当前位置:文档之家› 铝镁合金车轮发展概况及旋压成形车轮前景研究

铝镁合金车轮发展概况及旋压成形车轮前景研究

铝镁合金车轮发展概况及旋压成形车轮前景研究
铝镁合金车轮发展概况及旋压成形车轮前景研究

铝镁合金车轮发展概况及旋压成形车轮前景研究

概述

分析了目前国内外铝合金车轮发展状况、镁合金产业现状、镁合金车轮发展状况和旋压车轮研究制造概况,比较了通过旋压技术制造的合金车轮的优越性,并对铝镁合金旋压车轮的前景进行了展望。

前言随着市场全球化的发展,跨国公司纷纷在我国投资,或加大在我国的采购份额。目前,具有较多优势的轻合金材料已逐步广泛的应用于各个领域,特别是伴随着汽车、摩托车制造业的发展,铝镁合金材料成形及其车轮制造业得到了前所未有的发展机遇。21世纪的经济全球化浪潮,推动了汽车工业的市场一体化、分工专业化、产业规模化的快速发展,铝镁合金车轮企业也已形成向多家汽车厂供货、跨国供应的局面。

作为汽车零部件行业的一部分,铝车轮行业的发展与全球汽车行业发展紧密相关。从全球看,汽车行业是个成熟的市场,增长缓慢,过去7年(1999-2005)全球汽车产量的复合增长(CAGR)只有3.6%。而中国汽车市场则进入快速发展时期,同期的复合增长率达19.6%。从总量看,2005年全年汽车产量6653万辆,其中中国的汽车产量570万辆。从汽车保有量看,2004年全球汽车保有量约为85,477万辆,同期中国汽车保有量为约2694万辆。

汽车车轮需求主要来自新增汽车产量,售后市场车轮需求则与汽车保有量有关。2005年全球汽车车轮需求约4.13亿只,其中铝车轮需求约1.78亿只。中国市场2005年车轮需求约3500万只,其中铝车轮约2000万只。

根据中国汽车工业协会有关车轮行业“十一五”发展规划的资料,2004年我国车轮总产销量约5500万件,其中国内OEM量约2900万只,其中乘用车车轮1640万只(钢制车轮540万件,铝车轮约1100万件),商用车车轮1260万件。据测算,2004年全球汽车车轮总需求量约36150万件,其中铝车轮约16296万件。

铝合金车轮发展概况

1 国内外铝合金车轮状况

1.1 国外铝合金车轮现状

国外铝合金车轮制造业在20世纪70年代得到快速发展。如北美轻型车铝车轮,1987年只占19%,到2001年已占到58.5%;日本轿车装车率超过45%;欧洲超过50%。

一般轮毂制造企业最小生产规模不低于年产120万只,产量大的企业已超过千万只。其主要市场为面向大中型车辆整车厂配套供货,有的主要面向维修市场,有的两者兼而有之。

北美铝合金车轮市场发展具有代表性。表1给出北美铝、钢车轮2001年、1999年的销售量和市场占有率。可以看出两年间铝合金车轮市场占有率增长7.2个百分点,销售量增长近700万只;钢车轮市场占有率亦下降7.2个百分点,销售量减少近300万只。

表1 北美轻型车车轮市场情况单位:万只,%

注:①北美含美国、加拿大、墨西哥

②轻型卡车含轻型厢式车、SUV、皮卡等车型。

③轿车、轻型卡车市场占有率指分别为铝、钢车轮的市场占有率,小计市场占有率是指占合计的市场占有率。表2给出美国3大汽车公司铝车轮装车率增长情况。

表2 2002年美国3大汽车公司铝车轮装车率单位:%

北美铝合金车轮外径以16英寸使用最多,2001年轿车使用率占55%以上,供应量超千万只;轻型车使用率在59%以上,供应量为1275万只;其次使用最多的是外径15英寸的铝轮,分别占轿车、轻型卡车用量的30%和26%,供应量均在500万只以上。

1.2 国内铝合金车轮现状

随着我国汽车市场的快速发展,不断引进技术,铝合金车轮的制造和应用也迅猛发展起来。1988年我国第一家铝合金车轮企业戴卡铝轮毂制造有限公司成立,进入20世纪90年代,广东南海中南铝等一批铝合金车轮制造企业迅速建立起来,铝合金车轮迅速在我国得到推广。到2003年,我国摩托车铝车轮装车率已超过55%,汽车装车率已超过50%。

目前全球铝车轮年需求量约1.78亿件,中国约2000万件。国际市场对中国汽车零部件的需求在快速增长,车轮是零部件出口的重要产品,过去5年车轮出口的复合增长率达48.1%,05年出口额为15.69亿美元,06年上半年出口达10.49亿美元,占零部件出口总额的11%。

表3 2003年我国部分铝合金车轮制造公司概况单位:人/百万元/万件

注:昆山六丰为2002年数据。东风车轮为2004年数据。资料有限,可能不翔实。

在2004年,ZCW(万丰奥特)、ZNA(中南铝)、戴卡(戴卡),均获“中国名牌”产品称号。

万丰奥特公司创建于1994年,从生产摩托车铝合金车轮起步,经过十年飞速发展,现已成为国内铝合金车轮行业发展最快、势头最猛的企业。其旗下万丰奥威是一家专业生产汽车铝轮的公司,2006年铝合金车轮产能约为540万件,预计2010年将达800~1000万件。

包头一阳轮毂有限公司已建成年产100万只铝合金轮毂项目,广东台山市富诚铝业有限公司投资1亿美元,已建成投产年产300万只铝合金轮毂项目,以利用国内较低的资源成本占领国内外轮毂市场。

2 铝合金车轮的发展趋势

为了适应汽车更安全、更节能、降低噪声、污染物排放不断加严的要求,铝合金车轮正在向大直径、轻量化、宽轮辋、高强度、更美观等方向发展。

以北美铝合金车轮市场为例,在前些年,轮毂直径还是以13~14英寸为主,现在的主流市场则是以15-16英寸,甚至17英寸。如表4所示。

从表4可以看出,16英寸车轮所占市场份额最大、增长也最快,从1997年占车轮市场38.3%,到1999年上升到45%,2001年已占到57.7%。其次是15、17英寸车轮,占总市场份额分别为27.62%和11.77%。18、19、20英寸大直径车轮市场上也有表现。

据预测,未来的几年,18英寸直径车轮将会成为轿车车轮的标准配置。车轮生产商已开始着手安排22、24英寸及以上车轮的生产线,以应付市场的新需求。大直径车轮与轮胎组合,比小直径车轮与轮胎组合,更显现代、霸气和时髦。由于大直径、宽轮辋,使轮胎与地面的接触面积更大,从而增加汽车与地面的附着力和摩擦力,使汽车的操纵性能更好,提高汽车的安全性。一般要求与扁平轮胎相匹配。但大直径、宽轮辋,也会产生使轮胎磨损加快的不利影响。为了减轻车轮重量、提高强度,一般采用锻造工艺、组装式工艺生产车轮,可减轻重量20%左右。还可采用高强度镁合金、钛合金制造车轮。但会使成本相应增加。

为了降低车轮噪声,有的在轮辐和轮辋之间,加一特殊橡胶结合件。可以大大降低车轮噪声,并提高汽车操纵稳定性。为了使车轮更美观,一般采用镀铬、抛光、喷漆、喷粉、加装不锈钢或塑料毂盖、压铸花纹、改进车轮设计图案等办法。

表4 2001年北美铝合金车轮不同外径市场供应量及份额单位:英寸,万只,%

3 国内外铝合金车轮主要制造工艺

国内外铝合金车轮制造主要采用较低成本的低压铸造工艺,约占全部产量的80%以上,其次是采用最简便的重力铸造工艺,约占其全部产量的20%不,另外,还有少数企业采用锻造法、焊接组装法生产。上海金合利采用挤压铸造工艺,其产品质量都有提高,取得较好的效果。国外最近出现无气孔压铸新工艺(充氧压铸法),日本轻金属株式会社、美国铸锻公司已开始应用于生产。

表5 目前国内外铝轮毂的主要制造工艺比较

目前低压铸造技术产品无法满足大尺寸、高负荷(大客车、载货车)以及高端产品市场的需求,尤其是国内企业在大尺寸车轮制造上与国外相比存在较大差距,而非铸造方式生产16吋以上车轮在国内尚属空白。

旋压铝轮毂由于不受尺寸制约、产品美观、性能良好、安全性高、节省材料等因素,其发展势头良好,并属先进成形技术,其技术水平已基本趋于成熟,现已引起较多公司的关注,正逐步向批量生产转化。

镁合金及车轮发展概况

1 镁合金特点

与其它结构材料相比,镁合金具有以下几个特点:

1) 镁合金的密度是钢的23%,铝的67%,塑料的170%,是金属结构材料中最轻的金属,镁合金的屈服强度与铝合金大体相当,只稍低于碳钢,是塑料的4-5倍,其弹性模量更远远高于塑料,是它的二十多倍,因此在相同的强度和刚度情况下,用镁合金做结构件可以大大减轻零件重量,这点对航空工业、船舶工业、汽车工业、军工、手提电子器材均有很重要的意义。

