当前位置:文档之家› 第五节 分布拟和检验

第五节 分布拟和检验

第五节 分布拟和检验
第五节 分布拟和检验

第五节 分布拟合检验

本章前四节所介绍的各种检验法, 是在总体分布类型已知的情况下, 对其中的未知参数进行检验, 这类统计检验法统称为参数检验. 在实际问题中, 有时我们并不能确切预知总体服从何种分布, 这时就需要根据来自总体的样本对总体的分布进行推断, 以判断总体服从何种分布. 这类统计检验称为非参数检验. 解决这类问题的工具之一是英国统计学家K. 皮尔逊在1900年发表的一篇文章中引进的——2χ检验法,不少人把此项工作视为近代统计学的开端。

分布图示

★ 引言 ★ 引例 ★ 2χ检验法的基本思想 ★ 2χ检验法的基本原理和步骤

★ 2χ检验法-总体含未知参数的情形

★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5

★ 内容小结 ★ 课堂练习

★ 习题7-5

内容要点

一、引例

例如, 从1500到1931年的432年间, 每年爆发战争的次数可以看作一个随即变量, 据统计, 这432

根据所学知识和经验, 即可以假设每年爆发战争次数分布X 近似泊松分布. 于是问题归结为:如何利用上述数据检验X 服从泊松分布的假设.

二、2χ检验法的基本思想

2

χ检验法是在总体X 的分布未知时, 根据来自总体的样本, 检验总体分布的假设的一

种检验方法. 具体进行检验时,先提出原假设:

0H : 总体X 的分布函数为)(x F

然后根据样本的经验分布和所假设的理论分布之间的吻合程度来决定是否接受原假设. 这种检验通常称作拟合优度检验. 它是一种非参数检验. 一般地, 我们总是根据样本观察值用直方图和经验分布函数, 推断出总体可能服从的分布, 然后作检验.

三、2χ检验法的基本原理和步骤 1) 提出原假设:

0H :总体

X 的分布函数为)(x F

如果总体分布为离散型, 则假设具体为

0H :总体X 的分布律为 ,2,1,}{===i p x X P i i

如果总体分布为连续型, 则假设具体为

0H :总体X 的概率密度函数).(x f

2) 将总体X 的取值范围分成k 个互不相交的小区间, 记为k A A A ,,2,1 ,如可取为

);,(],(,],,(],,(11,22110k k k k a a a a a a a a ---

其中0a 可取-∞,k a 可取+∞;区间的划分视具体情况而定,使每个小区间所含样本值个数不小于5,而区间个数k 不要太大也不要太小;

3) 把落入第i 个小区间i A 的样本值的个数记作i f ,称为组频数,所有组频数之和k f f f +++ 21等于样本容量n ;

4) 当0H 为真时,根据所假设的总体理论分布,可算出总

体X 的值落入第i 个小区间i A 的概率i p , 于是i np 就是落入第i 个小区间i A 的样本值的理论频数.

5) 当0H 为真时, n 次试验中样本值落入第i 个小区间i A 的频率n f i /与概率i p 应很接近, 当0H 不真时, 则n f i /与i p 相差较大. 基于这种思想, 皮尔逊引进如下检验统计量

.)

(1

2

2

=-=

k

i i

i i np np f χ

并证明了下列结论.

定理1 当n 充分大)50(≥n 时, 则统计量2χ近似服从)1(2-k χ分布. 根据该定理, 对给定的显著性水平α, 确定l 值, 使

α

χ

=>}{2

l P ,

查2χ分布表得, ),1(2

-=k l αχ 所以拒绝域为

).1(2

2

->k αχχ

若由所给的样本值n x x x ,,,21 算得统计量2χ的实测值落入拒绝域, 则拒绝原假设0H , 否则就认为差异不显著而接受原假设0H .

四、总体含未知参数的情形

在对总体分布的假设检验中, 有时只知道总体X 的分布函数的形式, 但其中还含有未知参数, 即分布函数为

),,,,,(21r x F θθθ 其中r θθθ,,,21 为未知参数. 设n X X X ,,,21 是取自总体X 的样本, 现要用此样本来检验假设:

0H :总体

X 的分布函数为),,,,,(21r x F θθθ

此类情况可按如下步骤进行检验:

1) 利用样本n X X X ,,,21 ,求出r θθθ,,,21 的最大似然估计r θθθ?,,?,?21 ,

2) 在),,,,,(21r x F θθθ 中用i θ?代替),,,2,1(r i i =θ则),,,,,(21r x F θθθ 就变成完全已知的分布函数).?,,?,?,(21r x F θθθ

3) 计算i p 时, 利用).?,,?,?,(21r x F θθθ 计算i p 的估计值);,,2,1(?k i p

i = 4) 计算要检验的统计量

∑=-=

k

i i i i

p n p

n f

1

2

2

?/)?(χ

,

当n 充分大时,统计量2χ近似服从)1(2

--r k α

χ分布; 5) 对给定的显著性水平α, 得拒绝域

).1(?/)?(2

1

2

2

-->-=

∑=r k p

n p

n f k

i i i i αχχ

注: 在使用皮尔逊2χ检验法时,要求50≥n ,以及每个理论频数),,1(5k i np i =≥,否则应适当地合并相邻的小区间,使i np 满足要求.

