) 3.2基于最大信噪比盲信号分离的算法流程 (7) 3.3基于峭度的盲信号分离的算法 (7) 3.4基于峭度的盲信号分离的算法流程 (8) 3.5基于两种算法的仿真 (8) 3.6仿真结果分析 (12) 4 结论 (13) 4.1总结 (13) 4.2未来工作 (13) 参考文献 (14)

基于MATLAB的语音信号滤波处理

基于MATLAB的语音信号滤波处理 题目:基于MATLAB的语音信号滤波处理 课程:数字信号处理 学院:电气工程学院 班级: 学生: 指导教师: 二O一三年十二月

目录CONTENTS 摘要 一、引言 二、正文 1.设计要求 2.设计步骤 3.设计内容 4.简易GUI设计 三、结论 四、收获与心得 五、附录

一、引言 随着Matlab仿真技术的推广,我们可以在计算机上对声音信号进行处理,甚至是模拟。通过计算机作图,采样,我们可以更加直观的了解语音信号的性质,通过matlab编程,调用相关的函数,我们可以非常方便的对信号进行运算和处理。 二、正文 2.1 设计要求 在有噪音的环境中录制语音,并设计滤波器去除噪声。 2.2 设计步骤 1.分析原始信号,画出原始信号频谱图及时频图,确定滤波器类型及相关指标; 2.按照类型及指标要求设计出滤波器,画出滤波器幅度和相位响应,分析该滤波器是否符合要求; 3.用所设计的滤波器对原始信号进行滤波处理,画出滤波后信号的频谱图及时频图; 4.对滤波前的信号进行分析比对,评估所设计滤波器性能。 2.3 设计内容 1.原始信号分析

分析信号的谱图可知,噪音在1650HZ和3300HZ附近的能量较高,而人声的能量基本位于1000HZ以下。因此,可以设计低通滤波器对信号进行去噪处理。 2.IIR滤波器设计 用双线性变换法分别设计了巴特沃斯低通滤波器和椭圆低通滤波器和带阻滤波器: ①巴特沃斯滤波器 fp=800;fs=1300;rs=35;rp=0.5; 程序代码如下: fp=800;fs=1300;rs=35;rp=0.5;Fs=44100; wp=2*Fs*tan(2*pi*fp/(2*Fs));ws=2*Fs*tan(2*pi*fs/(2*Fs)); [n,wn]=buttord(wp,ws,rp,rs,'s'); [b,a]=butter(n,wn,'s'); [num,den]=bilinear(b,a,Fs); [h,w]=freqz(num,den,512,Fs);

基于matlab的语音信号滤波处理——数字信号处理课程设计

数字信号处理课程设计 题目:基于matlab的语音信号滤波处理学院:物理与电子信息工程 专业:电子信息工程 班级: B07073041 学号: 200932000066 姓名:高珊 指导教师:任先平

摘要: 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴学科,是目前发展最为迅速的学科之一,通过语音传递信息是人类最重要,最有效,最常用和最方便的交换信息手段,所以对其的研究更显得尤为重要。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换成离散的数据文件,然后用起强大的矩阵运算能力处理数据。这为我们的本次设计提供了强大并良好的环境! 本设计要求自己录制一段自己的语音后,在MATLAB软件中采集语音信号、回放语音信号并画出语音信号的时域波形和频谱图。再在Matlab中分别设计不同形式的FIR数字滤波器。之后对采集的语音信号经过不同的滤波器(低通、高通、带通)后,观察不同的波形,并进行时域和频谱的分析。对比处理前后的时域图和频谱图,分析各种滤波器对于语音信号的影响。最后分别收听进行滤波后的语音信号效果,做到了解在怎么样的情况下该用怎么样的滤波器。

目录 1.设计内容 (4) 2.设计原理 (4) 2.1语音信号的时域分析 (4) 2.2语音信号的频域分析 (5) 3.设计过程 (5) 3.1实验程序源代码 (6) 3.1.1原语音信号时域、频域图 (6) 3.1.2低通滤波器的设计 (6) 3.1.3高通滤波器的设计 (7) 3.1.4带通滤波器的设计 (8) 3.1.5语音信号的回放 (9) 3.2调试结果描述 (10) 3.3所遇问题及结果分析 (15) 3.3.1所遇主要问题 (16) 3.3.2结果分析 (16) 4.体会与收获 (17) 5.参考文献 (17)