2) 镁合金与铝合金、钢、铁相比具有较低的弹性模量,在同样受力条件下,可消耗更大的变形功,具有降噪、减振功能,可承受较大的冲击震动负荷。

3)镁合金具有良好的加工性能和尺寸稳定性:

镁合金有相当好的切削加工性能,切削时对刀具的消耗很低,切削功率很小。镁合金、铝合金、铸铁、低合金钢切削同样零件消耗的功率比值为:1:1.8:3.5:6.3。镁合金有较高的尺寸稳定性,稳定的收缩率,铸件和加工件尺寸精度高,除镁-铝-锌合金外,大多数镁合金在热处理过程及长期使用中由于相变而引起的尺寸变化接近于零。

2 镁合金行业发展现状

目前,国内外主要以压铸方法为主导生产制造镁合金结构件,变形产品国外已有冲压车门等产品,国内相对及极少。国内有色金属压铸已有相当的基础,现拥有压铸厂点及相关企业总共约3000家,压铸机制造厂约有20家,年产压铸件30多万吨。其中铝压铸件占75.5%,镁压铸件仅占1%左右。上海乾通汽车附件有限公司为上海桑塔纳轿车生产镁合金压铸变速箱外壳已有多年历史。但总体上看,与发达国家相比我国的压铸件综合质量较差(加工余量大、废品率高、合金利用率低、铸造工艺装备基础条件差、环保和能耗问题较严重、缺乏专门人才和新工艺新产品开发能力)。致使产品价格较高缺乏竞争力。可以说我们现有的基础完全不能适应镁合金产业化的要求。总的讲镁合金的压铸和变形产品生产技术水平现在还很低,相对铝合金,镁合金压铸及变形产品的质量和产量的稳定性较差、废品率较高,致使镁合金产品价格较高,制约了镁合金产品的推广应用和新产品的开发。

3 镁合金行业发展前景

面对国际、国内市场对镁合金产品巨大需求和竞争的压力,我国镁合金产业化面临着重大的发展机遇和严峻的挑战。镁合金产业是一项涉及面广、技术集成度高的大型系统工程。充分发挥镁合金铸造及变形技术在产业化中的作用,是实现我国镁合金产业化跨跃式发展的必要条件。

"十一五"期间在政府的统一协调下,将对"镁合金开发应用及产业化"重大专项组织攻关,以解决一批共性技术、关键技术和配套技术,其关键技术包括有镁合金管材和特种型材挤压技术及应用、镁合金板材轧制、冲压成型及薄带连铸技术及应用、镁合金产品设计与开发等项目。这些项目的研究开发,遵循以企业为主体,产学研结合,按市场机制运作的原则,一定会积极稳妥地使我国镁合金产业化的进程向前推进。经过扎扎实实的工作建立起来的产业化

基地,必将发挥其龙头和示范作用。我们相信,经过"十一五"及今后一段时期各方面扎实的工作,我国由镁大国变为镁强国的日子是一定会来的。

4 镁合金在汽车工业及车轮上的应用

近二十年来,世界汽车产量持续增长。汽车工业发展程度是一个国家发达程度的重要标志之一,而金属材料是汽车工业发展的重要基础。出于节能与环保的要求,汽车设计专家们想方设法减轻汽车体重,以达到减少汽油消耗和废气排放量的双重效果。镁合金作为最轻的结构材料,能满足日益严格的节能的尾气排放的要求;可生产出重量轻、耗油少、环保型的新型汽车。镁合金汽车零件的好处可简单归纳为:

·密度小,可减轻整车重量,间接减少燃油消耗量;

·镁的比强度高于铝合金和钢,比刚度接近铝合金和钢,能够承受一定的负荷;

·镁具有良好的铸造性和尺寸稳定性,容易加工,废品率低;

·镁具有良好的阻尼系数,减振量大于铝合金和铸铁,用于壳体可降低噪声,用于座椅、轮圈可以减少振动,提高汽车的安全性和舒适性。

镁合金在汽车上用作零部件的历史约有70年。早在1930年就用于一辆赛车上的活塞和欧宝汽车上的油泵箱,之后用量和应用部位逐渐增加。六十年代在有的车种上用量达到23千克,主要用作阀门壳、空气清洁箱、制动器、离合器、踏板架等。八十年代初,由于采用新工艺,严格限制了铁、铜、镍等杂质元素的含量,镁合金的耐蚀性得到了解决,同时,成本下降又大大促进了镁合金在汽车上的应用。从九十年代开始,欧美、日本、韩国的汽车商都逐渐开始把镁合金用于许多汽车零件上。

镁合金压铸件在汽车上的应用已经显示出长期的增长态势。在过去十年里,其年增长速度超过15%。在欧洲,已经有300种不同的镁制部件用于组装汽车,每辆欧洲生产的汽车上平均使用2.5kg镁。乐观的估计认为,出于减重的需求,每辆汽车对镁的需求将提高至70—120kg。

目前,汽车仪表、座位架、方向操纵系统部件、引擎盖、变速箱、进气歧管、轮毂、发动机和安全部件上都有镁合金产品的应用。

福特汽车公司已开始用镁合金来制造悬架零件、制动盘和制动钳等;而日本1990年每辆汽车用镁量仅5公斤,预计2000年底将增至210公斤,占汽车重量的25%,仅次于铝材而超过钢铁的重量。

50多年来,经过不断的技术革新,镁合金在摩托车上的应用也不断在广度和深度上进行扩展,应用车型从赛车扩展到运动型摩托、轻便型摩托、概念型摩托,覆盖欧美日十几种主要摩托车品牌,镁合金应用部件涵盖动力系统,传动系统以及各种摩托车附件四十余种,其中仅英国的Dymay轮毂就应用多达400种车型。国内摩托车镁合金轮毂的应用目前尚属空白,重庆隆鑫率先试制出型号为LXl50的“镁合金绿色概念摩托车”,在国内引起了广泛的关注,所采用的12个零部件如今已有3个实现了规模化生产。

5 镁合金车轮的发展趋势

在国际化节能与环保的要求下,国外已有部分企业试制并生产镁合金轮毂,其应用领域包含高档摩托车和高级轿车,随着镁合金相关技术的不断研究发展,其成本必将降低,未来的车轮将逐步普及铝镁合金材料。目前国内尚无系统化研究生产镁合金轮毂的企业,因此国内镁合金轮毂的发展潜力极大,现已有极少企业开始研制镁合金轮毂。

6 镁合金成形技术

目前压铸镁合金产品用量大于变形产品,但经过锻造、挤压或轧制等工艺生产出的变形镁合金产品具有更高的强度,更好的延展性,具有铸造镁合金产品无法取代的优良性能,国际镁协会(IMA)在他制定的开发与应用镁合金三个阶段中,长期的目标就是要开发变形镁合金。镁合金可以用轧制、挤压、冲压、热锻及超塑性成形等方式进行加工。因此,开发变形镁合金,是其未来更长远的发展趋势。

1)轧制

镁合金在室温下塑性很低,轧制加工比较困难,因此最好用热轧与温轧。适于轧制的镁合金牌号有Mg-Mn系的MBl,MB8,Mg-A1-Zn系的AZ31B和Mg-Li系LAl41,可以生产厚板,中板和薄板。镁合金薄板用于制造汽车车体组件之外板(如车门,罩盖,护板,顶板等),可大大减轻重量。

2)挤压

目前,镁合金管、棒、带、型材主要采用挤压方法加工成型,因为挤压工业最适用于低塑性材料的成形加工。大部分变形镁合金如AZ31B,ZM21,ZK60A,HK31等均可用挤压法生产。挤压法生产的零件,其力学性能较压铸法生产的要高很多,而且表面光洁,无需再经打磨,可用于汽车承载件如坐架、底盘框、轮毂和汽车窗框等。

3)冲压

镁合金在常温下不宜冲压,一般;中压温度都必须在150℃以上,在175℃时,镁合金板杯形件拉伸时的拉伸比可达2.0,在225℃时可达3.0,超过了铝合金和低碳钢的的常温拉伸成形极限(它们分别为2.6和2.2)。德国大众汽车公司开发出镁合金汽车覆盖件的热冲压成形技术,加工出汽车的门板。

4)等温锻造

镁合金在常温下容易脆裂,锻造温度须在200℃以上至400℃之间。但镁合金在高温下,尤其在超过400℃时产生腐蚀氧化以及晶粒粗大,锻造温度范围较窄。而镁合金导热系数较大(~80w/m.c)几乎为钢的2倍,接触模具后降温很快,塑性降低,变形抗力增加,充填性能下降,因此镁合金锻造较难,而适合于采用等温锻造。我国已用等温锻造工艺成功的成形了复杂的镁合金飞机上机匣。

5)超塑成形

镁合金塑性较低,用常规变形方法加工较难,近年来美、日等国科学家对镁合金的超塑成形技术进行了研究。研究表明,很多变形镁合金在一定的条件下具有超塑性,可以一次成形复杂的零件。

镁合金在工业上的研究开发和应用,可以说是方兴未艾。它既体现出众多优越性符合现代技术发展的要求,也提出了一系列需要进一步研究解决的问题,以不断扩大它的应用范围。

7 旋压成形镁合金车轮

旋压成形车轮提高了产品制造精度和强度,机械加工余量大大减少。目前,国内外已有企业及研究机构开始着手研究镁合金旋压成形技术,但尚无旋压成形镁合金车轮技术研究报告,在国外该技术已在铝合金车轮上有成功的应用经验。随着国内镁合金产业化的飞速发展,镁合金旋压车轮必将有一个巨大的市场需求。

