当前位置:文档之家› 电子水准仪在建筑物变形观测中的应用研究

电子水准仪在建筑物变形观测中的应用研究

电子水准仪在建筑物变形观测中的应用研究
电子水准仪在建筑物变形观测中的应用研究

沈阳建筑大学

毕业论文

毕业论文题目电子水准仪在建筑变形监测中的应用研究

学院专业班级土木工程学院测绘08-01班学生姓名性别

指导教师职称

2012年6月15日

摘要

建筑变形监测是按照一定的周期对变形体进行重复观测以确定其形状在空

间位置随时间的变化量,并利用观测结果总结出变形规律从而监测变形体的运动。

如果变形超过了限差,就会影响建筑物的正常使用,严重的会使建筑物倾斜甚至

倒塌。因此,在建筑物施工过程和运营期间,都需要对它们进行变形观测,确保

工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采

取措施。

本论文主要介绍了数字水准仪的结构、测量原理;数字水准仪的种类和特点,

目前发展的现状,今后发展的趋势。以及数字水准仪在各种工程中的应用,尤其

是在沉降监测中的应用;利用数字水准仪如何快速准确地获得监测对象的沉降信

息,以便对监测对象进行及时的数据分析和准确的预报;依据电子水准仪的基本

原理及其在建筑沉降监测中的应用进行研究和分析,从而得出对普及电子水准仪

的应用和发展有益的结论。

关键词:电子水准仪;变形监测;沉降观测

I

Abstract

Building deformation monitoring is repeated observing the deformation objects with a certain period to determine the shape of the spatial position with the change of time, and using the observed results to sum up the law of deformation and to monitor the movement of the deformation objects. If the deformation exceeds the limit, it will affect the normal use of the building, and will seriously make the building tilting or even collapse. Therefore, in the period of building construction and operation ,observing the building deformation to ensure building’s stability is very necessary .And then it can provid e the necessary information for safe operation. It can also find problem and take measures to solve the problem timely. This paper introduces the structure , types , characteristics and measurement principle of the digital level instrument. This paper also probe into the development situation at present and the development trend in the future of the digital level instrument.

Importantly, this paper make a research of large number of engineering applications, especially in the settlement monitoring ,of the digital level instruments. Using the digital level instruments ,it can quickly and accurately obtain the monitoring information of monitoring object, so that the prediction of monitoring object can be obtained timely accurately. To research and analysis on the basis principle of electronic level and its application in building settlement monitoring, the useful conclusions in popularization and development of electronic leveling instrument application is obtained.

Key words:Electronic level; Deformation monitoring; Settlement observatio

II

目录

第一章电子水准仪的基本原理 (1)

1.1引言 (1)

1.2电子水准仪的结构及测量原理 (1)

1.3 电子水准仪的种类和特点 (1)

1.3.1 电子水准仪的种类 (1)

1.3.2 电子水准仪的特点 (8)

1.4 电子水准仪的发展现状及发展趋势 (8)

第二章建筑变形观测 (13)

2.1建筑变形观测 (13)

2.1.1 建筑变形观测概述 (13)

2.1.2 建筑变形观测的分类 (13)

2.1.3 建筑变形观测的特点 (14)

2.1.4 建筑变形观测的基本方法 (15)

2.2 变形观测的重要意义 (15)

第三章电子水准仪的观测方法 (17)

3.1 DiNi 12电子水准仪的简介 (17)

3.2 电子水准仪的观测方法 (18)

第四章电子水准仪的检验与校正 (20)

4.1 电子水准仪的误差 (20)

4.2 电子水准仪的检验与校正 (22)

4.2.1电子水准仪常规检验与校正 (22)

4.2.2电子水准仪i角的检验与校正 (23)

第五章电子水准仪在变形观测中的应用实例 (26)

5.1 工程概况 (26)

5.2 沉降观测高程控制网方案设计 (26)

5.2.1 观测仪器及依据 (26)

III

5.2.2水准基点的布设 (27)

5.2.3工作基点的布设 (27)

5.2.4 沉降观测点的布设 (28)

5.2.5观测方法 (28)

5.2.6 观测成果 (29)

5.3数据处理与分析 (30)

5.3.1 观测点的观测成果 (30)

5.3.2 累积沉降值 (33)

5.3.3 沉降等值线图 (34)

5.3.4 沉降-荷载-时间曲线图 (34)

5.3.5各观测点随时间累积沉降速度曲线图 (38)

第六章总结与展望 (40)

6.1经济技术分析 (40)

6.2 结论 (40)

6.3 展望 (40)

参考文献 (42)

致谢 (43)

附录一中文译文

附录二外文翻译原文

IV

电子水准仪在建筑变形监测中的应用研究

第一章电子水准仪的基本原理

1.1引言

随着城市建设的迅猛发展, 高大建筑物越来越普遍, 建筑物的安全也越来越受到社会各界的关注, 为保证建筑物的顺利施工和施工后的安全运营,就必须对建筑物进行系统的变形监测,其中一项重要工作就是沉降观测。因此对建筑物进行精确的沉降观测就显得尤为重要,因为它关系到整个工程的施工安全和使用安全。