盲源分离算法初步研究

盲源分离算法初步研究 一、盲源分离基本问题 1.概念 BSS 信号盲分离,是指从若干观测到的混合信号中恢复出未知的源信号的方法。典型的观测到的混合信号是一系列传感器的输出,而每一个传感器输出的是一系列源信号经过不同程度的混合之后的信号。其中,“盲”有两方面的含义:(1)源信号是未知的;(2)混合方式也是未知的。 根据不同的分类标准,信号盲分离问题可以分成以下几类: (1)从混合通道的个数上分,信号的盲分离可以分为多通道信号分离和单通道信号分离。单通道信号分离是指多路源信号混合后只得到一路混合信号,设法从这一路混合信号中分离出多个源信号的问题就是单通道信号分离。多通道信号分离是M 个源信号混合后得到N 路混合信号(通常N ≥M )。从N 路混合信号中恢复出M 个源信号的问题即为多通道信号分离。一般情况下,单通道信号分离的难度要超过多通道信号分离。 (2)从源信号的混合方式上分,可将信号盲分离问题分为瞬时混合和卷积混合、线性混合和非线性混合等不同种类。在目前信号盲分离的研究文章中,所建模型大部分为瞬时混合。但是,作为更接近实际情况的卷积混合方式正受到越来越多的关注。 (3)根据源信号的种类,也可将信号盲分离分为多类。在通常的处理方法上,根据不同种类信号的特点,也有一些独特的处理技术。 2.盲分离问题的描述 BSS 是指仅从观测的混合信号(通常是多个传感器的输出)中恢复独立的源信号,在科学研究和工程应用中,很多观测信号都可以假设成是不可见的源信号的混合。所谓的“鸡尾酒会”问题就是一个典型的例子。在某个场所,多个人正在高声交谈。我们用多个麦克风来接受这些人说话的声音信号。每个人说话的声音是源信号,麦克风阵列的输出是观测信号。由于每个麦克风距离各个说话者的相对方位不同,它们接受到的也是这些人的声音信号以不同方式的混合。盲信号分离此时的任务是从麦克风阵列的输出信号中估计出每个人各自说话的声音信号,即源信号。如果混合系统是已知的,则以上问题就退化成简单的求混合矩阵的逆矩阵。但是在更多的情况下,人们无法获取有关混合系统的先验知识,这就要求人们从观测信号来推断这个混合矩阵,实现盲源分离。 3.混合模型 信号的混合模型包含两个方面的内容:(1)源信号的统计特征;(2)源信号的混合方式。 3.1源信号的统计特征 已有的研究表明如果加上源信号间相互独立的限制条件,就可以有效地补偿对以上先验知识的缺乏。如果用q i 表示第i 个分量的概率密度函数,则这种统计独立性可以表示为: 11221()()...()()n n n i i i q s q s q s q s ==???=∏q(s) 其中q(s)是s 的联合概率密度函数。 3.2源信号的混合方式 最简单的混合模型假定各个分量是线性叠加混合在一起而形成观测信号的。基于这样的假设,我们可以把观测信号和源信号用矩阵的方式表示为: ()()t t =x Hs 式中H 是n ×n 阶的混合矩阵。基于该模型,盲信号分离()()t t =x Hs 的目标可以表

语音信号处理matlab实现

短时能量分析matlab源程序: x=wavread('4.wav'); %计算N=50,帧移=50时的语音能量 s=fra(50,50,x);%对输入的语音信号进行分帧,其中帧长50,帧移50 s2=s.^2;%一帧内各种点的能量 energy=sum(s2,2);%求一帧能量 subplot(2,2,1); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=50'); axis([0,500,0,30]) %计算N=100,帧移=100时的语音能量 s=fra(100,100,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,2); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=100'); axis([0,300,0,30]) %计算N=400,帧移=400时的语音能量 s=fra(400,400,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,3); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=400'); axis([0,60,0,100]) %计算N=800,帧移=800时的语音能量 s=fra(800,800,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,4); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=800'); axis([0,30,0,200]) 分帧子函数: function f=fra(len,inc,x) %对读入语音分帧,len为帧长,inc为帧重叠样点数,x为输入语音数据 fh=fix(((size(x,1)-len)/inc)+1);%计算帧数 f=zeros(fh,len);%设一个零矩阵,行为帧数,列为帧长 i=1;n=1; while i<=fh %帧间循环 j=1; while j<=len %帧内循环 f(i,j)=x(n); j=j+1;n=n+1; end n=n-len+inc;%下一帧开始位置 i=i+1; end

