当前位置:文档之家› 解读中考数学中的动态几何最值问题[1]

解读中考数学中的动态几何最值问题[1]

解读中考数学中的动态几何最值问题[1]
解读中考数学中的动态几何最值问题[1]

几何定值问题-第6讲几何中的学生版

第六讲 几何中的定值问题 一、基础知识 定值问题一般包括两类:一类是定量问题(如定长、定角、定和、定差、定积、定比、平方和或倒数 和为定值等); 一类是定形问题(如定点、定线、定圆或弧、定方向等); 求解此类问题主要是抓住数学问题中的动与静、变与不变、特殊与一般间的相互关系,从中寻找不变 的量来联立求解. 二、例题部分 第一部分 隐含的定值问题 例1. 如图,△ABC 是⊙0的内接正三角形,弦PQ 同时平分AB 、AC ,则PQ BC 等于 ( ) A . 45 B .62 C .312+ D .52 例2. 如图,OA 、OB 为任意两条半径,从B 作BE ⊥OA 于E ,过E 作EP ⊥AB 于P ,若⊙O 的半径为R ,则2OP +2EP 等于 ( ) A .2R B .2R C .42R D .14 2R 例3. 如图,AB 是⊙0的直径,C 为圆上一点,过C 点作CD ⊥AB 于D ,且∠COB=θ,则 AD BD ·2tan 2 θ= .

例4. 如图,⊙O 的半径为2,A 、B 两点在⊙O 上,切线AQ 与BQ 相交于Q ,P 是AB 的延长线上任意一点, QS ⊥OP 于S ,则OP·OS= . 例5. 如图,⊙0与⊙O '内切于点A ,以大⊙0上一点P 向小⊙O '引切线PT ,连结PA 与 小⊙O '交于点B , 若⊙0与⊙O '的半径分别为R 和r ,则2 2PT PA = . 第二部分 变化量定值问题 例6. 如图,在△A BC 中,AB=AC ,若P 为BC 边上任意一点,则点P 到两边AB 、AC 距离之和为 ( ) A .随点 P 的变化而变化 B . 12 (AB+AC) C .定值 D .12(AB+BC) 例7. △A BC 是边长固定的正三角形。D 为BC 边上的动点,1O 和2O 分别为△ABD 和△ACD 的外心,1O 1E ⊥ BC 于1E ,2O 2E ⊥BC 于2E .则1O 2E +2O 2E 的值为 .

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

初中平面几何中的定值问题

平面几何中的定值问题 开场白:同学们,动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查同学们的综合分析和解决问题的能力。这类问题中就有一类是定值问题,下面我们来看几道题: 【问题1】已知一等腰直角三角形的两直角 边AB=AC=1,P 是斜边BC 上的一动点,过 P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF= 。 方法1:特殊值法:把P 点放在特殊的B 点或C 点或 BC 中点。此种方法只适合小题。 方法2:等量转化法:这是绝大部分同学能够想到的 方法,PF=AE,PE=BE,所以PE+PF=BE+AE 。 方法3:等面积法:连接AP ,ABC ABP APC S S S AB AC AB PE AC PF ???=+??=?+? AB PE PF ?=+ 总结语:这虽然是一道动态几何问题,难吗?不难,在解决过程中(方法2抓住了边长AB 的 不变性和PE,PF 与BE,AE 的不变关系;方法3抓住了面积的不变性),使得问题迎刃而解。 设计:大部分学生都能想到方法2,若其他两种方法学生没有想到,也不要深究,更不要自己讲掉。此题可叫差生或中等偏下的学生回答(赛比艳,艾科) (设计意图:由简到难,让程度最差的同学也有在课堂上展示自我的机会。) 过渡:这道题太简单了,因为等腰直角三角形太特殊了,我若把等腰直角三角形换成一般的等腰三角形,问题有没有变化,又该如何解决?请看: 【变式1】若把问题1中的等腰直角三角形改为 等腰三角形,且两腰AB=AC=5,底边BC=6, 过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF 还是定值吗?若是,是多少? 若不是,为什么? 方法1:三角形相似进行量的转化 ABM PBE PCF ???,AM PE PF AM PB AM PC PE PF AB PB PC AB AB ???==?== ()4624 55 AM PB PC AM BC PE PF AB AB +???+==== (板书) (M 为BC 中点)(解题要点:等腰三角形中,底边上的中线是常作的辅助线,抓住这条线的 长度是不变量这个特点,建立PE,PF 与AM 之间的联系,化动为静) 方法2:等面积法: ABC ABP APC S S S BC AM AB PE AC PF ???=+??=?+? 6424 55 BC AM PE PF AB ???+= ==(M 为BC 中点) (板书) (解题要点:抓住三角形面积是个不变量,用等面积法求解,这是在三角形中求解与垂线段 有关的量的常用方法。)