随着测绘仪器制造技术的飞速发展,沉降观测手段也从传统的光学水准仪发展到现在的电子水准仪。电子水准仪以其时尚的外观设计、操作方便、高精度等诸多优点,得到了广大测绘工作者的青睐,在各种工程的变形监测中得到了非常广泛的应用。

为了监测验证电子水准仪的精度,本文以天宝DiNi-12电子水准仪为例,通过实际的工程沉降监测数据来验证电子水准仪的精度完全符合沉降监测的精度。

1.2电子水准仪的结构及测量原理

电子数字水准仪是在精密自动安平水准仪的基础上发展起来的。电子水准仪是通过感光器分析标尺影像对一维数字影像处理的应用(一维数字影像处理原理:影像-数字化-译码数据处理-结果),利用二极管检测阵列来代替测量人员的眼睛,相当于在水准仪里架设了具有稳定视线的一部CCD照相机。

水准条码标尺上的不用条码在通过望远镜成像到平面上的CCD光电传感器上,CCD光电传感器再将黑白相间的条码图像转换成模拟视频信号,经过仪器内部的数字图像处理,即可获得望远镜中丝条形码标尺上的读数。此数据一方面在屏幕上显示,另一方面存储在仪器内部的存储器中,供计算、查核和保留之用。其工作原理如图1-1所示。

1.3 电子水准仪的种类和特点

1.3.1 电子水准仪的种类

目前流行的几种电子水准原理主要是相关法、几何法、相位法、RAB原理及叶氏原理。

1

从这几种原理的共同性的角度看,都使用了光学水准仪的光路原理,也都使用了条形码标尺,条码明暗相间,通过改变明暗条码的宽度实现编码,且条码不存在重复的码段。但它们的编码规则也有非常明显的个性区别,从这些区别是可以看出它们的解码原理的区别的。另外,除上述编码环节存在共同性外,解码环节也还是有共同性的。可以断定,所有的电子水准原理的解码过程都存在粗测、精测和精粗衔接这些步骤过程。且这些过程和普通的光学模拟水准仪仍然有相似之处。如图1-2所示:(1)相关法Leica仪器使用相关法,其解码原理就是对图像信号与约定的编码进行相关解算,寻找最大相关点的位置从而完成图象识别进而获得所截获的条码片段的原码(粗测值)和物象比(距离),精测原理则由电子中丝和码元的相位关系实现。其解码突破口在于二维相关搜索运算。

由于是直接进行相关搜索运算,所以标尺的编码直接以伪随机码进行黑白二进制编码。如图1-3所示,码元0和1分别与条码的黑自相对应。

图1-1 电子水准仪工作原理

2

3

图1-2 常见的电子水准仪原理

图1-3相关法的直接黑白编码原理

相关法的优点是思想方法简单,而缺点是由于粗测值和距离(物象比)两个未知量同时进行二维相关运算搜索,而每个条纹中所包含的码元数目具有很大的随意性,最少是1个码元,而最多可以是16个码元,而且码元宽度很窄(如2.025mm)远距离是无法直接分辨码元少的窄条纹的(“淹没”现象),由于相关法是比较实在的由所有像素参与的对可能结果的“穷举式表决”,那些“淹没”的条纹和条纹边沿细节以及被遮挡损坏的少量条纹并不足以影响到整个“投票结果”,实现了可靠的解码。但由此带来的运算量非常巨大,于是导致了测量速度慢和对微处理器的速度要求高以及能耗大等缺陷。

为解决测量速度慢的问题,早期的徕卡仪器在望远镜的调焦旋钮上安装传感器以实现视距(物象比)的粗略测量以缩小相关算法的搜索范围,也有仪器则采用面阵光电传感器通过测量标尺条码的横向长度来实现视距(物象比)

的粗略测量以缩小相关算法的搜

索范围。

相关法的精测原理仍然利用电子中丝和所截获的码片段码元的相位(位置)关系实现。对于这一点,目前还没发现有文献对其进行了分析和披露。目前文献所介绍的“粗相关”“精相关”概念实质都是介绍的粗测原理—即条码片段或其码序的确立过程,对其真正的精测原理即电子中丝和条码片段之间的位置关系的确立过程没有涉及。

(2)几何法

几何法的解码原理区别于相关法的地方是通过载码的引人减少了标尺上黑白条纹宽度的种类,并使得图像信号中可以恢复出载码的周期波谱,从而实现了准确的码元坐标定位继而实现快速的“码词”(和相关法中的条码片段概念类似)读取,解决了相关法的测量速度慢的问题。其所谓的相似二角形空间变换几何关系如图1-4所示,这利用相似二角形空间几何比例关系其实是所有电子水准原理所共同采用的(包括相关法、相位法、RAB原理以及叶氏原理也实质都使用了这种望远镜成像的光学比例关系),所有电子水准原理的精测过程实质都是使用了这种几何关系。所以我们一直认为几何法的叫法是不妥的。