例题选讲

例1(E01) 将一颗骰子掷120次, 所得数据见下表

16

15

20

21

26

23

654321i

f i 出现次数点数

问这颗骰子是否均匀、对称 (取05.0=α)?

解 若这颗骰子是均匀的、对称的, 则1~6点中每点出现的可能性相同, 都为1/6. 如果用i A 表示第i 点出现),6,,2,1( =i 则待检假设 6/1)(:0=i A P H .6,2,1 =i 在0H 成立的条件下, 理论概率,6/1)(==i i A p p 由120=n 得频率.20=i np

计算结果如下表.

因此分布不含未知参数, 又,6=k ,05.0=α 查表得.071.11)5()1(2

05.02==-χχαk

由上表,

知,

071.118.4)

(6

1

2

2

<=-=

=i i

i i np np f χ 故接受,0H 认为这颗骰子是均匀对称的.

例2 (E02) 检验引例中对战争次数X 提出的假设0H : X 服从参数为λ的泊松分布.

根据观察结果, 得参数λ的最大似然估计为.69.0?==x λ

按参数为0.69的泊松分布, 计算事件i X =的概率,i p i p 的估计是,!/69.0?69.0i e p

i i -=4,3,2,1,0=i 根据引例所给数表, 将有关计算结果列表如下:

将5?

按,05.0=α 自由度为2 查2χ分布表得 ,991.5)2(205.0=χ

因统计量2χ的观察值,991.5433.22<=χ 未落入拒绝域. 故认为每年发生战争的次数X

服从参数为0.69的泊松分布.

例3 一农场10年前在一鱼塘里按比例20:15:40:25投放了四种鱼: 鲑鱼, 鲈鱼, 竹夹鱼,

试取05.0=α解 以X 记鱼种类的序号, 按题意需检验假设:

X

H :0的分布律为

所需计算列在下表中. 现在

60041.1162

-=χ,41.11=,4=k ,0=r

但)1(205.0--r k χ14.11815.7)3(2

05.0<==χ

故拒绝,0H 认为各鱼类数量之比较10年前

有显著改变.

例 4 在一次实验中, 每隔一定时间时观察一次由某种铀所放射的到达计数器上的a 粒子数X , 共观察了100次, 得结果如下表所示

铀放射的到达计数器上的α粒子数的实验记录 12

11

10

9

8

7

6

5

4

3

2

1

012129911261716511211109876543210A A A A A A A A A A A A A A f i i

i ≥应服从泊松分布

从理论上考虑知

粒子的次数个是观察到有

其中X i f i .α

.,2,1,0,!

}{ ==

=-i i e

i X P i

λ

λ

::05.

00服从泊松分布

总体下检验假设

试在水平X H

.,2,1,0,!

}{ ==

=-i i e

i X P i λ

λ

解 因在0H 中参数λ未具体给出, 所以先估计.λ

14

.61116.188150

25

.0168

67.16624040.020011.1119015.010020.14512020.0132?/??4

3212

=∑A A A A p n f p n p f A i i i i i i

由最大似然估计法得.2.4?==x λ在0

H 假设下, 即在X 服从泊松分布的假设下, X 所有可能取的值为},,2,1,0{ 将其分成如表所示的两两不相交的子集将其分成如表所示的两两不相交的子集,,,,1210A A A 则}{i X P =有估计

,!

2.4?2

.4i e

p

i

i -=

,1,0=i

计算结果如表所示, 其中有些5?

n 的组予以适当合并, 使得每组均有,5?

2χ的自由度为.6118=-- 查表得592.12)6()118(2

05.0205.0==--χχ

现在,592.12281.6100281.1062<=-=χ 故在水平0.05下接受,0H 即认为样本来自泊松布总体.

例5(E03) 为检验棉纱的拉力强度(单位: 公斤)X 服从正态分布, 从一批棉纱中随机抽取300条进行拉力试验, 结果列在下表中, 我们的问题是检验假设

:0H )01.0()

,(~2

=ασ

μN X .

表7-5-5 棉纱拉力数据

56

48

.1~34.17

1

38

.2~18.213

5334.1~20.16318.2~04.2123720.1~06.151604.2~90.1112506.1~92.041990.1~76.110992.0~78.032576.1~62.19278.0~64.025362.1~48.18164.0~5.01i i f x i f x i

解 可按以下四步来检验:

(1) 将观测值i x 分成13组: ,0∞-=a ,64.01=a ,78.02=a , ,81.212=a ,13∞=a

但是这样分组后, 前两组和最后两组的i np 比较小, 故把它们合并成为一个组(见分组数据表)

(2) 计算每个区间上的理论频数. 这里)(x F 就是正态分布),(2σμN 的分布函数, 含有两

个未知数μ和,2

σ 分别用它们的最大似然估计X =μ

?和∑=-=n i i n X X 1

22

/)(?σ来代替. 关于X 的计算作如下说明: 因拉力数据表中的每个区间都很狭窄, 我们可认为每个区间内i X 都取这个区间的中点, 然后将每个区间的中点值乘以该区间的样本数, 将这些值相加再除以总样

本数就得具体样本均值,X 计算得到: ,41.1?=μ

.26.0?22=σ

对于服从)26.0,41.1(2N 的随机变量Y , 计算它在上面第i 个区间上的概率.i p

(3) 计算30021,,,x x x 中落在每个区间的实际频数,i f 如分组表中所列.