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

人教版八年级下册数学专题19:动态几何之定值问题探讨

【中考攻略】专题19:动态几何之定值问题探讨 动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。前面我们已经对最值问题、面积问题、和差问题进行了探讨,本专题对定值问题进行探讨。 结合全国各地中考的实例,我们从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。 一、线段(和差)为定值问题: 典型例题: 例1:(黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R . (1)如图1,当点P 为线段EC 中点时,易证:PR+PQ= 5 12(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想. 【答案】解:(2)图2中结论PR +PQ=12 5 仍成立。证明如下: 连接BP ,过C 点作CK ⊥BD 于点K 。 ∵四边形ABCD 为矩形,∴∠BCD=90°。 又∵CD=AB=3,BC=4,∴2 2 22BD CD BC 345=+=+=。 ∵S △BCD =12BC?CD=12BD?CK ,∴3×4=5CK ,∴CK=125 。

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

九年级数学平面几何中的定值问题例题讲解

九年级数学平面几何中的定值问题例题讲解 知识点,重点,难点 所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的某种几何量却始终保持不变(或几何元素间的某种几何性质或位置关系不变)。 平面几何定值一般可分为两类:一类是定量问题(如定长度、定角、定比、平方和或倒数和为定值等);一类是定形问题(如定点、定线、定圆或弧、定方向等),它们有共同的基本特点,即给定条件中一般由固定条件和变动条件两部分组成。 一般来说,求解定值问题的方法有: 图形分析法。画出符合条件的图形后,分析图中几何元素的数量关系及位置关系,直接寻求出定值并证明。 特殊位置法。不论图形如何变动,定值这一共性始终不变,因此可选择图形的特殊位置(如极限位置、临界位置)加以探求。 参数计算法。图形运动中,选取其中的变量(如线段长、角度、面积等)作为参数,将要求的定值用参数表出,然后消去参数即得定值。 例题精讲 例1:如图,已知⊙O 及弦AB ,P 为⊙O 上任一点,PA 、PB 分别交AB 中垂线于E 、F ,求证:OE ·OF 为定值。 分析 若在⊙O 上的点P 运动到特殊位置点Q ,则点E ,点F 都和Q 点重合,于是得到OE ·OF =OQ 2,由此可推 想,该定值可能为⊙O 半径的平方。 证明 因为OE 是弦AB 的中垂线,所以 AQ BQ =,所以∠AOE=∠BOE , 所以 1.2m AOE AB ∠=又因为 1,2m PAB BP ∠= 1,2 m PBA AP ∠=∠EPB =∠PAB +∠ABP ,所以∠AOE = ∠EPB ,所以A 、O 、F 、P 四点共圆,所以∠OFB =∠OAE .又因为∠FOB =∠AOE ,所以△FOB ∽△OAE ,所以,OF OB OA OE =即OE ·OF =OA ·OB .因为OA =OB ,所以OE ·OF =OA 2(定值)。 例2:如图,设AB 、CD 是圆O 的两条定直径,P 是圆周上的任一点, 过P 作AB 垂线,过P 作CD 的垂线,其垂足分别为Q 、 R ,DT ⊥AB ,垂足为T ,求证:QR 是定长。 分析 把点P 沿⊙O 运动到特殊的点D 的位置,不难发现QR =DT ,那么当P 是圆周上的任一点时,只要证明QR =DT . 证明 设圆的半径为r ,作RS ⊥AB ,连结OP .因为PQ ⊥AB ,PR ⊥CD ,所以P 、O 、Q 、R 四点共圆,所以∠RQS =QR RS RS

中考数学重难点专题讲座动态几何与函数问题含答案(终审稿)

中考数学重难点专题讲座动态几何与函数问题 含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学重难点专题讲座 第八讲动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E. (1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积. (2)当24 t<<时,求S关于t的函数解析式.