旋压成形铝镁合金车轮新技术及前景

1 旋压成形技术

1.1定义

旋压是一种综合了锻造、挤压、拉伸、弯曲、环轧、横轧和滚挤等工艺特点的少无切削加工的先进工艺,将金属筒坯、平板毛坯或预制坯用尾顶顶紧在旋压机芯模上,由主轴带动芯棒和坯料旋转,同时旋压轮从毛坯一侧将材料挤压在旋转的芯模上,使材料产生逐点连续的塑性变形,从而获得各种母线形状的空心旋转体零件。旋压工艺的加工原理如图1。

图1

根据旋压加工过程中毛坯厚度的变化情况,一般将旋压工艺分为普通旋压和强力旋压两种。普通旋压过程中毛坯的厚度基本保持不变,成型主要依靠坯料沿圆周的收缩及沿半径方向上的伸长变形来实现,其重要特征是在成型过程中可以明显看到坯料外径的变化。强力旋压工艺主要依靠坯料厚度的减薄来实现成形,坯料外径基本保持不变。

车轮旋压指使用旋轮(或成形轮)将回转体锻坯或管状毛坯进行局部连续旋转压缩以成形其内外截面形状的成形方法。该过程综合了普旋和强旋,在旋压过程中,将毛坯同心地适当装夹在适当的芯模中,当主轴带动毛坯旋转后,数控系统自动控制旋轮运动轨迹,按规定的形状轨迹作往复运动,当每次改变方向时给以一定大小的横向进给,逐步地使毛坯紧贴模具形面,从而得到要求截面尺寸的工件。为了避免工件产生起皱和破裂,应根据变形程度,将变

形过程分为若干道次进行,即旋轮要作多次往复运动,且每次之前均给以一定的进给量,有时根据材料的性能,可能需更换芯模和进行中间热处理或者进行加热旋压等。

1.2 旋压技术在不同领域的应用

旋压产品形状各式各样(如图2示),通过旋压可完成成形、缩径、收口、封底、翻边、卷边、压筋等各种工作,其产品广泛应用于各行各业(表6)。

图2 旋压成型的工件形状

表6 各种旋压制件

2 旋压技术应用于车轮制造的优越性

2.1 技术先进性

其工艺过程为锻造—退火—旋压—热处理—机械加工—表面处理(喷涂或电镀)工艺,关键技术为旋压加工,属材料精净成形,成形产品精度高,较之铸造材料结构致密,强度高。如图3示,为旋压轮辋及整体轮毂。

图3-1 旋压轮辋及整体轮毂

2.2 车轮旋压技术

车轮旋压技术是近几年才发展起来的车轮成形新工艺方法,主要针对铝镁合金材料的轮毂(图3),也有部分轮毂采用钢质。国外17英寸以下轿车铝轮的生产以锻坯或环坯经旋压成形已逐步成为主流。近几年国外用锻造、旋压工艺制造了22、24英寸载重汽车无内胎铝车轮,以其造型美观、重量轻、强度高成为钢轮的强劲竞争点。

传统的轮毂制造工艺方法是在较低压力(一般在20~60KPa)下浇注(铸造或真空铸造)—热处理—机械加工—最后表面处理,该方法适合大批量生产、生产率高、合格率较高、铝液利用率较高,但表面质量欠佳、成本稍高、技术难度高,而采用锻造—退火—旋压—热处理—机械加工—表面处理(喷涂或电镀)工艺方法生产的轮毂,大大提高了制造精度,有较致密的金相组织和较好的机械性能,易达到轮毂变壁厚等强度要求,而且重量轻、表面光洁,机械加工余量大大减少。此工艺在德国等较发达国家已发展成为成熟技术,目前国内已有较少企业在使用该新技术研究试制铝车轮。图4为车轮旋压几种主要方式。

图4 车轮旋压方式

车轮旋压一般可采用板材劈开式旋压(图4-a)、预制锻坯旋压(图4-c)、无缝管材缩径旋压

(图4-b)三种工艺方式。劈开式旋压工艺是将圆盘状板坯用劈开轮通过分层工艺,使毛坯在厚度方向中部被劈成两份,再用成型轮渐步旋压成形;锻坯强旋工艺是将锻坯进行若干道次的强旋,从而达到轮辋型面尺寸要求。

2.2 所具有的优点

1)节省原材料。避免了通过机加方式生产时切削掉大量毛坯材料的情况,可直接旋压,无需对表面进行精加工。旋压技术还可旋制出变截面厚度的轮毂,在满足车轮强度指标要求的前提下,可适当减薄轮毂厚度,从而减少了原材料用量和车轮重量。

2)铝镁合金有很好的导热性能,可大大延长汽车、摩托车轮胎使用寿命,特别是高负载卡车轮胎的寿命。(根据欧洲车轮生产商“ALCOA”公司测试数据,铝合金轮毂使轮胎最长可延长20%的使用寿命)。

3)实现变壁厚等强度要求,强度性能良好。轮辋厚度较易控制,能方便的满足车轮等强度的性能要求,能较好的保证产品精度及强度要求。在相同情况下,同一规格的旋压(锻造)铝合金车轮的力学性能比铸造轮高约18%以上,而质量要轻15%。

4)车轮内外表面质量良好,无序后续精加工,减少了工序。旋压后的产品无需精加工就能达到很好的表面精度,减少了加工工序。

5)外形美观。由于旋压轮辋壁厚较易控制,因此在满足等强度要求的情况下,可灵活设计造形,美观可靠。

6)节约成本。生产制造成本大为减少,批量化生产更有利于节约成本。

7)市场前景广阔。由于先进的技术和产品良好的性能,用旋压方法生产的车轮市场前景广阔。

8)属先进特种成形技术,是目前成形大尺寸车轮的较少方法之一,利润空间极大。(目前常规尺寸铝车轮利润率约为45%~50%)。

9)技术难度及复杂程度较之真空铸造简单方便,容易实施。

3 技术成熟性

3.1轮毂旋压设备

轮毂旋压机具有较高的自动化程度,配套上下料机器人、周转带,是规模化生产线中的关键设备,能达到每分钟生产2~4件的生产节拍。具有立式和卧式两种结构,旋轮头可正负向高速工作进给,在一个工步可完成粗旋和精整过程,辅助工序少,产品质量及效率较高(图5)。

图5 德国莱菲尔德轮毂旋压机(卧式)

国外旋压机制造企业有德国莱菲尔德、WF,西班牙DENN,国内有长春55所、北京金时特、北航工艺研究所等。这些国外企业具有较悠久的旋压设备制造历史和丰富经验,在国内有大量的旋压设备正在使用,技术较为成熟。国内企业近年也设计制造了一些设备并投入使用,其综合性能基本能满足市场要求。

3.2 工艺技术

旋压成形轮毂技术在德国已发展成熟,并有产品应用于市场。目前国内虽没有成熟产品,但已有个别在旋压领域具有权威的企业已基本试验成功,比如西安航天动力机械厂、山东济宁车轮厂等,相信很快将会有具有自主知识产权的产品投放市场。

4 前景

旋压成形法是在热锻工艺基础上发展起来的,锻造制坯后进行旋压成形,提高了制造精度和强度,机械加工余量大大减少。旋压轮毂由于不受尺寸制约、产品美观、性能良好、安全性高、节省材料、节约能源等因素,其发展势头良好,旋压技术属先进成形技术,其铝合金车轮旋压技术水平已基本趋于成熟,在国内已引起较多公司的关注,正逐步向批量生产转化。另外,已有企业及研究机构开始着手研究镁合金旋压成形技术,但目前尚无旋压成形镁合金车轮技术研究报告。随着国内铝镁合金产业化的飞速发展,铝镁合金旋压车轮必将有一个巨大的市场需求。

5 规模化生产条件

要达到规模化生产必须要有可靠的原材料来源,建立合适的生产线,以批量化生产模式经营,产品规格要多样化,市场定位要明确,确立一个以上的战略合作采购商,并具有先进的管理模式,能适应市场的变化。

作者介绍:赵琳瑜,男(1976~),工程师,长期从事旋压工艺及设备的应用研究与开发,专长于超高强度钢小锥度变壁厚旋压、各直径钢铝圆筒旋压、异型曲母线工件旋压、钢质轮毂旋压、铝镁合金轮毂旋压、钢质气瓶旋压、铝合金气瓶内胆旋压、钛合金旋压。(end)