(4) 计算统计量值: ,

07.22?)?(10

1

2

2

=-=

=k i i i p

n p

n f χ 因为,2,100==r k 故2χ的自由度为

,71210=--

查表得 ,07.2248.18)7(2201.0=<=χχ 故拒绝原假设, 即认为棉纱拉力强度不

服从正态分布.

棉纱拉力数据的分组表

课堂练习

1. 自1965年1月1日至1971年2月9日共2231天中,全世界记录到里氏震级4级和4级以上地震计162次,统计如下:

相继两次地震记录表

8

6

6

8

10

17

26

31

50

403935343029252420191514109540出现的频率

间隔天数--------x 试检验相继两次地震间隔的天数X 服从指数分布(=α0.05).

31

.969

.60223

.016

04

.2~90.110

48.152.170584.019

90.1~76.19

15.1115.361205.02576.1~62.1838.238.551846.05362.1~48.1784.784.632128.05648.1~34.1638.238.551846.053

34.1~20.1585.015.361205.037

20.1~06.1448.752.170584.02506.1~92.0331.269.60223.0992.0~78.0232.268.40156.0704.278.01???---->≤-或区间区间序号

i i i i i

p n f p n p f

总结正态性检验的几种方法

总结正态性检验的几种方法 1.1 正态性检验方法 1)偏度系数 样本的偏度系数(记为1g )的计算公式为 ()233133 1(1)(2)(1)(2)n i i n n g x x n n s n n s μ==-=----∑, 其中s 为标准差,3μ为样本的3阶中心距,即()331 1n i i x x n μ==-∑。 偏度系数是刻画数据的对称性指标,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。 (2)峰度系数 样本的峰度系数(记为2g ),计算公式为 ()2424 122 44(1)(1)3(1)(2)(3)(2)(3)(1)(1)3(1)(2)(3)(2)(3)n i i n n n g x x n n n s n n n n n n n n s n n μ=+-=-------+-=------∑, 其中s 为标准差,4μ为样本的3阶中心距,即()441 1n i i x x n μ==-∑。 当数据的总体分布为正态分布时,峰度系数近似为0,;当分布为正态分布的尾部更分散时,峰度系数为正;否则为负。当峰度系数为正时,两侧极端数据较多,当峰度系数为负时,两侧极端数据较少。 (3)QQ 图 QQ 图可以帮助我们鉴别样本的分布是否近似于某种类型的分布。现假设总体为正态分布()2 ,N μσ,对于样本12,,,n x x x L ,其顺序统计量是(1)(2)(),,,n x x x L 。设()x Φ为标准正 态分布()0,1N 的分布函数,1 ()x -Φ是反函数,对应正态分布的QQ 图是由以下的点 1()0.375,,1,2,,0.25i i x i n n -??-??Φ= ? ?+???? L , 构成的散点图,若样本数据近似为正态分布,在QQ 图上这些点近似地在直线上 y x σμ=+, 附近,此直线的斜率是标准差σ,截距式均值,μ,所以利用正态QQ 图可以做直观的正态性检验。若正态QQ 图上的点近似地在一条直线上,可以认为样本的数据来自正态分布总

正态性检验的几种方法

正态性检验的几种方法 一、引言 正态分布是自然界中一种最常见的也是最重要的分布。因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。 二、正态分布 2.1 正态分布的概念 定义1若随机变量X 的密度函数为 ()()()+∞∞-∈= -- ,,21 2 2 2x e x f x σμπ σ 其中μ和σ为参数,且()0,,>+∞∞-∈σμ 则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。 另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ?和()x Φ表示。 引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()?? ? ??-Φ=σμx x F 由引理可知,任何正态分布都可以通过标准正态分布表示。 2.2 正态分布的数字特征

二项分布与正态分布

第七章假设检验 第一节二项分布 二项分布的数学形式·二项分布的性质 第二节统计检验的基本步骤 建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定第三节正态分布 正态分布的数学形式·标准正态分布·正态分布下的面积·二项分布的正态近似法 第四节中心极限定理 抽样分布·总体参数与统计量·样本均值的抽样分布·中心极限定理 第五节总体均值和成数的单样本检验 σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验)·关于总体成数的检验 一、填空 1.不论总体是否服从正态分布,只要样本容量n足够大,样本平均数的抽样分布就趋于()分布。 2.统计检验时,被我们事先选定的可以犯第一类错误的概率,叫做检验的( ),它决定了否定域的大小。 3.假设检验中若其他条件不变,显著性水平的取值越小,接受原假设的可能性越(),原假设为真而被拒绝的概率越()。 4.二项分布的正态近似法,即以将B(x;n,p)视为()查表进行计算。 5.已知连续型随机变量X~N(0,1),若概率P{X ≥λ}=0.10,则常数λ=()。 6.已知连续型随机变量X~N(2,9),函数值 9772 .0 )2( = Φ ,则概率 }8 {< X P= ()。 二、单项选择 1.关于学生t分布,下面哪种说法不正确()。 A 要求随机样本 B 适用于任何形式的总体分布 C 可用于小样本 D 可用样本标准差S代替总体标准差σ 2.二项分布的数学期望为()。 A n(1-n)p B np(1- p) C np D n(1- p)。 3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为()。 A 大于0.5 B -0.5 C 1 D 0.5。

SPSS统计分析1:正态分布检验.