图1-4 文献对几何法原理的描述示意

先看几何法的相位调制编码原理。如图1-5所示。

图1-5几何法的相位调制编码原理

4

图中反映了载码遇0码元则反相,遇1码元则同相的编码规则。可以看出这样的条码的宽度种类仅有二种宽度,大的条纹宽度就是码元的宽度,小的条纹宽度就是半个码元的宽度,比相关法中的16种宽度大大减少,条纹也粗得多,100m距离不可能出现整条纹完全“淹没”(至少在理论上),根据恢复出的周期波谱的波长和相位,码元成像在CCD上的坐标分布定位就清清楚楚,简单的一维相关就可以完成粗测,物象比由周期值直接求解。但由此带来的问题是:信息密度稀疏了,很难同时顾及远近距离的测量要求。因为近距离时望远镜成像很大,在光电传感器上成像的码元个数大大减少,少到一定限度就保证不了解码的唯一性。但若减少码元宽度顾及近距离又对远距离的图像分辨不利。为解决短视距的测量问题,几何法采用双相位码编码—在单相位码的基础上加人约定的

1mm明暗窄条码,这种码只有在近距离时光电传感器才可以分辨并参与解码,在远距离时其在光电传感器上无法分辨(淹没),不参与解码。这是几何法原理的远近兼容测量原理。

目前文献所介绍的几何法原理其实只是着重强调了其精测原理和精粗衔接过程,其望远镜成像几何比例关系就是说明电子中丝和码元之间的相位位置关系而对于其粗测原理—“码词”,的获取这一电子水准仪的最实质的图象识别技术问题则没有涉及。

可以看出,相关法和几何法的命名角度本身是不一致的,前者是粗测特征,后者是精测特征。这样的命名与分类当然是不严谨的。

实际上,相关法也利用了望远镜成像几何位置(相位)关系实现精测,几何法也可以使用相关算法(但不是二维相关)实现粗测(获得“码词”)。而其区别仅在于是否利用载码调制来实现解码运算量的减少。

(3)相位法

相位法原理的基本特征是利用标尺条码图像信号中的几个不同周期码的波谱的相位差来实现粗测,算法是快速傅里叶变换,其运算量也不小。精测原理利用R周期码的相位信息实现。

其测量原理和光电测距仪的组合频率测距法是类似的如图1-6所示。主要分如下6个步骤进行:

①分别测量出电子中丝在标尺成像中的A码、B码和R码二种周期信号中的相位值如A

φ;

φ、R

φ、B

5

6

②用A φ、B φ求解出电子中丝在隐含频率Fc =B F -A F 中的相位R φ=B φ-A φ;

③根据隐含频率Fc 的波长五:Lc = A L B L /(A L -B L )和相位R φ求得第一高度粗测值C H ;

④根据A 码(或者B 码)信号的波长A L (或者B L )和相位A φ(或者B φ)求得第二高度粗测值A H (或者B H );

⑤再根据R 信号的周期R L 和相位R φ求得高度精测值R H ;

⑥最后依次将R H ,A H (或者B H )和R H 逐次精粗衔接就可以获得精确的高度测量结果H 了。

之所以要使用第二粗测值,是因为第一粗测值的精度很容易超出精测R 码的波长,将第一粗测值和精测值直接衔接将容易出现整周期的R 码粗差。

图1-6相位法的编码解码原理示意

(4)RAB 原理

RAB 原理编码规则是载码码宽数字电子,其解码的突破口是利用相邻码元中心等距离特征—即图像信号中包含有周期波谱,从而通过周期波谱的测量实现了准确的码元坐标定位继而实现物象比解算、快速粗测的相关运算等,精测原理和其他方法仍然类似。如图1-7所示:

RAB 原理为解决远近视距兼容使用了6种宽度的编码,且6种码分为两组,每组2种宽度的码元,同组中的2种码元的宽度差别不大,这种不大的差别在近距离是容易区别的,在远距离时由于截获了较大视场的条码片段,同组中的2种宽度差别不大的码元按一种码处理。

RAB 码的显著特点是相邻暗条纹(或者相邻明条纹)中心离等于定值。

7

图1-7 RAB 原理的码宽调制编码原理

(5)叶氏原理

叶氏原理是武汉大学发明并实现的数字电子原理,已经应用于博飞DAL 系列和苏光EL 系列电子水准仪中。其核心思维是以比例码为载码,测量码调制寄生在比例码之中。解码时首先通过条码图像信号中的比例载码周期波谱的测量实现了准确的码元坐标定位继而实现物象比解算、快速粗测、精测。如图1-8所示

图1-8叶氏原理的比例调制编码原理

本原理中条码区别于其他原理的显著特点是相邻明暗条纹的边界(或者明暗条纹的边界)之间的距离等于定值。

比较这5种原理可以看出,除前边提到的粗测、精测、精粗衔接这些大体过程存在相同以外,所有电子水准原理的精测原理其实也是基本相同的,都要涉及电子中丝和所截获条码图像中的某种信息的相位(位置)关系,都要涉及望远镜成像的三角形几何比例关系的应用。

