当前位置:文档之家› 苏教版化学选修3物质结构与性质专题3知识点

苏教版化学选修3物质结构与性质专题3知识点

苏教版化学选修3物质结构与性质专题3知识点
苏教版化学选修3物质结构与性质专题3知识点

第一单元金属键金属晶体

金属键与金属特性

[基础·初探]

1.金属键

(1)概念:金属离子与自由电子之间强烈的相互作用称为金属键。

1.金属键

的静电作用,成键特征:没有饱和性和方向性,存在于:金属和合金中))

2.金属晶体的性质

3.金属键的强弱对金属物理性质的影响

(1)金属键的强弱比较:金属键的强度主要取决于金属元素的原子半径和外围电子数,原子半径越大,外围电子数越少,金属键越弱。

(2)金属键对金属性质的影响

①金属键越强,金属熔、沸点越高。

②金属键越强,金属硬度越大。

③金属键越强,金属越难失电子。如Na的金属键强于K,则Na比K难失电子,金属性Na比K弱。

【温馨提醒】

1.并非所有金属的熔点都较高,如汞在常温下为液体,熔点很低,为-38.9℃;

金属原子在平面上(二维空间)紧密放置,可有两种排列方式。

其中方式a称为非密置层,方式b称为密置层。

②三维空间内

金属原子在三维空间按一定的规律堆积,有4种基本堆积方式。

互相垂直。晶胞的形状和大小由具体晶体的结构所决定。

(2)整个晶体就是晶胞按其周期性在三维空间重复排列而成。每个晶胞上下左右前后无隙并置地排列着与其一样的无数晶胞,决定了晶胞的8个顶角、平行的面以及平行的棱完全相同。

2.晶胞粒子数计算的原则

(1)对于平行六面体晶胞;每个晶胞的上、下、左、右、前、后共有六个与之共面的晶胞。如某个粒子为n个晶胞所共有,则该粒子有属于这个晶胞。

(2)非长方体(正方体)晶胞中粒子视具体情况而定,如石墨晶胞每一层内碳原子排成六边形,其顶点(1个碳原子)被三个六边形共有,则每个六边形占。

【规律方法】晶胞的一般计算公式

已知:晶体密度(ρ)、晶胞体积(V)、晶胞含有的组成个数(n)和N A的有关计算公式:N A=M

如NaCl晶体:N=58.5。

(2)离子键的存在:离子晶体中。

(3)成键的本质:阴、阳离子之间的静电作用。

2.离子化合物的形成条件

(1)活泼金属(指第ⅠA和ⅡA族的金属元素)与活泼的非金属元素(指第ⅥA 和ⅦA族的元素)之间形成的化合物。

(2)金属元素与酸根离子之间形成的化合物(酸根离子如硫酸根离子、硝酸根离子、碳酸根离子等)。

(3)铵根离子(NH)和酸根离子之间,或铵根离子与非金属元素之间形成的盐。

【温馨提醒】

1.离子晶体不一定都含有金属元素,如NH4Cl。

2.离子晶体中除含离子键外,还可能含有其他化学键,如NaOH、Na2O2中均含有共价键。

3.金属元素与非金属元素构成的键不一定是离子键,如AlCl3含有共价键。

离子晶体中离子配位数的多少与阴、阳离子的半径比有关。

[合作·探究]

两种常见离子晶体的阴、阳离子的空间排列探究

1.NaCl型(如图)

(1)Na+和Cl-的配位数(一种离子周围紧邻的带相反电荷的离子数目)分别为多少?

【提示】6,6。

(2)NaCl晶胞包含的Na+和Cl-分别为多少?