正态分布检验 一、正态检验的必要性[1] 当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。 当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方 法,而应采用非参数检验。 二、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 Q-Q图为佳,效率较高。 以上两种方法以 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 三、计算法 1、峰度(Kurtosis)和偏度(Skewness) (1)概念解释 峰度是描述总体中所有取值分布形态陡缓程度的统计量。这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比

较为平坦,为平顶峰。峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异 程度越大。 峰度的具体计算公式为: 注:SD就是标准差σ。峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。 偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。偏度的绝对值数值越大表示其分布形态的偏斜程度越大。 偏度的具体计算公式为: 各种正态分布,尽管μ和σ可以分别取不同的值,但偏度都等于0,峰度都等于3,它们的密度函数曲线的形状都是一样的[1]。(SPSS中峰度减3与0比较 (2)适用条件 样本含量应大于200。 (3)检验方法 计算得到的峰度、偏度根据正态分布的值3、0(SPSS中为0、0)来直观判断是 否接近。 应对二者分别进行U检验来定量描述显著性,方法如下[2]:峰度U检验:|峰度-3| / 峰度标准差 <= U0.05 = 1.96(SPSS中将3替换为0)偏度U检验:|偏度-0| / 偏度标准差 <= U0.05 = 1.96 如果上述都成立,则可认为在0.05显著水平符合正态分布(下例偏度可判断不符合。

正态分布检验

Shapiro-Wilk 检验含义:Shapiro —Wilk 检验法是S.S.Shapiro 与 M.B.Wilk提出用顺序统计量W来检验分布的正态性,对研究的对象总体先提出假设认为总体服从正态分布,再将样本量为n的样本按大小顺序排列编秩,然后由确定的显著性水平a ,以及根据样本量为n时所对应的系数a i,根据特定公式计算出检验统计量W.最后查特定的正态性W检 验临界值表,比较它们的大小,满足条件则接受假设认为总体服从正态分布,否则拒绝假设,认为总体不服从正态分布? W检验全称Shapiro-Wilk检验,是一种基于相关性的算法。计算可得到一个相关系数,它越接近1就越表明数据和正态分布拟合得越好。 w检验是检验样本容量8< n < 50,样本是否符合正态分布的一种方法。 计算式为: E-Lj k -訓 其检验步骤如下: ①将数据按数值大小重新排列,使x1W,接受正态性假设。

正态分布是许多检验的肚础,比如F检验,t检验,卡方检验等在总体不是正太分布是没有任何盘义。因此,対一个样本是否来口正态总、体的检验是至关巫要的。当然,我们无法证明某个数据的确来口正态总体,但如果使用效率高的检验还?无法否认总体是正太的检验,我『]就没有理山否认那些和正太分布有关的检验有意义,下而我就对正态性检验方法进行简单的归纳和比较。 一.图示法 1.P-P 图 以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。如果数据服从 F态分布,则样本点应鬧绕第一象限的对角线分布。 2.Q-Q 图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。如果数据服从正太分布,则样本点应围绕第一彖限的对角线分布。 以上两种方法以Q-Q图为佳,效率较高。 3.直方图 判断方法:是否以钟型分布,同时可以选择输出正态性曲线。 4.箱线图 判断方法;观察矩形位置利中位数,若矩形位于中间位置且中位数位于矩形的中间位迓,则分布较为对称,否则是偏态分布。 5.茎叶图

spss_大数据正态分布检验方法及意义要点

spss 数据正态分布检验方法及意义判读 要观察某一属性的一组数据是否符合正态分布,可以有两种方法(目前我知道这两种,并且这两种方法只是直观观察,不是定量的正态分布检验): 1:在spss里的基本统计分析功能里的频数统计功能里有对某个变量各个观测值的频数直方图中可以选择绘制正态曲线。具体如下:Analyze-----Descriptive S tatistics-----Frequencies,打开频数统计对话框,在Statistics里可以选择获得各种描述性的统计量,如:均值、方差、分位数、峰度、标准差等各种描述性统计量。在Charts里可以选择显示的图形类型,其中Histograms选项为柱状图也就是我们说的直方图,同时可以选择是否绘制该组数据的正态曲线(With nor ma curve),这样我们可以直观观察该组数据是否大致符合正态分布。如下图: 从上图中可以看出,该组数据基本符合正态分布。 2:正态分布的Q-Q图:在spss里的基本统计分析功能里的探索性分析里面可以通过观察数据的q-q图来判断数据是否服从正态分布。 具体步骤如下:Analyze-----Descriptive Statistics-----Explore打开对话框,选择Plots选项,选择Normality plots with tests选项,可以绘制该组数据的q-q 图。图的横坐标为改变量的观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中直线。 纵坐标为分位数,是根据分布函数公式F(x)=i/n+1得出的.i为把一组数从小到大排序后第i个数据的位置,n为样本容量。若该数组服从正态分布则其q-q图应该与理论的q-q图(也就是图中的直线)基本符合。对于理论的标准正态分布,其q-q图为y=x直线。非标准正态分布的斜率为样本标准差,截距为样本均值。 如下图:

正态性检验的一般方法汇总

正态性检验的一般方法 姓名:蓝何忠 学号:1101200203 班号:1012201 正态性检验的一般方法 【摘要】:正态分布是自然界中一种最常见的也是最重要的一种分布.因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验.在一般性的概率统计教科书中,只是把这个