语音信号盲分离测试工具

基于Tcl/Tk 与C 的语音信号盲分离测试工具 马骏 西安市地下铁道有限责任公司 西安 710018 摘要:如何分离多说话人环境下麦克风所采集的混合语音信号是盲源分离研究的一个重要课题。文章采用TCL/TK 与C 语言混合编程,自主开发了用于语音信号盲分离测试的工具,并介绍了该工具的结构、界面和功能。最后通过试验验证了该工具的正确性。 关键词:盲源分离 语音信号 Tcl/Tk A Tcl/Tk & C-based testing tool for blind separation of audio signals Ma Jun Xi'an Metro Co., Ltd. Xi'an 710018 Abstract: Separating independent signal from audio mixtures is one of the elementary problems in Blind Source Separation (BSS) research. The interface between Tcl/Tk is explained, and a testing tool for blind separation of audio signals is developed. The structure, interface and function of the tool are introduced. The validity of the tool is proved by experiment. Keywords :Blind source separation Audio signals Tcl/Tk 1.引言 盲源分离(BSS )[1,2,3,4]是人工神经网络与统计信号处理以及信息论相结合的产物,而混 合语音信号的盲分离是该领域的一个重要课题。使计算机具有和人类一样的听觉,是计算机智能领域研究者们的梦想。语音识别技术为我们实现计算机听觉的这一目标提供了有效的途径,使得计算机能听懂我们人类的语言,计算机操作从此变得更互动和简单自然,方便了人机的交流。混合语音信号盲分离虽然不能实现计算机听觉这一目标,但是通过该技术却能使原本相互混叠的语音信号相互剥离,来作为语音识别的预处理,从而使得噪声环境下和多说话人情形下的语音识别的实现成为可能,增大了识别算法的鲁棒性和适应能力,从这种意义上来讲该问题的研究具有很大的现实意义。 本文首先阐述了盲源分离的基本理论知识以及Tcl/Tk [5]与C 语言的接口编程,然后采用 分层软件模型开发了用于语音信号盲分离的测试工具,其外壳选择灵活的事件驱动脚本Tcl/Tk 作为基本的界面开发平台,完成配置、控制任务;而其低层的BSS 核心算法库则利用高效的编译型C 语言实现。另外为了完成语音信号的读写等操作还参考了snack [6]语音处理库及其源代码。文章介绍了该工具的结构、界面和功能,最后通过实验验证了该测试工具的正确性。 2.盲源分离模型及算法 设由N 个未知的统计独立的信号源)(t s i 构成了一个列向量,)](),...,([)(1T N t s t s t S =其中t 是离散采样时刻。设A 是一个未知的N M ?维矩阵,通常称为混合矩阵。设[]T M t x t x t X )(),...,()(1=是由M 个传感器观测到混合信号)(t x i 构成的列向量,且满足下列方程: )()((t)t V t AS X += (1) 其中T M 1t ,...,v t v t V )]()([)(=是由M 个空间白化、统计独立噪声信号(t)i v 构成的列向量。盲源分 离的命题是,对任何t ,根据观测到的)(t X ,在A 未知的条件下求)(t S 。 图1给出了语音信号盲分离算法框架图。