[核心·突破]

1.离子晶体的性质

(1)熔、沸点

①离子晶体中,阴、阳离子间有强烈的相互作用(离子键),要克服离子间的相互作用使物质熔化和沸腾,就需要较多的能量。因此,离子晶体具有较高的熔、沸点和难挥发的性质。

②一般来说,阴、阳离子的电荷数越多,离子半径越小,离子键越强,晶格能越大,离子晶体的熔、沸点越高,如Al2O3>MgO,NaCl>CsCl等。

(2)硬度

离子晶体中,阴、阳离子间有较强的离子键,离子晶体表现出较高的硬度。当晶体受到冲击力作用时,部分离子键发生断裂,导致晶体破碎。

(3)导电性

离子晶体中,离子键较强,离子不能自由移动,即晶体中无自由移动离子,

电。

(4)依据熔点判断:离子晶体熔点较高,常在数百至一千摄氏度。

(5)依据硬度和机械性能判断:离子晶体硬度较大,但较脆。

第三单元共价键原子晶体

第1课时共价键

[基础·初探]

教材整理共价键的形成与特征

1.共价键的定义

原子之间通过共用电子对形成的强烈的相互作用,叫做共价键。共价键的成键微粒是原子。

)

成键时,两个参与成键的原子轨道总是尽可能沿着电子出现机会最大的方向重叠成键,且原子轨道重叠越多,电子在两核间出现的机会越多,体系的能量就下降越多,形成的共价键越牢固。

[核心·突破]

1.共价键的饱和性

因为每个原子所能提供的未成对电子的数目是一定的,因此在共价键的形成过程中,一个原子中的一个未成对电子与另一个原子中的一个未成对电子配对成

键后,一般来说就不能再与其他原子的未成对电子配对成键了,即每个原子所能形成共价键的总数或以单键连接的原子数目是一定的,所以共价键具有饱和性。

2.共价键的方向性

除s轨道是球形对称的外,其他的原子轨道在空间上都具有一定的分布特点。在形成共价键时,原子轨道重叠的愈多,电子在核间出现的概率越大,所形成的共价键就越牢固,因此共价键将尽可能沿着电子出现概率最大的方向形成,所以共价键具有方向性。

越大,共价键的极性越强。

3.配位键

(1)定义:由一个原子提供一对电子与另一个接受电子的原子形成的共价键。

(2)表示

常用“―→”表示配位键,箭头指向接受孤电子对的原子,如NH的结构式

可表示为,其实NH中4个N—H键是完全相同的。

[核心·突破]

1.共价键的分类

两核间出现的概率增大。

2.因s轨道是球形的,故s轨道和s轨道形成σ键时,无方向性。两个s轨道只能形成σ键,不能形成π键。

3.两个原子间可以只形成σ键,但不能只形成π键。

4.一般来说,σ键比π键稳定,但不是绝对的。

共价键的键能与化学反应的反应热原子晶体

共价键的键能与化学反应的反应热

[基础·初探]

1.键能

(1)定义:在101kPa、298K条件下,1mol气态AB分子生成气态A原子和B 原子的过程中所吸收的能量,称为AB间共价键的键能。

在其他条件相同时,共价键键能越大,共价型分子或晶体的化学稳定性就越强;共价键键能越小,共价型分子或晶体的化学稳定性就越弱。

(3)判断物质在化学反应过程中的能量变化

在物质的化学变化中,旧化学键(反应物中的化学键)的断裂吸收能量,新化

)与学键(生成物中的化学键)的形成放出能量,旧化学键断裂吸收的能量之和(E

新化学键形成放出的能量之和(E

)的相对大小决定着物质化学变化过程中的放

热或吸热。

2.化学键的键能与反应热的关系

(1)定性关系

化学反应中发生旧化学键的断裂和新化学键的形成。化学键断裂需要吸收能量,形成化学键要释放出能量。化学反应中的能量变化由旧化学键断裂所吸收的总能量与新化学键形成所释放的总能量的相对大小来决定。如果化学反应中旧化学键断裂所吸收的总能量大于新化学键形成所释放的总能量,该化学反应通常为

硬度越小。

[核心·突破]