中考压轴冲刺二 动态几何定值问题解析

中考压轴冲刺二动态几何定值问题解析 类型一【线段及线段的和差为定值】 例1、已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E. (1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F. ①写出旋转角α的度数; ②求证:EA′+EC=EF; (2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB,求线段 P A+PF的最小值.(结果保留根号) 【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°. ②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM. ∵∠CED=∠A′CE+∠CA′E=45°+15°=60°, ∴∠CEA′=120°, ∵FE平分∠CEA′, ∴∠CEF=∠FEA′=60°, ∵∠FCO=180°﹣45°﹣75°=60°, ∴∠FCO=∠A′EO,∵∠FOC=∠A′OE, ∴△FOC∽△A′OE,

∴OF A O' = OC OE , ∴OF OC = A O OE ' , ∵∠COE=∠FOA′, ∴△COE∽△FOA′, ∴∠F A′O=∠OEC=60°, ∴△A′CF是等边三角形, ∴CF=CA′=A′F, ∵EM=EC,∠CEM=60°, ∴△CEM是等边三角形, ∠ECM=60°,CM=CE, ∵∠FCA′=∠MCE=60°, ∴∠FCM=∠A′CE, ∴△FCM≌△A′CE(SAS), ∴FM=A′E, ∴CE+A′E=EM+FM=EF. (2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M. 由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′, ∴△A′EF≌△A′EB′, ∴EF=EB′, ∴B′,F关于A′E对称, ∴PF=PB′, ∴P A+PF=P A+PB′≥AB′,

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

解析几何中的定点、定值问题(含答案)

解析几何中的定点和定值问题 【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不 变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用. 【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习 1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线AB 恒过一定点.此定点的坐标为_________. 【答案】(1,0) 【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=. 注:部分优秀学生可由200x x y y r += 公式直接得出. 令4400x y -=??=? 得定点(1,0). 2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ?=______________. 【答案】-2 【解析】设00(,),(,)P x y A x y ,则(,)Q x y -- 220001222 000y y y y y y k k x x x x x x -+-?=?=-+-, 又由A 、P 均在椭圆上,故有:22 0022 21 21 x y x y ?+=??+=??,

两式相减得2 2 2 2 002()()0x x y y -+-= ,22 0122 2 02y y k k x x -?==-- 3,过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, AB 的垂直平分线交x 轴于N ,则_______.1=24 e 【解析】 设直线AB 斜率为k ,则直线方程为()3y k x =-, 与椭圆方程联立消去y 整理可得() 22223424361080k x k x k +-+-=, 则22121222 2436108 ,3434k k x x x x k k -+== ++, 所以122 1834k y y k -+= +, 则AB 中点为222129,3434k k k k ?? - ?++?? . 所以AB 中垂线方程为22291123434k k y x k k k ?? +=-- ?++??, 令0y =,则2 2334k x k =+,即22 3,034k N k ?? ?+?? , 所以2222 39(1) 33434k k NF k k +=-=++. () 22 36134k AB k += =+,所以14 NF AB =. F A ,是其左顶点和左焦点,P 是圆222b y x =+ 上的动点,若PA PF =常数,则此椭圆的离心率是

中考数学专题(3)动态几何问题分析

中考数学专题3 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t = . 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论:

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

解析几何中定值与定点问题

解析几何中定值与定点问题 【探究问题解决的技巧、方法】 (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究. 【实例探究】 题型1:定值问题: 例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的 焦点,离心率等于 (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 解:(I)设椭圆C的方程为,则由题意知b= 1. ∴椭圆C的方程为 (II)方法一:设A、B、M点的坐标分别为 易知F点的坐标为(2,0). 将A点坐标代入到椭圆方程中,得

去分母整理得 方法二:设A、B、M点的坐标分别为 又易知F点的坐标为(2,0). 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是 将直线l的方程代入到椭圆C的方程中,消去y并整理得 又 例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0). 1)求椭圆方程 2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值 (1)a2-b2=c2 =1 设椭圆方程为x2/(b2+1)+y2/b2=1 将(1,3/2)代入整理得4b^4-9b2-9=0 解得b2=3 (另一值舍) 所以椭圆方程为x2/4+y2/3=1 (2) 设AE斜率为k 则AE方程为y-(3/2)=k(x-1)①

中考数学中的探究性问题动态几何(终审稿)

中考数学中的探究性问 题动态几何 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学中的《探究性问题——动态几何》 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查 学生的综合分析和解决问题的能力。 有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。本人只是用2005 年的部分中考数学试题加以说明。 一、知识网络 《动态几何》涉及的几种情况动点问题? 动线问题动形问题? ? 二、例题经典 1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; y (2) 当t 为何值时,△APQ 与△AOB 相似 24 A (3) 当t 为何值时,△APQ 的面积为 个平方单位 5 P Q