钢制车轮生产工序说明

1.工艺流程介绍 本项目生产工艺共分四部分:轮辋生产工段、轮辐生产工段、合成装配工段及涂装工段。 (1)轮辋生产工艺说明 第一步:纵剪(挤):把材料按照要求宽度进行剪切(挤边:对边料边缘进行挤边去毛刺); 第二步:酸洗:把材料浸入酸液中去氧化皮、锈迹;本项目酸洗采用槽内浸泡方式,除油槽用钢板制作,内壁铺PVC或聚乙烯,材料在槽内浸泡时,应注意放置的位置,避免存留空气,浸泡过程中应上下前后移动或翻动管件,使内腔溶液不断更换,以提高效果。 第三步:水洗:用水清洗材料表面酸洗液和残留污物; 第四步:钝化:在材料表面形成保护膜防止加工过程中生锈;钝化采用池内槽泡方式,钝化槽钢板制作,内壁铺防酸塑料,槽内浸泡时,应注意放置的位置,避免材料内存留空气,浸泡过程中应上下前后移动或翻动方管,使内腔溶液不断更换,以提高效果。必要时取出材料,用水气冲洗后再进行浸泡。 第五步:切割:把材料按照要求长度进行剪切; 第六步:打字:在材料上按要求位置和字样打印清晰标识; 第七步:卷圆:把材料由条形按要求卷制成圆形; 第八步:压端头:把卷制成圆形的工件两端压平整; 第九步:对焊:将压平后的工件两端烧化焊接; 第十步:刮渣(滚压、端切):把工件焊接处上下两平面焊渣刮除干净; 滚压:对焊接处上下两平面进行滚压,要求厚度与其它位置一致; 端切:对焊接处两端焊渣进行切除; 第十一步:冷却:对工件进行降温冷却; 第十二步:修磨:对工件焊接处残留焊渣进行清除; 第十三步:复圆:对工件焊缝和焊缝两边进行复圆消除不圆度;

第十四步:扩口:把工件两端扩成要求的角度和直径; 第十五步:旋压:对工件进行旋压成型底槽R并确认定位点; 第十六步:一序滚压成型:对工件进行滚压预成形底槽等各部形状; 二序滚压成型:对工件进行滚压成形底槽和胎圈座部位; 三序滚压成型:对工件进行滚压成形胎圈座和轮缘部位。 (2)轮辐生产工艺说明 第一步:开平:将进厂卷板料进行校平的工序; 第二步:落圆:将校平后的板料毛坯通过油压机和模具,冲出一定规格的圆料毛坯; 第三步:冲预孔:在冲床上冲出圆料毛坯中心预孔,用于后序定位; 第四步:旋压:以中心预孔定位,将圆料毛坯通过旋压机旋压成一定形状的轮辐毛坯; 第五步:整形:通过压力机和模具对轮辐毛坯安装面进行整形,使安装面的平面度达到规定的要求; 第六步:组合冲压:通过压力机和模具对轮辐毛坯中心孔和螺栓孔同时冲出的工序; 第七步:冲风孔:在冲床上通过带分度装置的模具对轮辐毛坯冲出规定数量的通风孔; 第八步:挤风孔:在冲床上通过模具对轮辐毛坯冲通风孔形成的冲裁毛刺进行挤压的工序; 第九步:平端面:主要是将轮辐端面进行平整,使轮辐高度符合要求,同时也有利于后续焊接; 第十步:车中孔:主要是将轮辐中心孔在车床上通过车胎进行精加工至规定的尺寸; 第十一步:整平面:通过压力机和模具对轮辐毛坯安装面进行整形,使安装面的平面度达到规定的要求;

旋压车轮

铝合金轮毂旋压成型工艺研究 摘要:本文通过对6061铝合金旋压变形性能的分析,主要论述对称式碟形轮毂旋压工艺方案的实施过程及效果。 关键词:铝合金;轮毂旋压;工艺研究 1 前言 铝合金轮毂有重量轻、成本低、强度高的优点,而且铝有较强的导热性能,可大大延长汽车、摩托车轮胎使用寿命,特别是高负载卡车轮胎的寿命。(根据欧洲车轮生产商“ALCOA”公司测试数据,铝合金轮毂使轮胎最长可延长20%的使用寿命)。 2课题的提出 近年来,随着国际市场上车轮生产厂商生产工艺的不断改进,欧美车轮行业逐步用强旋铝合金轮毂取代传统的车轮生产工艺,国内车轮行业也在朝着先进的铝合金车轮生产工艺方面发展。下面是某厂商需要订做的典型车轮轮毂(图1)。轮毂材料为6061合金铝,(相当于国内牌号LD30)。 3 轮毂旋压加工设备 PT30501CNC双轮卧式强力旋压机,旋压加工工件的直径范围φ100~φ1000mm,旋轮纵向行程1900mm,最大旋压力30吨。这些机床参数说明该台旋压机满足轮毂强力旋压工艺要求。 4 铝合金轮毂旋压工艺方案 4.1 轮毂材料6061合金铝的旋压性能分析 6061铝合金属于Cu-Mg-Si-Mn系铝基合金,其化学成份如下:

Cu-0.15%~0.4%,Mg-0.45%~0.9%,Si-0.4%~0.8%,Mn-0.15%;该种材料在固溶时效状态下的机械性能指标为: σb≥320Mpa,δ5≥12%,ψb≥25%,HB≥120。 因此,6061合金铝在固溶时效状态下的可旋性指标值——单道次极限减薄率为: φmax=ψb/(0.17+ψb)×100%=0.25/(0.17+0.25)×100%=60%。 这个指标值说明它的可旋性比高强度钢的可旋性要差一些,旋压工艺中,必要时应适当加热,工件加热温度310℃~350℃。另外,为提高铝合金的可旋性,可适当加入一些矿物元素——锑和锶(0.02%)。 4.2轮毂旋压工艺方案的选择 像这种对称式碟形轮毂,旋压工艺方式一般可采用取板材劈开式旋压或用铸(锻)件毛坯进行强力旋压成型两种工艺方式。劈开式旋压工艺是将圆盘状板坯用劈开轮通过分层工艺,使毛坯在中部被劈成两个等分,之后,再用成型轮渐进普旋成型即可;强旋工艺是将铸铝毛坯或锻造毛坯进行若干道次的强旋成型工艺,旋压达到轮毂型面尺寸要求,强旋工艺生产出来的轮毂重量比锻造轮毂重量可减轻大约25%,这是因为强旋工艺可旋制出变截面厚度,在满足车轮强度指标要求的前提下,可适当减薄轮毂厚度。 由于我厂的PT30501CNC机床纵横向滚珠丝杠成75°夹角,当旋轮编程轨迹只沿工件径向移动时,机床实际运动过程中旋轮在轴向有分位移,使得旋压加工过程中劈开轮外缘端面受到一定的轴向压力,它的反作用力直接作用于机床滚珠丝杠传动部分,影响机床使用寿命及精度,因此,这种结构形式不利于轮毂劈开式旋压。根据以上分析,我们选择强力旋压工艺来成型这种对称式碟形铝轮毂。 4.3 轮毂强旋工艺路线 精密锻造毛坯第一道次强旋第二道次强 旋成型转数控车间机加成轮毂成品。

铝合金车轮低压铸造工艺讲解

铝合金车轮低压铸造工艺 目录 铝合金车轮低压铸造工艺 1 低压铸造工艺 1.1 低压铸造原理 1.2 低铸汽车铝合金轮的工艺特点 1.3 汽车铝轮低压铸造工艺设计 1.4 汽车铝轮低压铸造模具设计 1.5 铝轮低压铸造工艺过程 1. 模具检查 2. 模具喷砂 3. 模具的准备 4. 模具涂料 5. 涂料性能和配比 6. 涂料的选择 7. 模具的预热和喷涂 1.6 开机前的准备工作 1. 保温炉的准备 2. 陶瓷升液管的准备 3. 设备和工艺工装的准备

1.7 铝车轮低压铸造液面加压规范 1. 加压规范的几种类型 2. 铝车轮低压铸造加压规范的设定 3. 设计铝轮低铸加压曲线的步骤 4. 铝轮低铸工艺曲线实例 1.8 铸件缺陷分析,原因及解决办法 1. 疏松(缩松)的形成与防止 2. 缩孔的形成与防止 3. 气孔的形成与防止 4. 针孔的形成与防止 5. 轮毂的变形原因及防止 6. 漏气的产生原因及防止 7. 冷隔(冷接,对接),欠铸(浇不足,轮廓不清)的形成与防止 8. 凹(缩凹,缩陷)的形成与防止 铝合金车轮低压铸造工艺 铝合金车轮制造技术是多种多样的,而铝车轮的铸造工艺,目前主要有两种:一种是金属型重力铸造,一种是低压铸造。我们主要是做汽车铝合金车轮,制造工艺采用的 是低压铸造。我们教材面向的对象主要是我们公司的员工,所以对工艺技术的介绍是有针对性的,介绍的方法也是不一样的。 1 低压铸造工艺 1.1 低压铸造原理 低压铸造是将铸型放在一个密闭的炉子上面,型腔的下面用一个管(叫升液管)和炉膛里的金属液相通。如果在炉膛中金属液面上加入带压力的空气,金属液会从升液管中