1.原子晶体的结构

(1)结构特点

原子晶体是原子间以共价键结合而形成的空间网状结构,因此晶体中不存在单个分子。

(2)两种典型原子晶体的结构

a.金刚石晶体

①在晶体中每个碳原子以共价键与相邻的4个碳原子相结合,成为正四面体。

②晶体中C—C—C夹角为109.5°。

③最小环上有6个碳原子。

④晶体中C原子个数与C—C键数之比为

1∶(4×)=1∶2。

⑤晶胞含有的C原子为8个。

范德华力较小,没有(填“有”或“没有”)饱和性和方向性。

(3)影响因素

①分子的大小、空间构型以及分子中电荷分布是否均匀。

②组成和结构相似的分子,其范德华力一般随着相对分子质量的增大而增大。如F2<Cl2<Br2<I2。

(4)对物质性质的影响

主要影响物质的熔点、沸点、溶解度等物理(填“物理”或“化学”)性质。

①分子间范德华力越大,物质的熔、沸点越高。

②与溶剂分子间范德华力越大,物质的溶解度越大。

教材整理2氢键的形成

1.形成和表示

H原子与电负性大、半径较小的原子X以共价键结合时,H原子能够跟另一个电负性大、半径较小的原子Y的孤电子对接近并产生相互作用,即形成氢

③存在分子间氢键。

氢键对物质物理性质的影响

(3)共价键强弱决定分子的稳定性,而范德华力影响其熔、沸点高低。

2.氢键的饱和性和方向性

(1)饱和性:以H2O为例,由于H—O—H分子中有2个O—H键,每个H

原子均可与另外水分子形成氢键;又由于水分子的氧原子上有2对孤电子对,可分别与另一水分子的H原子形成氢键,故每个水分子最多形成4个氢键,这就是氢键的饱和性。

(2)方向性:Y原子与X—H形成氢键时,在尽可能的范围内要使氢键与X—H 键轴在同一个方向上,即以H原子为中心,三个原子尽可能在一条直线上,氢原子尽量与Y原子的孤电子对方向一致,这样引力较大;三个原子尽可能在一条直线上,可使X与Y的距离最远,斥力最小,形成的氢键强。

【误区警示】分子间作用力与化学键影响的性质差异

范德华力和氢键主要影响物质的物理性质,如熔、沸点的高低,溶解性的大小;

1.结构特点

(1)石墨晶体是层状结构,在每一层内,碳原子排列成六边形,一个个六边

形排列成平面的网状结构,每一个碳原子都跟其他3个碳原子相结合。

(2)在同一个层内,相邻的碳原子以共价键相结合,每一个碳原子的一个未成对电子形成π键。

(3)层与层之间以范德华力相结合。

2.所属类型

石墨中既有共价键,又有范德华力,同时还有金属键的特性,是一种混合晶体。具有熔点高,质软,易导电等性质。

(1)冰晶体中分子间存在哪些作用力?

【提示】氢键和范德华力。

(2)晶体中每个H2O周围等距离最近的H2O分子有几个?

【提示】4。

(3)晶体中每个H2O分子平均形成几个氢键?

【提示】4×=2。

[核心·突破]

1.比较分子晶体熔沸点高低的方法

(1)组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。

(2)具有氢键的分子晶体,熔、沸点较高。

(3)同分异构体中,支链越多,分子间作用力越弱,熔、沸点越低。

(4)根据物质常温常压下的状态,如干冰、冰、白磷的熔沸点由高到低的顺

②金属单质(汞除外)与合金是金属晶体。

③常见的原子晶体有金刚石、晶体硅、晶体硼等非金属单质;碳化硅、二氧化硅等共价化合物。

④大多数非金属单质(除金刚石、晶体硅、晶体硼、石墨外)、气态氢化物、大多数非金属氧化物(二氧化硅除外)、酸、绝大多数有机物(有机盐除外)都是分

子晶体。

专题知识网络构建

化学选修三,人教版知识点总结

选修三知识点 第一章原子结构与性质 1能级与能层 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而

是指这样顺序填充电子可以使整个原子的能量最低。 (2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则 洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。 4.基态原子核外电子排布的表示方法 (1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:[Ar]4s1。 ③外围电子排布式(价电子排布式) (2)电子排布图(轨道表示式)是指将过渡元素原子的电子排布式中符合上一周期稀有气体的原子的电子排布式的部分(原子实)或主族元素、0族元素的内层电子排布省略后剩下的式子。每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。如基态硫原子的轨道表示式为 二.原子结构与元素周期表