【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=6 8k+b=0 3 解得k=-b=6 4 3 所以,直线AB 的解析式为y=-x+6. 4 (2)由AO=6,BO=8 得AB=10 所以AP=t ,AQ=10-2t 1°当∠APQ=∠AOB 时,△APQ∽△AOB. t 10 2t 30 所以=解得t= (秒) 6 10 11 2°当∠AQP=∠AOB 时,△AQP∽△AOB. t 10 2t 50 所以=解得t= 10 6 13 (秒) (3)过点Q 作QE 垂直AO 于点E. BO 4 在Rt△AOB 中,Sin∠BAO= = AB 5 O y y A P Q O A Q y B B B x x x

初中九年级数学专题复习教案:动态几何之定值问题探讨

【2013年中考攻略】专题3:动态几何之定值问题探讨 动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。前面我们已经对最值问题、面积问题、和差问题进行了探讨,本专题对定值问题进行探讨。 结合2011年和2012年全国各地中考的实例,我们从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。 一、线段(和差)为定值问题: 典型例题:例1:(2012黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R . (1)如图1,当点P 为线段EC 中点时,易证:PR+PQ= 512(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想. 【答案】解:(2)图2中结论PR +PQ=125 仍成立。证明如下: 连接BP ,过C 点作CK ⊥BD 于点K 。 ∵四边形ABCD 为矩形,∴∠BCD=90°。 又∵CD=AB=3,BC=4,∴2 2 22BD CD BC 345=+=+=。 ∵S △BCD =12BC?CD=12BD?CK ,∴3×4=5CK ,∴CK=125 。

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

解析几何中定点、定值、定直线问题

解析几何中定点、定值、定直线问题

解析几何中定点定值问题 2 例1已知椭圆 —=1(2)的上顶点为M( 0, 1),过M a 的两条动弦MA MB 满足MAL MB 对于给定的实数a(a 1), 证明:直线AB 过定点。 解:由MA MB =0知MA_MB ,从而直线MA 与坐标轴不垂直, 故可 设直线MA 的方程为y 二kx 1,直线MB 的方程为 1 y x 1 k 将y 二kx1代入椭圆C 的方程,整理得 (1 a 2 k 2 )x 2 2a 2 k=x 0 例3已知椭圆的中心为坐标原点 O ,焦点在x 轴上, 斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点, OA OB 与 a =(3,-1) 共线. (1) 求椭圆的离心率; 解得x=0或 -2a 2 k 1 a 2k 2 故点A 的坐标为 -2a 2 k 1 a 2k 2 2 2 1-a k ) 1 a k 同理,点B 的坐标为 2 2 2 (2a k k -a ) k a k a 知直线l 的斜率为 k 2 - a 2 1 -a 2k 2 k 2 a 2 1 a 2k 2 = k _1 2a k _ -2a k (a 2 1)k ~T2 2 ^~2 k a 1 a k 直线l 的方程为 k 2 -1 2 (a 2 - (x- 2a 2k k 2 a 2 k 2 a 2 k 2 -1 a 2 -1 2 (a 2 - a 2 1 -直线l 过定点0, a 2 -1 a 2 1

化简得(a 2 b 2 )x 2 —2a 2 cx a 2c 2 -a 2b 2 令 A(x i ,y i ), B(X 2 , y 2), 2 贝 y X i X 2 |a -c ^,x i x 2 a +b 2 2 a c 2 2 a b a 2 b 2 由OA OB =(为 X 2 ,% y 2 ), a =(3,- 1),OA OB 与a 共线,得 3(% y 2)(x i X 2) =0. y i =Xi -cy 7 -c, 3( x 2 -2c)区 x 2) = 0, 3c 2 . 二至,所以a 2 =3b 2. X-| x 2 2a 2c a 2 b 2 2 2 16a c = a 「b , 3 I 故离心率e = c —. (II )证明:由(I )知a 2 =3b 2 ,所以椭圆 2 2 0 y__ a 2 b 2 x 2 3y 2 =3b 2 . 设OM =(x,y),由已知得(x,y) = (Xi,y );; ■丄化 小), x =檢1 + %, 「? J y =环卡%. (2)设M 为椭圆上任意一点,且OM 「OA .OB(.i R), 证明,」为定值. 2 2 笃与=1(a b ■ 0), F(c,0), a b 2 2 则直线AB 的方程为y=x —c,代入笃吕 a b (I )解:设椭圆方程为

相关主题
文本预览
相关文档 最新文档