一种盲信号分离算法的改进研究

2010年第2期计算机与现代化 JISUANⅡYUXIANDAIHUA总第174期 文章编号:1006-2475(2010)02-0052-03 一种盲信号分离算法的改进研究 王纪伟,高宝成 (北京邮电大学自动化学院,北京100876) 摘要:盲信号分离在信号处理领城中逐渐变得重要起来,其为混合信号的分离提供一种较好的途径。独立分量分析是盲信号分离中的主流方法之一。其中的快速ICA算法更是具有分离效果好、收敛速度快的特点,具有广泛的应用。本文介绍盲信号分离的基本原理。详细阐述快速ICA算法,并且根据快速ICA算法应用中的局限性做出一些改进。取得较好的效果。 关键词:盲信号;ICA;快速ICA;目标函数 中图分类号:TNgll.23文献标识码:Adoi:10.3969/j.issn.1006-2475.2010。02.014 StudyofImprovementofBlindSignalSeparationAlgorithm WANGJi-wei,GAOBao?cheng (SchoolofAutomation,BeijingUniversityofPostsandTelecommunications。Beijing100876,China)Abstract:Theblindsignalseparationhasgraduallybecomeimportantinsignalprocessing,foritproddingabetterwaytosepa— ratemixed—signals.Intheblindsignalseparation,oneofthemainstreammethodsistheindependentcomponentanalysis,ofwhichfastICAisinwideUseforitssoodseparationeffectandfastconvergence.Thispaperdescribesthebasicprinciplesofblindsignalseparation,anddetailsofthefastICAalgorithm.Also,itmakessomeimprovementsinallusiontothelimitationsoffastICA,andachievesgoodresults. Keywords:blindsignal;ICA;fastICA;objectivefunction 0引言 近年来,盲信号分离技术在音频信号处理、通信、生物医学工程和图像处理等领域的应用越来越广泛,盲信号处理方面的研究逐渐变为信号处理中的一个重要领域,并且取得了迅速的发展[1剖。所谓盲信号分离,是指在不知源信号和传输通道参数的情况下,根据输入信源信号的统计特性,仅由观测信号恢复出信源信号的过程。典型情况下,观测信号是一组传感器的输出,其中每个传感器接收到的是源信号的不同组合口】。 独立分量分析(1CA)是针对盲源分离问题的一种基于信号高阶统计特性的分析方法,由于其对源信号所需要的先验知识极少和良好的信号分离性能,在越来越多的领域得到应用H]。Hyvarinen[51的固定点算法(又称为快速ICA算法)是一种快速和数值稳定的独立分量分析算法,具有较好的收敛速度,且没有学习速率或其它参数需要调节,因此具有广泛的应用。针对快速ICA算法在某些应用中的限制,本文对其进行了一些改进,经过仿真实验,获得较好的效果。 1盲信号分离原理 盲信号分离问题中的输入是传感器组的输出信号,设共有m个观测信号,每一个观测信号x;(j=1,2,…,m)都是由n个独立源信号si(i=1,2,…,n)线性混合而来。信号混合的方式可以用下列公式表示‘6】: 收稿日期:2009-094)3 作者简介:王纪伟(1984一),男,甘肃武威人,北京邮电大学自动化学院硕士研究生,研究方向:盲信号处理;高宝成(1961-),男,河南信阳人,副教授,博士,研究方向:弱信号检测与处理。 万方数据

基于某MATLAB地语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号:

指导老师: 一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,

语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数

语音信号的盲分离分析

目录 摘要.................................................................... I ABSTRACT ............................................................... II 第一章前言.. (2) 1.1语音特性分析 (2) 1.2语音信号的基本特征 (2) 1.3语音信号处理的理论基础 (2) 第二章盲分离的基本概念 (2) 2.1盲分离的数学模型 (2) 2.2盲源分离的基本方法 (2) 2.3盲分离的目标准则 (2) 2.4盲分离的研究领域 (2) 2.5盲分离的研究内容 (2) 第三章独立分量分析的基本算法 (2) 3.1ICA的线性模型 (2) 3.2ICA研究中的主要问题及限制条件 (2) 3.3ICA的基本算法 (2) 3.4F AST ICA算法原理 (2) 第四章语音信号盲分离仿真及分析 (2) 4.1ICA算法实现 (2) 4.2频谱分析 (2) 第五章总结 (2) 参考文献 (2)

摘要 盲源分离(BSS)是一种多维信号处理方法,它指在未知源信号以及混合模型也未知的情况下,仅从观测信号中恢复出源信号各个独立分量的过程。盲源分离已近成为现代信号处理领域研究的热点问题,在通信、语音处理、图像处理等领域具有非常重要的理论意义和广泛的应用价值。本文主要内容如下: 首先,介绍了语音信号的产生机理,特性,基本特征及语音信号处理的理论基础,为后文语音信号盲分离奠定了基础。 其次,从盲源分离的理论出发,研究了盲分离的数学模型以及基本方法,并对盲分离的目标准则、研究领域以及研究内容进行了探讨。 然后,引出了独立分量分析(ICA),并对其的概念以及相关的知识进行了研究,探讨了ICA研究中的主要问题,列出了ICA的3种基本算法:信息极大化、负熵最大化和最大似然估计法。 最后,用FastICA对三路语音信号进行了盲分离的仿真并求出了混合矩阵和分解矩阵,再接着进行了频谱,幅度,相位的分析,找出了FastICA的特点。 关键词:盲源分离;独立分量分析;频谱分析 III

matlab报告基于matlab有噪声语音信号处理

Matlab课程设计报告题目:基于MATLAB有噪声语音信号处理 系(院):计算机与信息工程学院 专业:通信工程 班级:10623102 指导教师: 学年学期:2011 ~ 2012 学年第2 学期