而不同之处在于粗测的实现过程(图象识别)以及精测、粗测都要涉及到的物象比的确立过程。

除相关法外,相位法、几何法、RAB

原理和叶氏原理都使用和利用了载码调制编码

解码,通过载码波谱的使用以实现快速图象识别,也由于相位法的波谱相对复杂,必须以傅里叶变换来解码,而后3种原理则只需相对简单的算法就可以获得载码成像的周期波谱信息。而实践应用也证实了后二种原理的实际测量速度效果也的确比相位法和相关法明显快捷。

就三种使用载码调制的原理而言,几何法必须增加细条纹码克服近距离时信息密度过低的缺陷,RAB原理和叶氏原理只需增加调制级数就可以轻易解决近距离时信息密度低的问题。

1.3.2 电子水准仪的特点

电子水准仪是以自动安平水准仪为基础,在望远镜光路中增加了分光镜和探测器(CCD),并采用条码标尺和图象处理电子系统二构成的光机电测一体化的高科技产品。采用普通标尺时,又可像一般自动安平水准仪一样使用。它与传统仪器相比有以下共同特点:

(1)读数客观:不存在误差、误记问题,没有人为读数误差。

(2)精度高。:视线高和视距读数都采用大量条码分划图像经处理后取平均得出来的,因此削弱了标尺分划误差的影响。多数仪器都有进行多次读数取平均的功能,可以削弱外界条件影响。不熟练的作业人员业也能进行高精度测量。

(3)速度快:由于省去了报数、听记、现场计算的时间以及人为出错的重测数量,测量时间与传统仪器相比可以节省1/3左右。

(4)效率高:只需调焦和按键就可以自动读数,减轻了劳动强度。视距还能自动记录,检核,处理并能输入电子计算机进行后处理,可实线内外业一体化。

1.4 电子水准仪的发展现状及发展趋势

(1)数字水准仪和传统水准仪的异同:

①相同点:数字水准仪具有与传统水准仪相同的光学、机械和补偿器结构;光学系统也是沿用光学水准仪的;既可以用于数字水准测量,也可以用于传统水准测量。

②不同点:传统水准仪用人眼观测,数字水准仪用光电传感器(CCD线针)代替人眼;数字水准仪与其相应条码水准标尺配用。仪器内装有图像识别器;采用数字图像

8

处理技术,这些都是传统水准仪所没有的;同一根编码标尺上的条码宽度不用,各型数字水准仪的条码尺有自己的编码规律,但均还有黑白两种条块,这与传统水准标尺不同。另外,对精密水准仪而言,传统的利用测微器读数,而数字水准仪没有测微器。(2)当今世界上已有电子水准仪型号和技术指标:

自从徕卡公司在1990年推出第一台电子水准仪NA2000以来,电子水准仪己经发展到了第二代,天宝、拓普康、索佳和尼康等都先后推出了自己的产品。目前市场上的电子水准仪分为不同精度的两个等级(与采用的标尺也有关系),常用的高精度电子水准仪及其指标见表1-1所示。

表1-1常用高精度电子水准仪及主要技术指标

9

(3)不同电子水准仪的不同点:

由于各厂家的标尺编码规则不同,电子读数的原理也不同,导致不同厂家的产品在技术指标和性能上也有一些差别。下面对徕卡、天宝和拓普康三个厂家的精密电子水准仪加以比较。

①测量原理与编码标尺规则不同:徕卡仪器采用相关法读数,天宝采用几何法读数,拓扑康采用相位法读数。

②技术指标的差别:各厂家的电子水准仪由于设计思路不同,采用的原理不同,导致在技术指标上存在一些差别,如测量时间不同,对标尺条码截取的范围不同,计算方法不同等。

③性能的差别:由于不同厂家产品的电子读数原理不同,从而反映在它们的性能上也存在差别。

④折光差:由于空气中折射率的梯度的存在,对视线高的影响。当视线靠近地面时,由于受折光的影响,标尺影像将产生形变,导致光电传感器图形处理的困难,从而对电子读数产生影响,造成折光差。但由于三种仪器的读数原理不同,受折光差的影响大小也不同,天宝仪器受折光差的影响要小于其它两种仪器。这主要是因为蔡司电子水准仪在读数时,仅用到中丝上下各15cm的标尺截距,并没有用的到全视场的条码,所以当视线靠近地面时,受折光差的影响小,而其它两种仪器利用视场中的所有条码,靠近地面的条码也参加读数,而最后的判读结果是所有这些条码的平均值,所以受折光差的影响大。

⑤红外光线的影响不同

徕卡NA系列电子水准仪具有“谱灵敏度”,即电子水准仪的探测器是利用光线的红外部分接收和检测条码影像的。因此,在人工光线下进行测量时,如果红外光成分较弱时,会造成测量误差,甚至无法读数。另外,对标尺像的背景色也有一定的要求,当标尺背景为红色(如红色墙等)或接近探测器的工作色谱时,则电子读数将遇到困难,作业时应加以注意。而天宝和拓普康的电子水准仪是利用可见光来接收和检测条码影像的,所以不受此影响,它们只要求标尺要有足够的照明。