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度 越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子 间斥力随分子间距离加大而减小得更快些,如图1中两条虚线 所示。分子间同时存在引力和斥力,两种力的合力又叫做分子 力。在图1图象中实线曲线表示引力和斥力的合力(即分子力) 随距离变化的情况。当两个分子间距在图象横坐标0r 距离时, 分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为 1010-m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十 分微弱,可以忽略不计了 4、温度

地理选修3知识点总结

第一章旅游资源的内涵及特点 第一节旅游资源的内涵及特点 1 旅游资源:指对旅游者具有吸引力的自然存在和历史文化遗产,以及直接用于旅游目的的人工创造物。(可以是自然风景、文物古迹,也可以是民俗风情) 2 旅游资源的内涵:1)能够吸引旅游者并直接用于欣赏、消遣,一般不包括为旅游者提供服务的设施;2)能够被旅游业开发利用;3)能够产生社会效益、经济效益和环境效益。 3 旅游资源的特点:1)内容与形式上的多样性;2)空间上的地域性;3)季节上的变化性;4)美学上的观赏性;5)吸引力的定向性;6)利用的永续性和易损性。 4 在对旅游资源开发利用时,尤其要重视对旅游资源和环境的保护,这是旅游资源存在和发展的基础。 第二节旅游资源的类型 1 自然旅游资源是自然赋予的,能使人们产生美感的自然环境或物象的组合,如地貌、水文、气候、生物、宇宙等自然要素及其互相组合的自然景观。(自然旅游资源的分类:地文景观类、气象气候类、水域风光类、生物景观类和宇宙类) 2 人文旅游资源是古今人类社会活动、文化艺术和科技创造的载体和轨迹,如文物古迹、文化艺术活动、科技与建筑成就、文化娱乐活动等人文景观。(人文旅游资源的分类:古迹和古建筑类、现代建筑成就类、消闲、求知、健身类、购物类) 第三节中国的世界遗产 1世界遗产:是全人类共同继承和拥有的具有突出的普遍价值的的共同财富。它是指人类共同继承的文化及自然遗产。 2 根据《保护世界文化和自然遗产公约》,世界遗产可分为:文化遗产、自然遗产、自然与文化遗产。 3 世界文化遗产:(略) 4 世界自然遗产:九寨沟风景名胜区、黄龙风景名胜区、武陵源风景名胜区、云南三江并流保护区、四川大熊猫栖息地和中国南方喀斯特。 5 世界文化与自然遗产:泰山、黄山、峨眉山-乐山大佛、武夷山 6 人类口述和非物质遗产代表作:昆曲、中国古琴、新疆维吾尔族木卡姆艺术和蒙古族的长调民歌 7 认识和研究世界遗产价值的必要性:一方面可提高和深化公众对世界遗产的认知程度和主动保护意识;另一方面可提高旅游业管理者与从业人员的职业道德和专业知识水平。 