简介: 我们通信工程专业在实践中经常碰到需要对已接收信号进行处理的情况,而滤波器设计在数字信号处理中占有极其重要的地位。本课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现。在设计实现的过程中,我们使用双线性变换法设计IIR数字滤波器,对模拟加噪语音信号进行低通滤波、高通滤波及带通滤波,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。 1 绪论: 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。数字滤波器, 是数字信号处理中及其重要的一部分。本课题采用IIR 滤波器对加噪声音信号进行处理。 IIR滤波器采用递归型结构,即结构上带有反馈环路。IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。同时,IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。 2.原始语音信号采集与处理 2.1语音信号的采集 由于MATLAB只识别格式为.wav的声音文件,我们利用PC机上的声卡和WINDOWS操作系统进行数字信号的采集。启动录音机进行录音,以文件名“Orisound”保存入原程序所属的文件夹中。可以看到,文件存储器的后缀默认为.wav ,这是WINDOWS操作系统规定的声音文件存的标准。

语音信号的盲分离(毛丽娟)

课程设计任务书 学生姓名:毛丽娟专业班级:通信0906 指导教师:黄铮工作单位:信息工程学院 题目: 语音信号的盲分离 初始条件 ①matlab软件 ②盲信号处理知识 要求完成的主要任务: 根据盲信号分离原理,用matlab采集两路以上的语音信号,选择合适的混合矩阵生成若干混合信号。选取合适的盲信号分离算法(如独立成分分析ICA等)进行训练学习,求出分离矩阵和分离后的语音信号。 设计要求 (1)用matlab做出采样之后语音信号的时域和频域波形图 (2)选择合适的混合矩阵,得到混合信号,并做出其时域波形和频谱图 (3)采用混合声音信号进行训练学习,求出分离矩阵,编写出相应的确matlab 代码。 (4)用求出的分离矩阵从混合信号中分离出原语音信号,并画出各分离信号的时域波形和频谱图。 (5)对结果进行对比分析。 时间安排 第17周,仿真设计 第18周,完成(答辩,提交报告,演示) 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) Abstract (4) 1 语音信号 (5) 1.1 语音特性分析 (5) 1.2 语音信号的基本特征 (6) 2 盲信号处理 (8) 2.1 盲信号处理的概述 (8) 2.1.1 盲信号处理的基本概念 (8) 2.1.2 盲信号处理的方法和分类 (9) 2.1.3 盲信号处理技术的研究应用 (9) 2.2 盲源分离法 (10) 2.2.1 盲源分离技术 (10) 2.2.2 盲分离算法实现 (10) 2.3 独立成分分析 (11) 2.3.1 独立成分分析的定义 (11) 2.3.2 ICA的基本原理 (13) 3 语音信号盲分离的实现 (15) 3.1 盲信号分离的三种算法 (15) 3.1.1 二阶盲辨识(SOBI) (15) 3.1.2 FastICA算法 (15) 3.1.3 CICA算法 (16) 3.2 不同算法的分离性能比较 (17) 3.3 FastlCA的算法仿真及结果分析 (17) 4 结论 (22) 5 参考文献 (23) 附录 (24)

基于matlab的语音信号的采集与处理

目录 第1章前言 (1) 第2章语音信号分析处理的目的和要求 (2) 2.1MATLAB软件功能简介............................................................................................ - 2 - 2.2课程设计意义 ............................................................................................................. - 2 - 第3章语音信号的仿真原理. (3) 第4章语音信号的具体实现 (4) 4.1语音信号的采集........................................................................................................... - 4 - 4.2语音信号加噪与频谱分析........................................................................................... - 5 - 4.3设计巴特沃斯低通滤波器........................................................................................... - 6 - 4.4用滤波器对加噪语音滤波........................................................................................... - 7 - 4.5比较滤波前后语音信号波形及频谱........................................................................... - 8 - 第5章总结.............................................................................................................................. - 9 - 参考文献.................................................................................................................................. - 10 - 附录.......................................................................................................................................... - 11 -

相关主题
文本预览
相关文档 最新文档