2020年(发展战略)铝镁合金车轮发展概况及旋压成形车轮前景研究

(发展战略)铝镁合金车轮发展简介及旋压成形车轮前景研究

概述 ?分析了目前国内外铝合金车轮发展情况、镁合金产业现状、镁合金车轮发展情况和旋压车轮研究制造简介,比较了通过旋压技术制造的合金车轮的优越性,且对铝镁合金旋压车轮的前景进行了展望。 ?前言随着市场全球化的发展,跨国XX公司纷纷于我国投资,或加大于我国的采购份额。目前,具有较多优势的轻合金材料已逐步广泛的应用于各个领域,特别是伴随着汽车、摩托车制造业的发展,铝镁合金材料成形及其车轮制造业得到了前所未有的发展机遇。21世纪的经济全球化浪潮,推动了汽车工业的市场壹体化、分工专业化、产业规模化的快速发展,铝镁合金车轮企业也已形成向多家汽车厂供货、跨国供应的局面。 ?作为汽车零部件行业的壹部分,铝车轮行业的发展和全球汽车行业发展紧密关联。从全球见,汽车行业是个成熟的市场,增长缓慢,过去7年(1999-2005)全球汽车产量的复合增长(CAGR)只有3.6%。而中国汽车市场则进入快速发展时期,同期的复合增长率达19.6%。从总量见,2005年全年汽车产量6653万辆,其中中国的汽车产量570万辆。从汽车保有量见,2004年全球汽车保有量约为85,477万辆,同期中国汽车保有量为约2694万辆。?汽车车轮需求主要来自新增汽车产量,售后市场车轮需求则和汽车保有量有关。2005年全球汽车车轮需求约4.13亿只,其中铝车轮需求约1.78亿只。中国市场2005年车轮需求约3500万只,其中铝车轮约2000万只。 ?根据中国汽车工业协会有关车轮行业“十壹五”发展规划的资料,2004年我国车轮总产销量约5500万件,其中国内OEM量约2900万只,其中乘用车车轮1640万只(钢制车轮540万件,铝车轮约1100万件),商用车车轮1260万件。据测算,2004年全球汽车车轮总需求量约36150万件,其中铝车轮约16296万件。 ?铝合金车轮发展简介

铝合金车轮的五大成型工艺过程

一、简介 轮圈,是轮胎内廓支撑轮胎的圆桶形的、中心装在轴上的金属部件。 二、按材质分类 轮圈按照材料主要分为铁轮圈和轻合金轮圈,而轻合金轮毂又以铝合金与镁合金产品为主。在今天的汽车市场中,铁制轮圈已不多见,大多数车型使用的都是铝合金轮圈,铝车轮。 制造铝制轮圈所使用的铝合金材料包括A356、6061等。其中,A356被铸造铝制轮圈大量选用。A356铝合金具有比重小,耐侵蚀性好等特点,主要由铝、硅、镁、铁、锰、锌、铜、钛等金属元素组成,铝占92%左右,是一种技术成熟的铝合金材料。 制造铝合金轮圈的原材料A356铝锭↑↑ 三、铝合金轮圈生产工艺 铝合金轮圈比钢轮圈更适合乘用车,目前其制造工艺基本可分为三种,第一种是铸造,目前大多数汽车厂商都选择使用铸造工艺。第二种是锻造,多用于高端跑车、高性能车以及高端改装市场。第三种较为特别,是*先由日本Enkei公司投入使用的MAT旋压技术,目前此技术在国内的应用不如前两种多。 1、重力铸造法 重力铸造简单的说,主要是靠铝水自身的重力来冲填铸模,是一种较为早期的铸造方法。 该法成本低、工序简单且生产效率高,然而,浇注过程中夹杂物易卷入铸件,有时还会卷入气体,形成气孔缺陷。重力铸造生产的轮圈易产生缩孔缩松且内部质量较差,此外,铝液流动性的限制也有可能导致造型复杂的轮毂良品率低。因此,汽车轮圈制造业已经很少使用该工艺了。

2、低压铸造法 低压铸造是铝液在压力作用下充入模具,在有压力的情况下进行凝固结晶的工艺。同样的情况下,与重力铸造相比,低压铸造轮毂内部组织更为密实,强度更高。此外,低压铸造利用压力充型和补充,极大简化浇冒系统结构,使金属液收得率可达90%。目前低压铸造已成为铝轮圈生产的首选工艺,国内多数铝合金轮圈制造企业都采用此工艺生产。但低压铸造法也有其缺点:铸造时间较长,加料、换模具耗时长,设备投资多等。 3、锻造法 热锻(Hot forging)→RM锻造(RM forging)→冷旋压(Cold spinning)→热处理(Heat treatment)→机加工(Machine work)→喷丸处理(Shot blast)→表面处理(Surface finishing) 锻造是固体到固体的变化,通过拍、压、锻等手段来形成轮毂样式,这个过程不会发生液相变化,都是固体变化。所以它的力学性能比铸造要高,具有强度高、抗蚀性好、尺寸精确等优点。晶粒流向与受力的方向一致,因此强度、韧性与疲劳强度均显着优于铸造铝轮圈。同时,锻造铝轮毂的典型伸长率为12%~17%,因而能很好的吸收道路的震动和应力。 另外,锻造铝轮圈表面无气孔,因而具有很好的表面处理能力。 但是,锻造铝轮圈的*大缺点是生产工序多,生产成本比铸造的高得多。虽然锻造轮圈的性能更好,但汽车厂商在大部分车辆上还是主要使用铸造轮圈,只有少部分豪华车配备锻造轮圈。不过国内轮圈制造龙头企业中信戴卡已成功进入乘用车锻造轮圈生产线并将锻造轮圈的成本压缩到了千元,并已经开始作为原配轮圈供应国内合资厂。 4、挤压铸造法

铝合金车轮设计及结构分析

铝合金车轮设计及结构分析 【摘要】车轮是汽车行驶系统中重要的安全部件,汽车前进的驱动力通过车轮传递,车轮的结构性能对整车的安全性和可靠性有着重要的影响。另外,车轮还是汽车外观的重要组成部分。传统车轮设计多凭借经验展开,存在着设计盲目性大、设计制造周期长、成本高等诸多弊端。面对日益激烈的市场竞争,企业迫切需要采用科学的手段改善设计方法,本文所采用的CAD技术和有限元分析方法是解决上述问题的理想方法。本文运用工业设计理论,将造型设计构思表现的方法与技能应用于车轮设计中,结合车轮结构尺寸优化和形状优化,使工程技术与形式美密切结合,综合表现了车轮的性能、结构和外观美。 【关键词】铝合金车轮;有限元分析;结构设计;强度分析;疲劳分析 1.引言 普遍意义的车轮包括轮胎和金属轮辆一轮辐一轮毅两部分,本文所研究的车轮只限于金属轮惘一轮辐一轮毅部分,不包括轮胎。车轮是介于轮胎和车桥之间承受负荷的旋转件,它不仅承受着静态时车辆本身垂直方向的自重载荷,同时也经受着车轮行驶过程中来自各个方向因起动、制动、转弯、物体冲击、路面凹凸不平等各种动态载荷所产生不规则力的作用,是车辆行驶系统中重要的安全结构部件,其结构性能是车轮设计中主要因素[1]。另外,车轮作为整车外观的主要元素之一,象征着整车的档次,多变的铝合金车轮轮辐形态和明亮的色泽越来越为人们所关注,因此车轮的外观设计也因此变得越发的重要。 2.铝合金车轮的设计方法 车轮制造企业的设计手段依然采用传统的设计方法,其设计及生产流程如图1所示。 图1 传统的车轮设计流程图 产品的结构强度、疲劳性能则在产品试样制造出来后,通过试验来验证。这样导致产品的设计周期过长,成本过高。而且设计时为了保证产品的通过率,避免反复多次修改模型,设计人员往往留有过大的设计欲量,对于大批量生产的企业,这无形中造成了材料浪费,增加成本[2]。 此外,当试验失败进行结构修改时,设计人员也是凭借经验,通过局部增加材料达到提高强度的目的,缺乏理论依据,具有较强的盲目性,对于产品的结构优化更是无从入手[3]。因此,采用新的技术和手段,使车轮设计由经验类比型向科学分析计算型转变,是车轮行业一项势在必行的工作。 3.载荷的处理

旋压机技术之旋压成型的基本方式拉深旋压

旋压机技术之在旋制各类薄壁剖面形状的产品时,主要是以改变板坯的形状为主,而板坯的厚度变化较小,称这一类旋压方式为普通旋压。普通旋压的基本方式主要有:拉深旋压(拉旋)、缩径旋压(缩旋)和扩张旋压(扩旋)三种。 2.1.1拉深旋压 拉深旋压是以径向拉深为主体而使毛坯(板材或预制制件)直径减小的成形工艺。也可以说它与拉深成形相类似,但不用冲头而用芯模,不用冲模而用旋轮。它是普通旋压中最主要和应用最广泛的成形方法。毛坯弯曲塑性变形是它主要的变形方式。 由于是靠旋轮的运动旋制工件,所以与拉深相比其加工条件的自由度更大,能制出很复杂的回转对称体。在旋制过程中,对旋轮运动轨迹有较高的要求。因此,把拉深旋压的成形技术说成是掌握旋轮运动的规律并不算过分。对于成形中的旋轮的运动轨迹控制,主要有A手动;B机械仿形;C液压仿形装置;D数控(nc或者cnc);E录返系统(或称再学习系统)。 2.1.1.1 简单拉深旋压 如上图所示是用直径为D0、厚度为t0的析坯制出内径为d(与芯模的直径相同)的圆筒形旋压件。当D0小时只能制出短圆筒件,但是成形非常容易,只需采用简单拉深旋压即可。D0/d称为拉深比,其值小时旋轮只需沿芯模移动一次即进行一道次拉深旋压就能成形。为