8 世界遗产具有科学价值、历史文化价值、美学价值和经济价值。 对保护世界遗产的“三个负责”态度:第一,对历史负责,对创造人类高度价值和文明的祖先负责;第二,对当代人负责,不仅是中国人,也包括全世界人民;第三,对未来负责,要把它完整的交给子孙后代。 9中国的十大旅游胜地 自然旅游资源有:长江三峡(湖北、重庆);桂林山水(广西);黄山(安徽);杭州西湖(浙江);日月潭(台湾)。人文旅游资源有:故宫(北京);八达岭长城(北京);苏州园林(江苏);承德避暑山庄(河北);秦陵兵马俑(陕西)。 10 四大佛教名山:山西的五台山、四川的峨眉山、安徽的九华山、浙江的普陀山。 第二章旅游资源的综合评价 第一节旅游景观的观赏 1 旅游景观的观赏要注意:1)了解景观特点;2)精选观赏点位;3)把握观赏时机;4)洞悉景观的文化定位;5)提高审美素质。 2 如何了解景观特点:1)了解景观内容;有哪些景点、分布状况、介绍景观的形成原理、了解其美学价值和历史文化内涵;2)了解景观布局的节奏和韵律:路线的设计有其序幕、发展、高潮和结束。 3 园林的构景手法:主配、层次、框景、借景。 4 自然美的表现形式:形象美、朦胧美、色彩美、动态美、声音美。 5 自然景观位置选择的一般方法: 6 把握景观的观赏时机 第二节著名旅游景区景观的特点及其成因(参考名师伴你行) 一黄山 1位置:位于安徽省东南部。 2 特点:号称天下第一奇山,是以自然景观为特色的山地旅游风景名胜区,有天下名景集黄山之赞语。“奇松、怪石、云海、温泉”,被称为黄山四绝。是我国南方珍贵的植物宝库和天然生物园。 3 成因:黄山美丽的自然风光是由地质、地貌、气候等多种自然因素共同造成的。(黄山典型的花岗岩和断层构造,使黄山成为一座花岗岩断块山,但是由于前山的岩体中节理长而深,大而稀;后山节理密集,长短深浅不一,形成前山雄伟,后山秀丽的自然风光)(黄山地处温暖湿润的北亚热带地区,降水丰富,植被茂密,化学风化和生物风化作用都比较显著。由于海拔高、空气湿度大,所以经常出现云海飘渺、烟雾朦胧的壮丽景观) 二夏威夷 1 特点:以热带风情和火山景观闻名于世;多种文化汇集交融的大熔炉。 2 成因:1)热带风情——地处热带,但受海洋环抱,气候适宜,雨量丰富;2)火山景观——较频繁而宁静的火山喷发活动,没有强烈的爆炸过程;3)多种文化汇集交融的大熔炉——种族多样,民族构成多样。 三长城 1 长城西起嘉峪关,东至鸭绿江西岸的虎山,全长6300千米。它因建筑年代之久、规模之大、历史价值之高成为中华民族的象征和世界著名的奇观,是中国十大风景名胜之一,长城(八达岭、山海关、嘉峪关)被列为世界文化遗产。 2 长城的特点:1)我国古代最伟大的军事防御建筑体系;2)长城的构筑体现了因地制宜的思想;3)重视气候、水