⑥调焦对测量结果的影响不同

天宝电子水准仪的标尺每2cm划分为一个测量间距,其中的条码构成一个码词,每个测量间距的边界由黑白过渡线构成,其下边界到标尺底部的高度,可以由该测量间距

10

中的码词判读出来,望远镜中丝照准的那个码词,被判读出来后就可得到视线高读数。这种读数原理对条码分划边沿的成像质量要求高,要求调焦要清晰,否则对读数将产生较大影响。而徕卡和拓普康的电子水准仪是利用视场中的每个条码的中心线读数,因此条码成像质量对读数没有多大影响,但是条码成像模糊时,仪器会通过延长图像处理时间来获得读数。但是也应该注意,虽然通常调焦波动,对测量结果只产生微不足道的影响,但若是大量测量都是这样,就会影响最后的测量精度。因此要获得最佳的测量精度,每站的仪器调焦质量也很重要。

⑦对标尺遮挡的容许幅度不同

在水准测量中,标尺不同部位常遭树枝、杂草等障碍物遮挡,在山地或公路旁作业时更是如此。各厂家的电子水准仪在设计时也考虑到了这一点,因此在仪器出厂时都给出了此项性能指标。由于电子水准仪的读数并不是采用编码标尺上的某一处条码刻划,而是对视场中标尺截距编码的平均值,因此允许标尺部分遮挡。只是不同厂家的仪器由于读数原理和采用的条码范围不同,对标尺遮挡的容许幅度也不同。

天宝的电子水准仪是利用对称于视准轴上下各15cm的标尺编码来读数,即使视场中有多余的标尺编码,也不参与读数,这部分标尺被遮挡不影响测量值,若视距位于最小视距和几米之间时(视场角是一定的),落在视场里的编码尺段只要有10cm就能观测。同时,蔡司的电子水准仪具有标尺非对称截距测量功能。但是,这类仪器的中丝附近条码不允许遮挡。

对于徕卡和拓普康的仪器,是利用视场中的所有条码来进行读数。当视距大于5m 时,徕卡电子水准仪对遮挡的容许幅度一般为20%-30%,当视距小于5m时,标尺稍有遮挡可能就无法读数,而对中丝是否遮挡没有特殊要求。

(4)电子水准仪有广阔的应用前景,主要有:

①高精度水准测量:NA3003被美国联邦大地控制协会指定用作一等水准测量,其他如DL-101、DiNi-10均可用于一、二等水准测量,可提高作业效率30%-50%。

②变形观测:建筑物沉降观测(将马达驱动器附在电子水准仪上,为建筑物的沉降、隆起和垂直位移的自动监测开辟了新的途径);大坝垂直变形观测。

③工业测量:机器、地基轴倾、转台精密测量。

④连续精密测量:与计算机相联,实时、自动连续测量。

⑤地形测量:图根导线点、碎步点测量。

11

⑥线路测量:公路、铁路、河道、隧道等纵、横断面测量。

⑦建筑施工:放样、抄平。

(5)电子水准仪今后的发展方向:

电子水准仪是一种功能很强的测量系统,操作简单,测量速度比光学水准仪提高50%-60%,易于实现内外业一体化,所以肯定是几何水准测量继续发展的方向。今后电子水准仪将从以下几个方面进行完善:改善补偿器的结构与安平精度;数字水准仪之所以能成功,主要是依赖于CCD技术和数字图像处理技术,因为今后电子水准仪将随着CCD技术和数字图像技术的发展而发展;改进测量程序与数据存储软件;增强仪器适应环境的能力;使机内系统逻辑增加对其他一些干扰,如亮度变化、补偿器应力释放、传感器时性改变等的改正。

12

第二章建筑变形观测

2.1建筑变形观测

2.1.1 建筑变形观测概述

建筑物在工程建设和使用过程中,由于基础的地质结构不均匀,土壤的物理性质不同,土基的塑性变形,地下水位的变化,大气温度的变化,建筑物本身的荷重(如风力,震动等)的作用,会导致工程建筑物随时间的推移发生沉降,位移,扰曲,倾斜及裂缝等现象,这些现象统称为变形。

工程建筑物的变形,按其类型可以分为:静态变形和动态变形。静态变形通常是指变形观测的结果只表示在某一时期内的变形值,也就是说,它只是时间的函数;动态变形是指在外力影响下而产生的变形,故它是以外力为函数来表示的动态系统对于时间的变化,其观测结果是表示建筑物在某一时刻的瞬时变形。变形按时间长短可分为:长周期变形(建筑物自重引起的沉降和变形),短周期变形(温度变化引起的变形)。按研究的范围可以分为:全局性变形,区域性变形,局域性变形。按成因可以分为:人工干预变形,自然原因变形,综合原因变形。

所谓变形观测,是用测量仪器或者专用仪器测定建筑物及地基建筑物在荷载和外力作用下随时间变形的工作。通过变形观测,可以检查、各种工程建筑物和地质构造的稳定性,及时发现问题,确保质量和使用安全;更好的了解变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的预报变形的理论和方法。