问题放在一般性的分布拟合下作简短处理,而这种万精油式的检验方法,对正态性检验不具有特效.鉴于此,该文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较, 【引言】一般实际获得的数据,其分布往往未知。在数据分析中,经常要判断一组数据的分布是否来自某一特定的分布,比如对于连续性分布,常判断数据是否来自正态分布,而对于离散分布来说,常判断是否来自二项分布.泊松分布,或判断实际观测与期望数是否一致,然后才运用相应的统计方法进行分析。 几种正态性检验方法的比较。 2?一、拟合优度检验: (1)当总体分布未知,由样本检验总体分布是否与某一理论分布一致。 H0: 总体X的分布列为p{X=}=,i=1,2,…… H1:总体 X. 的分布不为 构造统计量 为真时H0发生的理为为样本中发生的实际频数,其中论频数。2)检验原理(2?意味着对于,=,观测频数与期望频数完全一致,若=0,则即完全拟合。 2?观察频数与期望频数越接近,则值越小。 2?当原假设为真时,有大数定理,与不应有较大差异,即值应较小。

2?若值过大,则怀疑原假设。 2?拒绝域为R={d} ,判断统计量是否落入拒绝域,得出结论。 二、Kolmogorov-Smirnov正态性检验: Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定它的 检验方法是以样本数比如检验一组数据是否为正态分布。分布。. 据的累积频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。即对于假设检验问题: H0:样本所来自的总体分布服从某特定分布 H1:样本所来自的总体分布不服从某特定分布 统计原理:Fo(x)表示分布的分布函数,Fn(x)表示一组随机样本的累计概率函数。 #}n1,2,,x{x?,i?i?)F(x n n : x)差距的最大值,定义如下式Fn为Fo(x)与(D设 D=max|Fn(x)-Fo(x)| P{Dn>d}=a. a,对于给定的位健康男性在未进食前的血糖浓度如表所示,试测验这组35例如: =6的正态分布,标准差数据是否来自均值μ=80σ87 77 92 68 80 78 84 77 81 80 80 77 92 86 76 80 81 75 77 72 81 90 84 86 80 68 77 87 76 77 78 92 75 80 78 n=35 检验过程如下:健康成人男性血糖浓度服从正态分布 H0:假设健康成人男性血糖浓度不服从正态分布 H1: 计算过程如表:

参数估计和假设检验习题解答

参数估计和假设检验习题 1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2 Z z α>,取0.05,α=26,n = 0.0250.9752 1.96z z z α===, 由检验统计量 1.25 1.96Z = ==<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600. 2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。问,新工艺上浆率能否推广(α=0.05)? 解: 012112:, :,H H μμμμ≥< 3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)? 解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2 Z z α>,取0.0252 0.05, 1.96z z αα===, 100,n = 由检验统计量 3.33 1.96Z = ==>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响. 4.有一批产品,取50个样品,其中含有4个次品。在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)? 解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==, 50,n = 由检验统计量0.9733Z = ==<1.65,接受H 0:p ≤0.05. 即, 以95%的把握认为p ≤0.05是成立的. 5.某产品的次品率为O.17,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=0.05)? 解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n = 0.950.05, 1.65z α=-=-,由检验统计量 400 1.5973i x np Z -= = =-∑>-1.65, 接受0:0.17H p ≥, 即, 以95%的把握认为此项新工艺没有显著地提高产品的质量. 6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)?

单个正态总体的假设检验

学院数学与信息科学学院 专业信息与计算科学 年级 2011级 姓名姚瑞娟 论文题目单个正态总体的检验假设 指导教师韩英波职称副教授成绩 2014年3月10日

目录 摘要 (1) 关键词 (1) Abstrac (1) Keywords (1) 前言 (1) 1 假设检验的基本步骤 (2) 1.1 建立假设 (2) 1.2 建立假设选择检验统计量,给出拒绝域形式 (2) 2 单个正态总体均值的检验 (3) 2.1 δ已知时的μ检验 (4) 2.2 δ未知时的t检验 (6) 3 单个正态总体方差的检验 (8) 参考文献 (9)

单个正态总体的假设检验 学生姓名:姚瑞娟学号:20115034036 数学与信息科学学院信息与计算科学专业 指导老师:韩英波职称:副教授 摘要:本文介绍了假设检验的基本步骤,如何建立假设检验,判断假设是否正确.此外,从2δ已知和2δ未知详细的讲述了单个正态总体μ的检验,还有单个正态总体方差的检验,及与它们相关的应用举例. 关键词:正态分布;假设检验;均值;方差;拒绝域;接受域;原假设; Hypothesis test of one normal population Abstract:It introduces the basic steps of hypothesis test in this paper, and how to build hypothesis and correct judgment test. In addition, it detailed introduces the single hypothesis test from variance is known and unknown. There is a single of normal population variance test and the related application. Keywords:normal distribution;price value;hypothesis test;variance;rejected region;receptive regions;the original hypothesis 前言 假设检验是由K.Pearson于20世纪初提出的,之后由费希尔进行了细化,并最终由奈曼和E.Pearson提出了较完整的假设检验理论.统计推断的一个重要内容就是假设检验.然而,正态分布正态分布是最重要的一种概率分布,正态分布概念是由德国的数学家和天文学家Moiré于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大他使正态分布同时有了”高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他.也是出于这一工作,高斯是一个伟大的数学家,重要的贡献不胜枚举.但现今德国10马克的印有高斯头像的钞票,其上还印有正态