区别于多道次拉深旋压而称它为简单拉深旋压。旋压机旋轮只应沿芯模运动以保证它与芯模的间隙C。在实际成形中还需考虑下面几个问题。 (1)旋轮的形状通常选用直径为D、顶端圆角半径为R的圆孤状旋轮。将上图中所示的旋轮称为标准旋轮。 (2)旋轮的进给速度通常用拖板运动的速度u0(m/min)表示,但由于在判断成形的效果时要考虑毛坯的转速,因此毛坯每转的旋轮移动量U的大小是极为重要的因素,称其为旋轮进给量。例如在进给速度U不变的条件下,如果毛坯转速增加一倍,则旋轮相对毛坯的运动距离变为原来的1/2,这样瞬间成形量就变小了。 (3)芯模的形状在上图中的情况下芯模是圆柱形,其直径为d,端部拐角处的圆角半径为pm。在其他情况下芯模的形状随旋压件的形状而异。 (4)毛坯的转速要判定所采用的转速n能否完成加工,总要与旋轮的进给速度联系起来考虑。如(2)中所说,可以在旋轮进给速度不变的条件下改变转速,或者在转速不变的条件下改变旋轮的进给速度。 (5)毛坯的尺寸和性质拉深比D0/d或板坯的相对速度to/d是拉深旋压能否顺利进行的重要参数。对于拉深旋压时,毛坯的材料主要为低碳钢、低合金钢等具有很好的塑性性能的材料。

基于simufact.forming软件的车轮旋压模拟分析

基于simufact.forming软件车轮旋压模拟仿真 段小亮1,李光杰1 (1.西模发特信息科技(上海)有限公司技术工程部,上海 200336) 摘要:旋压轮毂具有重量轻、强度高、寿命长、表面光洁,机械加工余量少等优点。而旋压工艺过程复杂,影响因素多,造成实际旋压加工中工艺参数和工装的选择和调试较为困难,本文采用理论结合实际对钢质重型卡车车轮及铝合金轿车车轮旋压工艺进行模拟分析,得出了旋压件的应力应变、厚度尺寸变化、旋压力变化情况,验证了工艺参数的准确性与工艺的可行性,仿真结果与实际有较好的相符性。通过simufact.forming软件在旋压产品研制过程中的应用发现,仿真分析软件可以提前判断旋压工艺的可行性及合理性,为旋压产品的研制提供重要参考。 关键词:轮毂旋压;Simufact.forming;模拟仿真 Simulation of wheel spinning by simufact.forming Xiaoliang.Duan1,Jason.Li1 (1.ManuSim Solutions Co,.Ltd Engineering department, Shanghai 200336) Abstract:The spinning wheel has the advantages of light weight, high strength, long service life, smooth surface, less machining allowance. But the spinning process is complicated, many influence factors that cause selection and debugging parameters and tooling is difficult in actual spinning process, this paper simulation of the spinning process of steel heavy truck wheels and aluminum alloy car wheel, give the result of the stress and strain, thickness, pressure changes of the parts, verify the feasibility and accuracy of process parameters, Through the simufact.forming software used in the process of spinning in the product development of discovery, analysis and simulation software can advance to judge the feasibility and rationality of the spinning process, provides the important reference for the development of spinning products. Keywords:wheel spinning;Simufact.forming;numerical Simulation 1引言 轮毂作为汽车中的重要部件之一,起着承载着汽车的重量,同时也体现着汽车的外观造型。国内制造汽车轮毂主要是采用铸造、旋压、锻造等工艺。目前,在轮毂轻量化趋势的要求下,铸旋、锻旋及旋压是目前轮毂加工中最安全、最经济适用的一种加工方法。通过旋压能够是车轮内部组织有明显的纤维流线,大大提高了车轮的整体强度和耐腐蚀性。由于材料强度高、产品重量轻,从而使车轮的使用寿命和安全性大幅提高,有利于车辆减重、节油,机械加工余量也大大减少。 2 有限元建模 由于本文主要对车轮旋压工艺进行有限元模拟分析。两个模型均采用三旋轮错距旋压,旋轮形式和芯模尺寸均不一样。工艺一原始坯料为14mm厚度的板材,采用复合旋压工艺。工艺二所用坯料形状见下图1中工艺二几何模型示意图。采用三旋轮强力旋压工艺。为下图1为在Simufact中建立的三维几何模型,几何模型通过导入CAD软件的数字模型建立。 计算模型按照实际加工过程施加边界条件。工艺一给旋轮施加沿坯料外轮廓运动的时间位移参数,选择常库伦摩擦模型进行计算,设定为0.05。芯模和顶料板转速为650Rot/min。进给比为1mm/Rot。工艺二给旋轮施加沿坯料外轮廓运动的时间速度参数。选用库伦摩擦模型,设定为0.01。芯模的顶料板转速为300Rot/min,进给比为0.01666mm/Rot。两种工艺中均对旋轮设定局部坐标系,释放其自身Z轴的旋转运动,使其可在坯料的带动下,绕自身Z轴自转。

第七章 铝合金车轮的质量控制

第七章 铝合金车轮的质量控制 (内 部 资 料) 目 录 第7章 铝合金车轮的质量控制………………………………………………………… 7-1 7.1 概述………………………………………………………………………………… 7-1 7.2 原材料的检验……………………………………………………………………… 7-1 7.2.1 外观及断口…………………………………………………………………… 7-1 7.2.2 化学成分……………………………………………………………………… 7-1 7.2.3 低倍针孔……………………………………………………………………… 7-1 7.3 过程检验…………………………………………………………………………… 7-1 7.3.1 气密性检验…………………………………………………………………… 7-2

7.3.2 动平衡检验……………………………………………………………………7-3 7.4 最终检验……………………………………………………………………………7-3 7.4.1 待包装产品的质量检验………………………………………………………7-3 7.4.2 已包装产品的质量检验………………………………………………………7-4 7.5 型式试验……………………………………………………………………………7-4 7.5.1 试验目的………………………………………………………………………7-4 7.5.2 试验项目………………………………………………………………………7-4 1 旋转弯曲疲劳试验……………………………………………………………7-4 2 径向加载滚动疲劳试验………………………………………………………7-5 3 冲击试验………………………………………………………………………7-5 7.5.3 常用的试验标准………………………………………………………………7-5 7.5. 4 试验频次………………………………………………………………………7- 5 7.5.5 不同试验标准之间的区别与联系……………………………………………7-5 1 弯曲疲劳试验…………………………………………………………………7-6 2 径向加载滚动疲劳试验………………………………………………………7-6 7.5.6 型式试验过程中需要注意的问题……………………………………………7-7 7.5.7 型式试验不合格的处理………………………………………………………7-7 7.6 耐腐蚀性(盐雾)试验……………………………………………………………7-7 7.6.1 试验目的………………………………………………………………………7-7 7.6.2 试验方法………………………………………………………………………7-7 7.6. 3 试验周期………………………………………………………………………7-7 7.6. 4 试验判定………………………………………………………………………7-7

车轮基础知识

车轮基础知识 一、车轮的术语: 1.车轮:又叫“轮毂”或“轮圈”,台湾同胞还有一种叫法是“胎铃”,是汽车的重要行驶部件。 2.车轮(wheel):轮胎和车轴之间的旋转承载件,通常由轮辋和轮辐两个主要部件组成,轮辋和轮 辐可是整体的、永久连接的或可拆卸的。 整体的永久链接的可拆卸的 3.轮辋:车轮上安装和支承轮胎的部件。 4.轮辐:车轮上介于车桥和轮辋之间的支承部件。 5.挡圈:可以从轮辋上拆卸下来的轮缘,能起锁圈作用的。 6.偏距:轮辐安装平面到轮辋中心平面的距离。 7.内偏距车轮:结构为轮辋中心平面位于轮辐安装平面内侧的车轮。 8.零偏距车轮:结构为轮辋中心平面和轮辐安装平面重合的车轮。 9.外偏距车轮:结构为轮辋中心平面位于轮辐安装平面外侧的车轮。 10.双式车轮:一个具有足够内偏距和必要轮廓形状的车轮,当两个这样的车轮彼此安装在一起时,在 车桥的一端能支承两个车轮。 11.双轮中心距:车轮成对安装时构成所要求的双胎间距的两轮辋中心平面之间的距离。 12.轮辋体:轮辋主体部分。 13.轮缘:轮辋上给轮胎提供轴向支承的部分。 14.胎圈座:轮辋上给轮胎提供径向支承的部分。

15.轮辋槽:轮辋底部具有足够深度和宽度的凹槽,可以使轮胎胎圈越过轮辋安装侧的轮缘和胎圈座斜 面进行安装或拆卸。 16.锁圈槽:轮辋体上用以安放锁圈或弹性挡圈并以槽顶对其限位的沟槽。 17.锁圈:对挡圈或座圈起锁止作用的座落在锁圈槽内的弹性圈。 18.座圈:可以从轮辋体上拆卸下来的胎圈座。 19.轮辋主要的几个名称及位置: A B P G H β A B G P P S P D β D 二、车轮的类别: ?按材质分:钢制车轮、铝合金车轮和镁合金车轮等三大类。其中,钢制车轮和铝合金车轮是最为常见的汽车车轮,高端车或者高配车型一般全部用铝合金轮毂,低档或者低配车型的则大都使用钢制轮毂,而镁合金车轮在汽车行业刚刚起步,使用该种轮毂的汽车很少,其主要的应用行业是摩托车行业。 ?按照类型分为:辐板式车轮、辐条式车轮、对开式车轮、组装轮辋式车轮、可反装式车轮、和可调式车轮。 辐板式车轮辐条式车轮对开式车轮