高中化学选修三知识点总结

高中化学选修三知识点总结 第一章原子结构与性质 1、电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图。离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小。 2、电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 3、原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 4、原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子。 5、原子核外电子排布原理: (1)能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道;

(2)泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子;(3)洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同。 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1 6、根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 7、第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1)原子核外电子排布的周期性 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化: 每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到 ns2np6的周期性变化.

高考化学选修三知识点总结

高中化学选修3知识点全部归纳(物质的结构与性质) ▼第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势.

(完整版)高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

化学选修三知识点总结

化学选修三知识点总结 第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.

(2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性.

(完整版)高中化学选修3物质结构与性质全册知识点总结,推荐文档

高中化学选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。 (3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、 E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。 原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子 跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出 (激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原 子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定 元素。 3、电子云与原子轨道

高中生物选修3知识点总结

选修3知识点复习 专题1 基因工程 (一)基因工程又叫基因拼接技术或DNA重组技术。原理是基因重组,操作水平是分子水平。优点:打破物种界限;定向地改造生物的遗传性状。 (二)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要从原核生物中分离纯化出来。 (2)功能:使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开(3)特点具有专一(特异)性。 (4)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。②区别:E·coliDNA连接酶只能连接黏性末端;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个脱氧核苷酸加到已有的脱氧核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体(1)载体具备的条件:①能够稳定保存并复制;②有一至多个限制酶酶切位点③含有标记基因,便于筛选。④对受体细胞无害。 (2)最常用的载体是质粒,化学本质是DNA分子。(3)其它载体:λ噬菌体的衍生物、动植物病毒 (三)基因工程的基本操作程序第一步:目的基因的获取 1.目的基因主要是指编码蛋白质的结构基因。 3.人工合成目的基因的两个条件:基因比较小;核苷酸序列已知。 4.PCR技术扩增目的基因 (1)PCR是多聚酶链式反应的缩写,原理DNA双链复制。 (2)过程:第一步变性:加热至90~95℃,DNA解链,不需要解旋酶;第二步复性:冷却到55~60℃,引物结合到互补DNA链。变性和复性利用了DNA的热变性原理;第三步延伸:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。 第二步:基因表达载体的构建基因表达载体的组成:除了目的基因外,还必须有启动子、终止子、标记基因等。启动子是RNA聚合酶识别和结合的部位。标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。 第三步:将目的基因导入受体细胞常用的导入方法:将目的基因导入植物细胞:采用最多的方法是农杆菌转化法,其次还有基因枪法和花粉管通道法等。将目的基因导入动物细胞:最常用的方法是显微注射法。此方法的受体细胞多是受精卵。将目的基因导入微生物细胞:原核生物作为受体细胞的原因是繁殖快、多为单细胞、遗传物质相对较少,最常用的原核细胞是大肠杆菌,其转化方法是:先用Ca2+处理细胞,使其成为感受态细胞,再将重组表达载体DNA分子溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程。 第四步:目的基因的检测和鉴定 1.首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交技术。 2.其次还要检测目的基因是否转录出了mRNA,方法是分子杂交技术。 3.最后检测目的基因是否翻译成蛋白质,方法是从转基因生物中提取蛋白质,用相应的抗体进行抗原-抗体杂交。 4.有时还需进行个体生物学水平的鉴定。如:转基因抗虫植物是否出现抗虫性状。 (四)基因工程的应用 1.植物基因工程:抗虫、抗病、抗逆转基因植物,利用转基因改良植物的品质。 2.动物基因工程:提高动物生长速度;改善畜产品品质;用转基因动物生产药物:如乳腺生物反应器和膀胱生物反应器,方法是将目的基因导入哺乳动物的受精卵中,使其发育成转基因动物。 3.基因治疗是把正常基因导入病人的体内,使该基因的表达产物发挥功能,从而达到治疗的目的,这是治疗遗传病最有效的手段。 (五)蛋白质工程的概念:基因工程在原则上只能生产自然界已存在的蛋白质,蛋白质工程师在基因工程的基础上,延伸出来的第二代基因工程。基本途径是:从预期的蛋白质功能出发→设计预期的蛋白质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列。 专题2 细胞工程 (一)植物细胞工程 1.植物组织培养技术(1)原理:植物细胞的全能性 (2)过程:离体的植物器官、组织或细胞脱分化愈伤组织再分化植物体

江苏高考化学复习期末必看——高中化学选修三知识点全归纳:第二章

第二章分子结构与性质 一.共价键 1.共价键的本质及特征 共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。 2.共价键的类型 ①按成键原子间共用电子对的数目分为单键、双键、三键。 ②按共用电子对是否偏移分为极性键、非极性键。 ③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。 3.键参数 ①键能:气态基态原子形成1 mol化学键释放的最低能量,键能越大,化学键越稳定。 ②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。 ③键角:在原子数超过2的分子中,两个共价键之间的夹角。 ④键参数对分子性质的影响键长越短,键能越大,分子越稳定. 4.等电子原理:原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。常见的等电子体:CO和N2 二.分子的立体构型 1.分子构型与杂化轨道理论 杂化轨道的要点当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同 2分子构型与价层电子对互斥模型

价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。 (1)当中心原子无孤对电子时,两者的构型一致; (2)当中心原子有孤对电子时,两者的构型不一致。 3.配位化合物(1)配位键与极性键、非极性键的比较:都属共价键(2)配位化合物 ①定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。 电离方程式:[Zn(NH3)4]SO4===[Zn(NH3)4]2++ SO42- 配合物内界稳定不电离参加化学反应,外界电离后参加反应

高中化学选修3知识点全部归纳(物质的结构与性质)资料

高中化学选修3知识点全部归纳(物质的结 构与性质)

高中化学选修3知识点全部归纳(物质的结构与性质) 第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P ②.元素电离能的运用: a. 用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱. b .电离能是原子核外电子分层排布的实验验证. 分析原子核外电子层结构,如某元素的I n+1?I n,则该元素的最外层电子数为n。 (3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。 随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势.