拟合优度检验及其应用

拟合优度检验及其应用 辅修专业:经济学 12级法学1班 201210141419 刘金锋摘要:数理统计的两个主要形式就是参数估计和假设检验,在这里,我 们只介绍后者——假设检验,其中又只对假设检验中的拟合优度检验假设作介绍。假设检验根据样本分布族的数学形式已知与否,可分为参数假设检验和非参数假设检验,作为非参数假设检验之一的拟合优度检验,又是检验理论分布假设的重要方法。为了帮助我们更好了解拟合优度检验,本文将首先给我们介绍拟合优度检验的数学定义。其次,重点介绍时下讨论最多的两种 拟合优度方法——2 Pearsonχ检验和Kolmogorov Smirnov -检验,并穿插具体实例解答来给我们直观的印象,帮助理解。最后,考虑到检验过程会很复杂,本文在最后一节讲述了这两种检验的软件实现,结合实例,编写运行程序。关键词:假设检验;非参数假设检验;拟合优度;2 Pearsonχ检验; -检验 Kolmogorov Smirno 内容安排 1.拟合优度检验的提出 2.几种常用拟合优度检验介绍 2.1.2 Pearsonχ检验 2.1.1.理论分布完全已知情况 1.随机变量X是离散型 2.理论分布为确定分布 2.1.2.理论分布带有未知参数 2.2.Kolmogorov Smirnov -检验 2.3.2 Pearsonχ检验与Kolmogorov Smirnov -检验的比较 3.拟合优度检验实例分析 4.拟合优度检验的软件实现 4.1.2 Pearsonχ检验的软件实现 4.2.Kolmogorov Smirnov -检验的软件实现 5.参考文献

1.拟合优度检验的提出[1] 假设检验问题就是通过从有关总体中抽取一定容量的样本,利用样本去检验总体分布是否具有某种特性。假设检验问题大致分为两大类: (1)参数型假设检验:即总体的分布形式已知(如正态、指数、二项分布等),总体分布依赖于未知参数(或参数向量)θ,要检验的是有关未知参数的假设。例如,总体X ~N (α,2б), α未知,检验 0010::H a a H a a =?≠ 或 0010::H a a H a a ≤?>. (2)非参数型假设检验:如果总体分布形式未知,此时就需要有一种与总体分布族的具体数学形式无关的统计方法,称为非参数方法。例如,检验一批数据是否来自某个已知的总体,就属于这类问题。 正如摘要所说,我们在本节只讨论非参数型假设检验问题,常用的非参数假设检验方法有:符号检验、符号秩和检验、秩和检验及Fisher 臵换检验和拟合优度检验。本文又只对拟合优度检验做深入介绍。 拟合优度检验问题的提法如下:设有一个一维或多维随机变量X ,令 1,,n X X …为总体X 中抽取的简单样本,F 是一已知的分布函数。要利用样本1,,n X X …检验假设 0:..H r v X 的分布为F , (1.1.1) 其中F 常称为理论分布。 导出这种假设检验的想法大致如下:设法提出一个反映实际数据1,,n X X …与理论分布F 偏差的量1(,,;)n D D X X F =…。如果D 较大,如D C ≥,则认为理论分布F 与数据1,,n X X …不符,因而否定0H 。然而这种“非此即彼”的提法常显得有点牵强。因为一般来说,理论和实际没有截然的符合或不符合。更恰当的提法是实际数据与理论分布符合的程度如何?因此通常对0H 的检验不是以“是”或“否”来回答,而是提供一个介于0和1之间的数字作为回答,即用此数作为符合程度的度量刻画。就具体样本算出D 之值,记为0d 。称下列的条件概率: 000()()p d P D d H =≥| 为在选定的偏离指标D 之下,样本与理论分布的拟合优度。0()p d 越接近1,表示样本与理论分布拟合的越好,因而原假设越可信。反之,它越接近0,则原假设0H 越不可信。如果它低到指定的水平α之下,则就要否定0H 了。

第三节-两正态总体的假设检验

第三节 两个正态总体的假设检验 上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题. 1.两正态总体数学期望假设检验 (1) 方差已知,关于数学期望的假设检验(Z 检验法) 设X ~N (μ1,σ12),Y ~N (μ2,σ22),且X ,Y 相互独立,σ12与σ22 已知,要检验的是 H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 怎样寻找检验用的统计量呢从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…, 1n X 及Y 1,Y 2,…,2n Y ,由于 2111~,X N n σμ?? ??? ,2222~,Y N n σμ?? ???, E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )= 22 121 2 n n σσ+, 故随机变量X -Y 也服从正态分布,即 X -Y ~N (μ1-μ2, 22 121 2 n n σσ+). 从而 X Y ~N (0,1). 于是我们按如下步骤判断. (a ) 选取统计量 Z X Y , () 当H 0为真时,Z ~N (0,1). (b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使 P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. () (c ) 由两个样本观察值计算Z 的观察值z 0: z 0 x y . (d ) 作出判断: 若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0. 例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭

判断正态性的几种方法总结

判断正态性的几种方法总结 展开全文 数据服从正态分布是很多分析方法的前提条件,在进行方差分析、回归分析等分析前,首先要对数据的正态性进行分析,确保方法选择正确。如果不满足正态性特质,则需要考虑使用其他方法或对数据进行处理。 检测数据正态性的方法有很多种,以下为几种常见方法:图示法、统计检验法、描述法等。 01. 正态图正态分布图可直观地展示数据分布情况,并结合正态曲线判断数据是否符合正态分布。