铝合金车轮结构优化研究译文

铝合金车轮结构优化研究-译文

————————————————————————————————作者: ————————————————————————————————日期:

2010信息工程国际学术会议 铝合金车轮结构优化研究 Zhihua Zhu, Jinhua Hu, 孙红梅 Xiaoming Yuan, HuixueSun 钱江学院 机械工程学院杭州师范大学 燕山大学中国杭州 中国秦皇岛Email: Email: 文摘-车轮的优化设计实施摘要.环刚度有限元模型,首先建立车轮13-度冲击强度有限元模型和弯曲有限元分析模型。综合考虑车轮冲击强度和弯曲疲劳强度对环刚度的影响。将约束变量法优化程序OPT III基于检测技术应用于优化计算。结果表明,OPTIII有高的收敛速率及轻量化设计车轮可以实现基于优化设计方法。 关键词-最优化;车轮;有限元 I概述 优化设计是一种设计方法,即:在给定载荷的影响或环境条件,选择设计变量。建立目标函数,得到在约束范围内性质最优的产品状态,几何尺寸之间的关系或其它状态。设计变量、约束条件和目标函数构成了优化设计的三个基本要素。数学模型编程的方法成功用于优化设计始于1960年。一些基本的程序已被用于优化铝合金车轮。2003年H.Akbulut 在土耳其研究结构优化的车轮冲击试验条件,他选择关键节点位移作为设计变量,观察设计变量如何随着结构应力变化而变化,应用分析结果来指导设计结构安全的车轮。在2007年,孙红梅建立了汽车轮基于约束变量指标优化算法的结构优化设计模型,综合考虑了边缘环刚度、弯曲应力和车轮振动模式。该结构优化设计的铝合金车轮研究将轮毂厚度作为设计变量,车轮轻量化作为目标函数。2009年,周家福在ANSYS中利用零级优化方法,在弯曲饰演的条件下以车轮为对象,采用复合材料优化轻质结构尺寸设计车轮轮缘厚度,安装法兰厚度和轮廓的车轮,已达到轻量化设计的目的。经优化设计的复合材料的车轮弯曲疲劳试验,应力、应变和位移变化不大但重量减少了10.436%。 综上所述、由于复杂的铝合金车轮结构,车轮优化设计研究在海内外都比较少,近年来,车轮结构优化设计研究显著增加。车轮轻量化设计的优化设计已经成为研究热点。

浅谈汽车新技术的发展趋势

浅谈汽车新技术的发展趋势

浅谈汽车新技术的发展趋势 摘要:近年来随着全球汽车工业的飞速发展,计算机、电子等学科领域的先进技术在车辆上开始大量应用,汽车的功能和性能日益提高,世界各大汽车公司都争相采用新技术、新理论研制各种高性能、安全、环保车,使得汽车产品不断更新换代,进一步满足消费者的需求。本文是对近年来汽车新技术发展现状进行的分析,进而达到推广和普及新技术的目的。 关键词:汽车新技术发展 近年来,汽车新技术的发展可谓是日新月异,各种概念车和新型汽车如雨后春笋般出现在各大车展上,由车展我们也可窥见今后汽车技术的将会向安全、节能、环保等方面发展。 一、汽车安全技术将更加完善 汽车安全技术涉及的范围越来越广,越来越细,但任何单一技术都或多或少存在不尽人意之处,而且仅仅依靠某一项技术已很难使汽车整体安全性能 得到很大提高。因此,如何提高汽车安全性,满足人们对汽车安全性能越来越高的需求变得越来越急迫。驾驶汽车,首先要确保行车安全;另外要不断完善各项单一技术本身,还要搞好各项单一技术之间的协同,这一点更重要,它直接影响到第一项工作的最终成败。所以今后的汽车安全技术是越来越集成化,智能化,系统化的。[1] 1.1车辆动力学控制 车辆动力学控制(Vehicle Dynamics Cotrol)的缩写是VDC,该系统的作用是保持汽车在行驶(包括制动和驱动)时的稳定性。传统的ABS(防抱死制动系统)和TCS(牵引控制系统)主要是对车轮上的制动力和驱动力进行控制,防

止车轮出现过大的纵向滑移率,以获得最大的附着力,既可产生最大的减(加)速度,又可防止出现侧滑。车辆动力学控制系统虽然也是控制车轮的制动力与驱动力,但它们与ABS/TCS有很大的不同,其主要表现是可实现左右纵向力的差动控制,以直接对汽车提供横摆力矩,抵消汽车的不稳定运动(如在滑路上甩尾时的矫正作用)。该系统通过在汽车上安装的各种传感器,检测到汽车的速度、角速度、转向盘转角以及其它的汽车运动姿态,根据需要主动地对某侧车轮进行制动,来改变汽车的运动状态,使汽车达到最佳的行驶状态和操纵性能,增加了车轮的附着性和汽车的操纵性和稳定性。 1.2智能速度控制系统 汽车智能速度控制系统的功用是在某些特殊路段或特殊行驶条件下对车速进行强制限制。汽车智能速度控制系统主要由电子控制单元和执行器组成。该控制系统工作时,需首先设定限制速度。例如某区域的限速为80km/h,我们可以将该速度设定为限速值。当车速未达到80km/h时,汽车智能速度控制系统不起作用。当车速接近80km/h时,电子控制单元启动执行器,限制加速踏板的行程,使汽车不能继续加速。当车速低于80km/h时,电子控制单元解除对执行器的控制,驾驶员又可以自由地踏下加速踏板使汽车加速。智能速度控制系统限速值的设定,可以用选择开关设定,也可以通过接受无线信号设定(即接收道路速度无线信号切换或电子地图信号切换) :可以只设定一个值,也可以根据不同的路况,有多个挡位供设定。智能速度控制系统为智能化交通奠定了基础。例如在高速公路上设置限速无线信号发射系统,交通管理部门就可以根据气候条件和路面情况及时调整限制车速,让道路更加安全畅通。

旋压成型技术研究进展

旋压成型技术研究进展Newly compiled on November 23, 2020

旋压成型技术研究进展摘要:主要介绍了旋压成型工艺的概念、特点、分类以及发展。同时,着重介绍了普通旋压成型技术和强力旋压成型技术。最后介绍了国内外旋压成型技术的现状以及展望。关键词:旋压成型;概念;分类;进展 前言 旋压技术是一项传统技术, 据文献记载,最早起源于我国唐代,由制陶工艺发展出了金属的旋压工艺[1]。到20世纪中叶以后,随着工业的发展和航空航天技术的开拓,旋压工艺开始大规模应用于金属板料成型领域,从而促进了该工艺的研究和发展[2]。 由于旋压工艺的先进性、经济性和实用性, 且该工艺具有变形力小,节约原材料等特点, 在近年中, 又得到了长足的发展,并已经成为金属压力加工中的一个新的领域[3]。随着旋压成形技术的突飞猛进, 高精度数控和录返旋压机不断出现并迅速推广应用, 目前正向着系列化和标准化方向发展。在许多工业发达国家,己生产出先进的、标准化程度很高的旋压设备, 这些旋压设备己基本定型, 旋压工艺稳定, 产品多种多样, 应用范围日益广泛[4]。 1. 旋压成型 旋压成型的概念 旋压是综合了锻造、挤压、拉伸、弯曲、环轧、横轧和滚压等工艺特点的少、无切削的先进加工工艺,广泛地应用于回转体零件的加工成形中。是根据材料的塑性特点,将毛坯装卡在芯模上并随之旋转,选用合理的旋压工艺参数,旋压工具(旋轮或其他异形件)与芯模相对连续地进给,依次对工件的极小部分施加变形压力,使毛坯受压,并产生连续逐点变形而逐渐成形工件的一种先进的塑性加工方法[5]。 旋压成型的特点

1)在旋压过程中,旋轮(或钢球)对坯料逐点施压,接触面积小,单位压力可达250~350kgf/mm2以上,对于加工高强度难变形材料,所需总变形力较小,从而使功率消耗大大降低。 2)坯料的金属晶粒在三向变形力的作用下,沿变形区滑移面错移,滑移面各滑移层的方向与变形方向一致,因此,金属纤维保持连续完整。 3)强力旋压可使制品达到较高的尺寸精度和表面光洁度。在旋压过程中,旋轮不仅对被旋压的金属有压延的作用,还有平整的作用,因此制品表面光洁度高。 4)制品范围很广。根据旋压机的能力可以制作大直径薄壁管材、特殊管材、变截面管材以及球形、半球形、椭圆形、曲母线形以及带有阶梯和变化壁厚的几乎所有回转体制件,如火箭、导弹和卫星的鼻锥和壳体潜水艇渗透密封环和鱼雷外壳;雷达反射镜和探照灯外壳;喷气发动机整流罩和原动机零件;液压缸、压气机外壳和圆筒涡轮轴、喷管、电视锥、燃烧室锥体以及波纹管。 5)同一台旋压设备可进行旋压、接缝、卷边、缩颈、精整等加工,因而可生产多种产品。同时产品规格范围大。 6)坯料来源广,可采用空心的冲压件、挤压件、铸件、焊接件、机加工的锻件和轧制件以及圆板作坯料,能旋压有色金属、黑色金属以及含钛、钼、钨、钽、铌一类难变形的合金金属, 7)在旋压过程中,由于被旋压坯料近似逐点变形,因此,其中任何夹渣、夹层、裂纹、砂眼等缺陷很容易暴露出来,这样旋压过程也附带起到了对制品的自动检验的作用。 8)金属旋压与板材冲压相比较,金属旋压能大大简化工艺所使用的装备,一些需要多次冲压的制件,旋压一次即可制造出来。