2.1.2建筑变形观测的分类

变形观测属于安全监测。变形观测有内部观测和外部观测两方面。内部观测内容由建筑物的内部应力,温度变化的测量,动力特征及其速度的测定等,一般不由测量工作者完成。内部观测与外部观测之间有着密切的联系,应同时进行,以便互相验证和补充。外部观测的内容主要有沉降观测、位移观测、倾斜观测、裂缝观测和扰度观测等。(1)沉降观测

它是指建筑物及其基础在垂直方向上的变形(也称垂直位移)。沉降观测就是测定建

13

筑物上所设观测点(沉降点)与基准点(水准点)之间随时间的变化的高差变化量。通常采用精密水准测量或液体静力水准测量的方法进行。

(2)水平位移观测

它是指建筑物在水平面内的变形,其表现形式为在不同时期平面坐标或距离的变化。建筑物水平位移观测是测定建筑物在平面位置上随时间变化的移动量。测定水平位移

的方法很多,有常规的地面控制测量方法,如导线,前方交会法等;也有各专用方法,

如基准线法,正、倒垂线法等。

(3)倾斜位移观测

它是指建筑物因为地基的不均匀沉降或其他原因造成的。建筑物倾斜位移分为两类:一类表现为以不均匀的水平位移为主;另一类则表现为以不均匀的沉降为主。倾斜观测是用经纬仪,水准仪或其他专用仪器测量建筑物的倾斜随时间变化的工作。对于上述两种倾斜一般采用不同的观测方法,前者可采用先测出水平位移然后计算倾斜的方法,即所谓的“直接法”;后者可通过测量建筑物基础相对沉降的方法进行测定,即先测出沉降后计算倾斜的方法,也就是所谓的“间接法”。

(4)裂缝观测

它是指建筑物基础的不均匀沉降,温度的变化和外界各种荷载的作用,使得建筑物内部的应力大大超过了允许的限度,使得建筑物的结构产生裂缝。测定建筑物裂缝发展情况的观测工作即为裂缝观测。

(5)扰度观测

在建筑物垂直面上,各个不同高程点相对于底点不同的水平位移,称为扰度。所进行的观测称为扰度观测。

2.1.3建筑变形观测的特点

与一般的测量工作相比,变形观测具有以下几个特点:

(1)观测的精度要求高:

由于变形观测的结果直接关系到建筑物的安全,影响对变形原因的分析和变形规律的正确分析,和其他测量工作相比较,变形观测必须具有很高的精度。典型的变形观测精度要求是1mm或者相对精度1×10-6。因此,根据变形观测的目的不同,确定合理的观测精度和观测方法,优化观测方案,选择测量仪器是实施变形观测的前提。

14

(2)需要重复观测:

建筑物由于各种原因产生的变形都有时间效应,计算其变形最简单,最基本的方法是计算建筑物上同一点在不同时间的坐标差和高程差。这就要求变形观测必须依一定的时间周期重复观测,时间跨度较大。重复观测的周期取决于变形观测的目的,预计的变形量的大小和速度。

(3)要求采用严密的数据处理方法

建筑物的变形一般都比较小,有时甚至与观测精度处在同一个数量级;同时,大量重复观测使原始数据增多。要求从不同时期的大量数据中,精确确定变形信息,必须采用严密的数据处理方法。

2.1.4建筑变形观测的基本方法

第一类:常规大地测量方法,包括几何水准测量,三角高程测量,三角(边)测量,导线测量,交会法等。这类方法的测量精度高,应用灵活,适用于不同变形体和不同的工作环境,但野外工作量大,不易实现自动和连续监测。

第二类:摄影测量方法:包括近景摄影测量.它可以同时测量许多点子,作大面积的复测,尤其适用于动态式的变形观测,外业简单且精度较底。

第三类:专门测量方法,或称物理仪器法,包括各种准直测量(激光准直系统具有代表性),倾斜仪观测,流体静力水准测量系统及应变计测量。用专门测量手段的最大特点是容易实现连续自动监测及遥测,且相对精度高,但测量范围不大,提供的是局部变形的信息。

第四类:空间测量技术:包括甚长基线干涉测量(VLBI),卫星激光测距,全球定位系统(GPS)等。空间测量技术先进,可以提供大范围的变形信息,是研究地壳变形及地表下沉等全球性变形的主要手段。

工程建筑物变形观测的基本方法,要根据建筑物的变形性质,使用情况,观测精度,周围的环境以及对观测的要求来选定。在实际变形观测方案时应综合考虑各种测量方法的应用,互相取长补短。

2.2变形观测的重要意义

大型水工建筑物、工业与交通建筑物、高大建筑物群体和许多精密机械的安装、导

15

水准仪线路测量操作步骤

水准仪线路测量操作步骤 Prepared on 22 November 2020

水准仪“线路测量”操作步骤 1.开机 2.选择“程序”点击“ENT” 3.选择“线路测量”点击“ENT”

4.选择“作业”点击“ENT” 5.输入作业名,选择“保存”点击“ENT”(数字和字母之间的转换键是SHIFT键) 6.选择“线路”点击“ENT”