操作方法:SPSSAU→可视化→正态图 分析时,选择【正态图】分析方法,拖拽分析项到右侧分析框内,点击“开始正态图分析”即可得到结果。 正态图 若数据基本符合正态分布,则会呈现出中间高、两侧低、左右基本对称的“钟形”分布曲线。 若数据为定类数据或数据量较少,一般很难呈现出标准的正态分布,此时建议只要图形呈现出“钟形”也可接受数据服从正态分布。 若数据分布完全偏离正态,则说明数据不符合正态分布。02. P-P图/Q-Q图P-P图和Q-Q图,都是通过散点与正态分布的预测直线法重合程度以说明数据是否服从正态分布。 P-P图是将实际数据累积比例作为X轴,将对应正态分布累积比例作为Y轴,作散点图,反映实际累积概率与理论累积概率的符合程度。 Q-Q图将实际数据作为X轴,将对应正态分布分位数作为Y 轴,作散点图,反映变量的实际分布与理论分布的符合程度。如数据服从正态分布,则散点分布应近似呈现为一条对角直线。反之则说明数据非正态。P-P图和Q-Q图的功能一致,

使用时没有区别。 03. 正态性检验利用统计图分析正态性,往往是依靠分析者的主观判断进行。因而容易产生结果偏差。因此需要结合其他方法,对数据的正态性指标进行统计描述。 正态性检验分析定量数据是否具有正态分布特质。 操作步骤:选择【正态性检验】分析方法,拖拽分析项到右侧分析框内,点击“开始正态性检验”即可得到结果。 分析结果 如果样本量大于50,则应该使用Kolmogorov-Smirnov检验结果,反之则使用Shapro-Wilk检验的结果。 上图中,样本量为300,因而选择K-S检验。P值=0.149>0.05,说明数据服从正态分布。 04. 描述法描述法即通过描述数据偏度和峰度系数检验数据的正态性。 偏度和峰度可通过描述性分析得到,也可在正态性检验中直接查看。 理论上讲,标准正态分布偏度和峰度均为0,但现实中数据无法满足标准正态分布,因而如果峰度绝对值小于10并且偏度绝对值小于3,则说明数据虽然不是绝对正态,但基本

数据的正态分布

数据的正态性检验汇总 2012-11-21 00:01:04| 分类:统计学习|字号订阅 如何在spss中进行正态分布检验 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式:

g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的"偏度和峰度都接近0……可以认为……近似服从正态分布"并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样本大小位于 3 和 5000 之间时,计算该统计量。由此可见,部分SPSS教材里面关于"Shapiro – Wilk 适用于样本量3-50之间的数据"的说法实在是理解片面,误人子弟。(2)单样 本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。 对于此两种检验,如果P值大于0.05,表明资料服从正态分布。 三、SPSS操作示例 SPSS中有很多操作可以进行正态检验,在此只介绍最主要和最全面最方便的操作: 1、工具栏--分析—描述性统计—探索性

为何需要正态分布和方差齐性的检验

为何需要正态分布和方差齐性的检验? 很多时候,我们都需要使用从单一样本中获取的样本信息利用统计推断的方法来估计总体的参数信息,这是一种非常有用的统计方法,但在执行相关推断之前,我们需要验证一些假定,任何一条假定若是不能满足,则得到的统计结论就是无效的。 通常数据的分析假设为:随机数据,独立的,正态分布,等方差,稳定,当然,测量系统的精确性和准确性也是要满足测量要求的。 什么是正态分布假定? 在再进行统计分析之前,需要识别出数据的分布,否则,错误的统计检验将带来一定的风险,许多统计方法在执行之前嘉定数据服从正态分布,比如,单/双样本-T检验,过程能力分析,I-MR和方差分析等。如果数据不满足正态分布,则需要使用非参数方法,利用中位数进行检验而不是均值,也可以使用BOX-COX转换或JOHNSON变换的方法把数据转换为正态分布。 但是需要知道许多统计工具虽然假定数据满足正态但实际上当样本量大于15或20的时候就不需要正态分布了,但是如果样本量小于15且数据不满足正态分布,P值得数据就是错误的,相关统计结论就需要特别注意了。 在Minitab中,有许多方法可以判断数据的分布是否满足正态,下面我们来了解两种比较常用的方法:正态检验和图形化汇总 Minitab的正态检验将生成概率图和执行单样本假设检验来判断数据的分布是否来自满足正态的分布总体,原假设是数据满足正态分布而备择假设是不满足 选择统计—基本统计量—正态检验 下面我们先看看数据的正态检验