铝镁合金车轮发展概况及旋压成形车轮前景研究

概述 分析了目前国内外铝合金车轮发展状况、镁合金产业现状、镁合金车轮发展状况和旋压车轮研究制造概况,比较了通过旋压技术制造的合金车轮的优越性,并对铝镁合金旋压车轮的前景进行了展望。 前言随着市场全球化的发展,跨国公司纷纷在我国投资,或加大在我国的采购份额。目前,具有较多优势的轻合金材料已逐步广泛的应用于各个领域,特别是伴随着汽车、摩托车制造业的发展,铝镁合金材料成形及其车轮制造业得到了前所未有的发展机遇。21世纪的经济全球化浪潮,推动了汽车工业的市场一体化、分工专业化、产业规模化的快速发展,铝镁合金车轮企业也已形成向多家汽车厂供货、跨国供应的局面。 作为汽车零部件行业的一部分,铝车轮行业的发展与全球汽车行业发展紧密相关。从全球看,汽车行业是个成熟的市场,增长缓慢,过去7年(1999-2005)全球汽车产量的复合增长(CAGR)只有%。而中国汽车市场则进入快速发展时期,同期的复合增长率达%。从总量看,2005年全年汽车产量6653万辆,其中中国的汽车产量570万辆。从汽车保有量看,2004年全球汽车保有量约为85,477万辆,同期中国汽车保有量为约2694万辆。

汽车车轮需求主要来自新增汽车产量,售后市场车轮需求则与汽车保有量有关。2005年全球汽车车轮需求约亿只,其中铝车轮需求约亿只。中国市场2005年车轮需求约3500万只,其中铝车轮约2000万只。 根据中国汽车工业协会有关车轮行业“十一五”发展规划的资料,2004年我国车轮总产销量约5500万件,其中国内OEM量约2900万只,其中乘用车车轮1640万只(钢制车轮540万件,铝车轮约1100万件),商用车车轮1260万件。据测算,2004年全球汽车车轮总需求量约36150万件,其中铝车轮约16296万件。 铝合金车轮发展概况 1国内外铝合金车轮状况 1.1国外铝合金车轮现状 国外铝合金车轮制造业在20世纪70年代得到快速发展。如北美轻型车铝车轮,1987年只占19%,到2001年已占到%;日本轿车装车率超过45%;欧洲超过50%。

旋压成型技术研究进展

旋压成型技术研究进展 材料142 王瑞仙3140102205 摘要:主要介绍了旋压成型工艺的概念、特点、分类以及发展。同时,着重介绍了普通旋压成型技术和强力旋压成型技术。最后介绍了国内外旋压成型技术的现状以及展望。 关键词:旋压成型;概念;分类;进展 前言 旋压技术是一项传统技术, 据文献记载,最早起源于我国唐代,由制陶工艺发展出了金属的旋压工艺[1]。到20世纪中叶以后,随着工业的发展和航空航天技术的开拓,旋压工艺开始大规模应用于金属板料成型领域,从而促进了该工艺的研究和发展[2]。 由于旋压工艺的先进性、经济性和实用性, 且该工艺具有变形力小,节约原材料等特点, 在近年中, 又得到了长足的发展,并已经成为金属压力加工中的一个新的领域[3]。随着旋压成形技术的突飞猛进, 高精度数控和录返旋压机不断出现并迅速推广应用, 目前正向着系列化和标准化方向发展。在许多工业发达国家,己生产出先进的、标准化程度很高的旋压设备, 这些旋压设备己基本定型, 旋压工艺稳定, 产品多种多样, 应用范围日益广泛[4]。 1. 旋压成型 1.1 旋压成型的概念 旋压是综合了锻造、挤压、拉伸、弯曲、环轧、横轧和滚压等工艺特点的少、无切削的先进加工工艺,广泛地应用于回转体零件的加工成形中。是根据材料的塑性特点,将毛坯装卡在芯模上并随之旋转,选用合理的旋压工艺参数,旋压工具(旋轮或其他异形件)与芯模相对连续地进给,依次对工件的极小部分施加变形压力,使毛坯受压,并产生连续逐点变形而逐渐成形工件的一种先进的塑性加工方法[5]。 1.2 旋压成型的特点 1)在旋压过程中,旋轮(或钢球)对坯料逐点施压,接触面积小,单位压力可达250~350kgf/mm2以上,对于加工高强度难变形材料,所需总变形力较小,从而使功率消耗大大降低。 2)坯料的金属晶粒在三向变形力的作用下,沿变形区滑移面错移,滑移面各滑移层的方向与变形方向一致,因此,金属纤维保持连续完整。 3)强力旋压可使制品达到较高的尺寸精度和表面光洁度。在旋压过程中,旋轮不仅对被旋压的金属有压延的作用,还有平整的作用,因此制品表面光洁度高。 4)制品范围很广。根据旋压机的能力可以制作大直径薄壁管材、特殊管材、变截面管材以及球形、半球形、椭圆形、曲母线形以及带有阶梯和变化壁厚的几乎所有回转体制件,如火箭、导弹和卫星的鼻锥和壳体潜水艇渗透密封环和鱼雷外壳;雷达反射镜和探照灯外壳;喷气发动机整流罩和原动机零件;液压缸、压气机外壳和圆筒涡轮轴、喷管、电视锥、燃烧室锥体以及波纹管。

汽车车轮生产工艺现状和发展趋势

汽车车轮生产工艺现状和发展趋势 整理时间:2008-8-21 10:51:57 来源:华南理工大学机械工程学院打印评论收藏关闭 您正在阅读的是:汽车车轮生产工艺现状和发展趋势,欢迎您转贴给朋友。 车轮是车辆承载的重要部件,其质量直接关系到人的生命安全。目前车轮的主要材料有铝合金、钢材、镁合金以及一些复合材料和钢铝组合材料。本文分别讲述了铝合金车轮和钢车轮的制造工艺,其中铝合金车轮的制造工艺有铸造、锻造以及前沿的旋压-流动复合成形工艺和辗压-旋压复合成形工艺,钢制车轮的制造工艺有轮辋辊压技术、轮辐冲压技术以及前沿的辊压整体成形技术,分析了各个工艺的优缺点及代表性的生产厂家,阐述了前沿的车轮制造工艺和整个车轮行业的发展趋势 1引言 汽车车轮承受着车辆的垂直负荷、横向力、驱动(制动)扭矩和行驶过程中所产生的各种应力,它是高速回转运动的零件、要求尺寸精度高、不平衡度小、支撑轮胎的轮辋外形准确、质量轻,并有一定的刚度、弹性和耐疲劳性。因此要求车轮具有足够的负载能力及速度能力、良好的缓冲性和气密性、良好的均匀性和质量平衡性、精美的外观和装饰性、尺寸精度高、质量小、价格低、拆装方便、互换性好等。车轮材料的选用,车轮结构和制造工艺与上述要求密切相关,是决定车轮性能好坏的关键因素。 2车轮材料的选用 目前,全世界的汽车车轮,不管是载重汽车车轮还是轿车车轮,所用材料基本分为两种,即钢材和铝合金材料,这两种材料制造的车轮所占市场份额为95%,研究汽车车轮的各种工艺特性与这两种 材料的特性是分不开的。随着世界各国政府对节能、安全、环保的要求日趋严格,车轮材料的选择就成为一个焦点问题,即铝合金和钢的选择问题。 此外,随着材料技术的发展和人们对车轮质量的要求不断提高,一些新型材料也被用于制造汽车车轮。 2.1钢制车轮 长期以来,钢制车轮在汽车车轮中占主导地位,但是自上世纪80年代起,钢轮的市场份额逐步减小,被铝合金所代替。钢轮份额快速下跌的原因有多方面的因素,而外观吸引力是最主要的因素。钢制车轮在低成本和安全性方面较铝合金车轮具有很大的优势,因此,目前的载重汽车车轮大部分是钢材制造的。但钢制车轮的缺点也是非常明显的,钢材的加工成型性能和制造工艺决定了钢轮难以做到铝合金车轮那样的结构和外形多样化。同时,钢车轮质量大,制造和使用钢车轮消耗的能量都比铝制车轮大得多。 近年来,面对替代品的渗透和挑战,国际钢轮行业在技术方面进行一系列的革新,包括:(1)新材料微合金钢HSLA,双相钢(DP)和贝氏体钢等高强度和先进高强度钢种成功开发并逐步应用于制造车轮,为钢轮减轻质量和更加大胆的款式设计创造了条件。据统计,HSLA车轮比一般碳素钢车轮重量轻约15%。(2)新工艺,国际钢轮行业与设备制造商紧密合作研究发展了旋压生产工艺,应用到钢制车轮生产中。目前商用车

相关主题
文本预览
相关文档 最新文档