高中化学选修3知识点总结

高中化学选像口识籍 —、原子结构 1 \冃匕层和冃匕级 (1) 能层和能级的划 ① 在同一个原子中,离核越近能层能量越低。 ② 同一个能层的电子,能量也可能不同,还可以把它匍能级 S 、p 、d 、f,能量 由低到高依次詢P 、d 、f 。 ③ 任一能层,能级数等于能层序数。 ④ s 、p 、d 、f ............... 可容纳的电子数依次是 1、3、5、7 ................. 的两倍。 ⑤ 能层不同能级相同,所容纳的最多电子数相同。 (2) 能层、能级、原子轨道之的关系 每能层所容纳的最多电子数是:2n 2 5 :能层的序数)。 2、构造原理 (1) 构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级茹。 (2) 构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主 要依据之一。 (3)不同能层的能级有交错歸(3d ) > E (4s )、E (4d ) > E (5s )、E (5d ) > E (6s)、E (6d) > E ( 7s)、E (4f ) > E (5p)、E (4f ) > E (6s)等。原子轨道的能 量关系是:ns < ( n-2) f < (n-1 ) d < np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应 着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数為 2 ;最外层 不超过卜电子;次外层不超过个电子;倒数第三层不超过个电子。 (5)基态和激发态 ① 基态:最低能量状态。处于 最低能量状态 的原子称塞态原子。 1 2 3 4 K L M N s P 1 P d 1 P d r 1 1 3 1 3 S 1 3 S 7 2 2 6 2 6 10 2 6 10 M 2 8 18 32 2rP ■ 0?

高中物理选修3-3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A、物体质量m、摩尔质量M、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-1 0m) 球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 错误!立方体模型.3 0=V d (气体一般用此模型;对气体,d应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。

发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接 ..说明了液体分子在永不停息地做无规则运动. 错误!布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力 ②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r0(约10-10m)与10r0。 (ⅰ)当分子间距离为r0时,引力等于斥力,分子力为零。 (ⅱ)当分子间距r>r0时,引力大于斥力,分子力表现为引力。当分子间距离由r0增大时,分子力先增大后减小 (ⅲ)当分子间距r<r0时,斥力大于引力,分子力表现为斥力。当分子间距离由r0减小时,分子力不断增大 二、温度和内能 1、统计规律:单个分子的运动都是不规则的、带有偶然性的;大量分子的集体行为受到统计规律的支配。多数分子速率都在某个值附近,满足“中间多,两头少”的分布规律。 2、分子平均动能:物体内所有分子动能的平均值。 ①温度是分子平均动能大小的标志。 ②温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同). 3、分子势能 (1)一般规定无穷远处分子势能为零, (2)分子力做正功分子势能减少,分子力做负功分子势能增加。 (3)分子势能与分子间距离r0关系(类比弹性势能) ①当r>r0时,r增大,分子力为引力,分子力做负功分子势能增大。 x 0 E P r0

高中化学选修3:物质结构与性质-知识点总结

选修三物质结构与性质总结 一.原子结构与性质. 1、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度 越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子 层.原子由里向 外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用 s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f 轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述 .在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具 有较低的能量和较大的稳定性.如24Cr[Ar]3d54s1、29Cu[Ar]3d104s1. (3).掌握能级交错1-36号元素的核外电子排布式. ns<(n-2)f<(n-1)d

【人教版】高中化学选修3知识点总结[1]-3

选修三知识点汇编 第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则。比如,p3的轨道式为或,而不是。 洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部 ↑↓↑ ↓↓↓ ↑↑↑

【人教版】高中化学选修3知识点总结

选修3知识点总结 第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 记忆方法有哪些?

能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。 说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式为 或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p 0、d 0、f 0、p3、d 5、f 7、p 6、d 10、f 14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s 22p 0、12Mg 3s 23p 0、20Ca 4s 23d 0;半充满状态的有: 7N 2s 22p 3、15P 3s 23p 3、24Cr 3d 54s 1、25Mn 3d 54s 2、33As 4s 24p 3;全充满状态的有10Ne 2s 22p 6 、18Ar 3s 23p 6、29Cu 3d 104s 1、30Zn 3d 104s 2、36Kr 4s 24p 6 。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s 22s 22p 63s 23p 64s 1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s 1。 ③外围电子排布式(价电子排布式) (2)电子排布图(轨道表示式)是指将过渡元素原子的电子排布式中符合上一周期稀有气体的原子的电子排布式的部分(原子实)或主族元素、0族元素的内层电子排布省略后剩下的式子。 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 举例: ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

相关主题
文本预览
相关文档 最新文档