图形中的数据点应该在直线的附近,如果有些数据点在尾巴上远离直线也可以接受,但前提条件是必须在置信区间内才可以。 图形中的数据点应该靠近你和分布直线且通过“粗笔检验”,用一只“粗笔”盖在拟合直线上,如果铅笔能盖住所有数据点,则数据满足正态分布 与之相连的Anderson-Darling检验统计量应该很小 P值应该大于选择的Alpha风险(通常取或) Anderson-Darling统计量用来衡量数据点远离拟合直线的程度,是每个数据点到直线距离的平方和,对于一组给定的数据分布来说,分布拟合的越好,该值就会越小。 Minitab描述性统计输出通过图形化汇总直观的展示数据分布和计算了Anderson-Darling数值和P 值,图形化汇总输出四张图形:带有正态拟合线的直方图,箱线图,均值和中位数的95%置信区间图。 接下来分析图形化汇总中的正态检验: 数据通过直方图展示出来,查看图形的分布行形状(对称还是有偏度),数据在图形中是如何延伸的,且需要查看是否存在异常数据 与之相关的Anderson-Darling统计量数值应该很小 P值应该大于选择的Alpha风险(通常取或) 对于一些流程来说,比如时间和循环周期的数据,数据永远不会满足正态分布的,不满足正态分布的数据对于一些统计方法是适用的,但需要明确数据需要满足一些特殊需求。 什么是等方差假定? 通常,方差是指数据的分布离散程度,统计分析中,比如方差分析(ANOVA)中,嘉定虽然不同的样本数据来自不同均值的抽样总体,它们应该有相同的方差,方差齐性是指不同样本的方差大体相同,如果方差非齐性会影响第一类风险且导致错误的结论,如果比较两个或两个以上样本均值,比如双样本T检验和ANOVA中,如果方差显著有差异将会掩盖掉均值的差异信息并导致错误的结论。 Minitab提供了几种可以执行等方差检验的方法,可以参考Minitab的帮助来决定基于不同的数据类型该选择哪种方法,当然,也可以通过使用Minitab协助来验证该假定(技巧:当使用协助,点

如何检验数据是否服从正态分布

如何检验数据是否服从正态分布 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。 对于此两种检验,如果P值大于0.05,表明资料服从正态分布。 三、SPSS操作示例 SPSS中有很多操作可以进行正态检验,在此只介绍最主要和最全面最方便的操作: 1、工具栏--分析—描述性统计—探索性 2、选择要分析的变量,选入因变量框内,然后点选图表,设置输出茎叶图和直方图,选择输出正态性检验图表,注意显示(Display)要选择双项(Both)。 3、Output结果

卡方拟合优度检验正态分布

某医生测得某校120名高三男生血红蛋白值(g/gL),其均数是X=14.5,标准差S=1.2,各组段值及频数表如下所示,拟推断该资料是否服从正态分布。 X(1)人数f(2) 11.0~ 1 11.5~ 1 12.0~ 3 12.5~ 8 13.0~ 12 13.5~ 15 14.0~ 19 14.5~ 23 15.0~ 12 15.5~ 12 16.0~ 9 16.5~ 3 17.0~ 2 合计120

X (1) 人数f (2) Z 值 Φ(Z i ) Φ(Z i ) T 2 ()A T T - 11.0~ 1 -2.92 0.0018 0.0062 0.528 - 11.5~ 1 -2.5 0.0062 0.0018 1.512 - 12.0~ 3 -2.08 0.0188 0.0475 3.444 0.043 12.5~ 8 -1.67 0.0475 0.1057 6.984 0.148 13.0~ 12 -1.25 0.1057 0.2033 11.712 0.007 13.5~ 15 -0.83 0.2033 0.3372 16.068 0.071 14.0~ 19 -0.42 0.3372 0.5 19.536 0.015 14.5~ 23 0.00 0.5 0.6628 19.536 0.614 15.0~ 12 0.42 0.6628 0.7967 16.068 1.030 15.5~ 12 0.83 0.7967 0.8944 11.724 0.006 16.0~ 9 1.25 0.8944 0.9525 6.972 0.590 16.5~ 3 1.67 0.9525 0.9812 3.444 0.000 17.0~ 2 2.08 0.9812 0.9938 1.512 - 合计 120 — — 2.524 2 2 () 2.524A T T c -= =? n =10-1-2=7

SPSS统计分析1:正态分布检验.

正态分布检验 、正态检验的必要性[1] 当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。 当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方 法,而应采用非参数检验。 图示法 1、p-p 图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q 图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 三、计算法 1、峰度( Kurtosis )和偏度( Skewness) 1)概念解释 峰度是描述总体中所有取值分布形态陡缓程度的统计量。这个统计量需要与正态分布相比较,峰度为0 表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0 表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0 表示该总体数据分布与正态分布相比 较为平坦,为平顶峰。峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。 峰度的具体计算公式为:FLin

注:SD就是标准差Ob峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。 偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称 性。这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏 斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为 负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。偏度的绝对值数值越大表示其分布形态的偏斜程度越大。 1 % Skewness = ------ V (g 尸/ SD^ 偏度的具体计算公式为: 各种正态分布,尽管卩和O可以分别取不同的值,但偏度都等于0,峰度都等于3,它们的密度函数曲线的形状都是一样的⑴。(SPSS中峰度减3与0比较 (2)适用条件 样本含量应大于200。 (3)检验方法 计算得到的峰度、偏度根据正态分布的值3、0(SPSS中为0、0)来直观判断是 否接近。 应对二者分别进行U检验来定量描述显著性,方法如下⑵:峰度U检验:峰度-3| /峰度标准差<=U0.05 = 1.96 (SPSS中将3替换为0) 偏度U检验:I偏度-0| /偏度标准差<=U0.05 = 1.96 如果上述都成立,则可认为在0.05显著水平符合正态分布(下例偏度可判断不符合。

文本预览
相关文档 最新文档