7.在“测量方式”中左右翻选择“aBFFB”(意思是“奇数站后前前后”“偶数站前后后前”);再输入“起始高程”就可以;其他的不用做更改(需要往返测的选择“返测”就行)选择“确定”点击“ENT”

8.选择“开始”点击“ENT”就可以开始测量 9.(奇数站)第一次瞄准后尺点击“MEAS”;测过之后点击“ENT”保存。 10.第二次瞄准前尺点击“MEAS”;测过之后点击“ENT”保存;第三次瞄准前尺点击“MEAS”;测过之后点击“ENT”保存; 11.第四次瞄准后尺点击“MEAS”;测过之后点击“ENT”保存;再点击“ENT”保存本测段。 12.(偶数站)第一次瞄准前尺点击“MEAS”;测过之后点击“ENT”保存。 13.第二次瞄准后尺点击“MEAS”;测过之后点击“ENT”保存;第三次瞄准后尺点击“MEAS”;测过之后点击“ENT”保存;

14.第四次瞄准后尺点击“MEAS”;测过之后点击“ENT”保存;再点击“ENT”保存本测段。 15.最后全部测完保存好之后按“ESC”退出即可;一定记住只有退出测量界面方可关机。 以上为水准仪二等水准测量“线路测量”简略操作步骤,如有不对请自己修改。

水准测量外业流程

水准测量 水准测量 内容:理解水准测量的基本原理;掌握 DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺 垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差 闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量( Height Measurement )的概念 测量地面上各点高程的工作 , 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量 (leveling) (2)三角高程测量 (trigonometric leveling) (3)气压高程测量 (air pressure leveling)

(4)GPS 测量 (GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。 a ——后视读数 A ——后视点 b ——前视读数 B ——前视点 1、A 、 B 两点间高差: 2、测得两点间高差后,若已知 A 点高程,则可得B点的高程:。 3、视线高程: 4、转点 TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中, A 、 B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿 A 、 B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到 A 、 B 两点间的高差值,有: h 1 = a 1 - b 1 h 2 = a 2 - b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论: A 、 B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪 (level) 如图所示,由望远镜、水准器和基座三部分组成。 DS3 微倾式水准仪自动安平水准仪 1、望远镜 (telescope) ——由物镜、目镜和十字丝(上、中、下丝)三部分组成。

徕卡DNA03电子水准仪使用方法及限差设置

徕卡DNA03电子水准仪使用方法及限差设置 使用Leica Geo Office上载程序。 1.1在仪器窗口中选择DNA,并选择通讯端口 DNA03新机载线路测量程序操作说明书 - John Shao - John Shao 1.2完成后点Upload,进入下面界面 1.3选择上载程序,然后点击“下一步”,程序开始上载,等待其完成。 线路测量 1应用程序选择 在仪器上按PROG 进入[应用程序界面],用上下键选择线路测量 2新建作业 在[线路测量]中,选择[作业]按回车,进入如下界面: Job:作业名称; Oper:操作人员; Comt1:作业描述1; Comt2:作业描述2; :返回上一级,不创建作业。 :确认创建作业,进入下一步,线路测量设置。 Name:输入将要测量的线路名称; Meth:作业方法选择,本程序中有BF,aBF,BFFB,aBFFB四中方法可以选择; PtID:线路起始点点号; H0:线路起始点高程值; Staf1:标尺1描述; Staf2:标尺2描述; 2.1线路测量方法选择 线路测量方法中有BF双转点模式;BF常规模式;aBF往测(奇数站后前,偶数站前后);aBF返测(奇数站前后,偶数站后前);aBFFB往测(奇数站后前前后,偶数站前后后前);aBFFB返测(奇数站前后后前,偶数站后前前后); 使用方向键选择返测或双转点测量模式。 1、选择BF双转点测量模式: 2、选择BF常规测量模式: 3、选择BFFB双转点测量模式: 4、选择BFFB常规测量模式: 5、选择aBF返测模式: 6、选择aBF常规测量模式: 7、选择aBFFB返测模式: 8、选择aBFFB返测模式:选择方法后直接用进入下一步,进入常规或往测测量模式。 3、限差设置 Precise:激活精密模式; DistBal:视距差设置; MaxDist:测站最大视距; StafEnds:标尺最大最小读数设置; StatDif:测站高程差; B-B/F-F:前后视两次读数差;

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

水准测量一般步骤

第二章 水准测量 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。高程测量按所使用的仪器和施测方法不同,主要有水准测量和三角高程测量等。水准测量是高程测量中最常用的一种方法。本章主要介绍水准测量原理、水准仪的构造及其使用、水准测量的施测方法与成果整理以及仪器的检验与校正等内容。 2-1 水准测量原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供的一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图2-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、 B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线 在A 点水准尺上读数为a ,在B 点的水准尺上读数为b ,则A 、B 两点间的高差为: b a h AB -= (2-1) 图2-1 水准测量原理 设水准测量是由A 点向B 点进行,如图2-1中箭头所示,则规定A 点为后视点,其水 准尺读数a 为后视读数;B 点为前视点,其水准尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果a

电子水准仪测量步骤

7.4.2 数字水准仪观测 7.4.2.1 往、返测奇数站照准标尺顺序为: a)后视标尺; b)前视标尺; c)前视标尺; d)后视标尺。 7.4.2.2 往、返测偶数站照准标尺顺序为: a)前视标尺; b)后视标尺; c)后视标尺; d)前视标尺。 7.4.2.3 一测站操作程序如下(以奇数站为例): a)首先将仪器整平(望远镜绕垂直轴旋转,圆气泡始终位于指标环中央); b)将望远镜对准后视标尺(此时,标尺应按圆水准器整置于垂直位置),用垂直丝照准条码中央,精确调焦至条码影像清晰,按测量键; c)显示读数后,旋转望远镜照准前视标尺条码中央,精确调焦至条码影像清晰,按测量键; d)显示读数后,重新照准前视标尺,按测量键; e)显示读数后,旋转望远镜照准后视标尺条码中央,精确调焦至条码影像清晰,按测量键。显示测站成果。测站检核合格迁站。 7.5间歇与检测 7.5.1观测间歇时,最好在水准点上结束。否则,应在最后一站选择两个坚稳可靠、光滑突出、便于放置标尺的固定点,作为间歇点。如无固定点可选择,则间歇前应对最后两测站的转点尺桩(用尺台作转点尺承时,可用三个带帽钉的木桩)做妥善安置,作为间歇点。 7.5.2间歇后应对间歇进行检测,比较任意两尺承点间歇前后所测高差,若符合限差(见表8)要求,即可由此起测;若超过限差,可变动仪器高度再检测一次,如仍超限,则应从前一水准点起测。 7.5.3检测成果应在手簿中保留,但计算高差时不采用。 7.5.4数安水准仪测量间歇可用建立新测段等方法检测,检测有因难时最好收测在固定点上。GB/T12879-2006 7.6测站观测限差与设置 7.6.1测站观限差 测站观测限差应不超过表8的规定。 表8 使用双摆位自动安平水准仪观测时,不计算基辅分划读数差。 对于数字水准仪,同一标尺两次读数差不设限差,两次读数所测高差的差执行基辅分划所测高差之差的限差。 测站观测误差超限,在本站发现后可立即重测,若迁站后才检查发现,则应从水准点或间歇点(应经检测符合限差)起始,重新观测。 7.6.2数字水准仪测段往返起始测站设置

天宝电子水准仪说明书

天宝电子水准仪说 明书

DINI03 电子水准仪说明书 入门 欢迎 关于TRIMBLE DINI 数字水准仪

相关信息 技术支持 您的要求 注册 检查集装箱 检查货运包装,如果集装箱是在不好的条件下运输过来,那么检查外观是否有可见损坏,如发现损坏情况立即联系运输者和TRIMBLE经销商,保存好集装箱和包装材料以便运送者检查。 仪器箱 拆封之后,请立即检查所要求的附属品是否都有收到,下面是所有附属品都在仪器箱里的样本

1.TRIMBLE DINI 数字水准仪 2.电池(标配为一个电池) 3.电缆(DINI与电脑) 4.电池充电器 5.防雨布 6.指南、使用手册、合格证 7.电池充电器十字丝调节扳手 维修与保养 Trimble DINI 能够支持野外作业环境,可是像所有精密仪器一样需要维护与保养,采用以下步骤以使仪器达到做好的使用效

果。 清洁 清洁仪器时一定要非常小心,特别是在清洁仪器镜头和反射器的时候,千万不要用粗糙不干净的布和较硬的纸去清洁,TRIMBLE 建议您使用抗静电镜头纸、棉花块或者镜头刷来清洁仪器。 防潮 如仪器在潮湿的天气中使用过,将仪器放入室内,从仪器箱中取出仪器,自然晾干,如果在仪器镜头上有水滴,让仪器自然蒸发即可。 仪器的运输 在运输仪器时一定要锁好仪器箱,如果长途运输仪器,将仪器放在仪器箱中,而且使用运输集装箱。 维修 TRIMBLE建议您到授权的维修站点维修,而且每年进行一次校准。以保证仪器的精度。 当您将仪器送往维修中心,请您在仪器箱上注明发货人和收货人,如果仪器必须维修,请您在仪器箱中装入说明,说明应当明确指出仪器的故障和经常发生的错误现象,而且指出仪器必须维修。 电池 在充电和使用电池之前,一定要先阅读电池安全和环境信息。

三四等水准测量步骤

三、四等水准测量 控制测量除了要完成平面控制测量外,还要进行高程控制测量。小区域地形测图或施工测量中,多采用三、四等水准测量作为高程控制测量的首级控制。 一、三、四等水准测量(leveling)的技术要求 1、高程系统:三、四等水准测量起算点的高程一般引自国家一、二等水准点,若测区附近没有国家水准点,也可建立独立的水准网,这样起算点的高程应采用假定高程。 2、布设形式:如果是作为测区的首级控制,一般布设成闭合环线;如果进行加密,则多采用附合水准路线或支水准路线。三、四等水准路线一般沿公路、铁路或管线等坡度较小、便于施测的路线布设。 3、点位的埋设:其点位应选在地基稳固,能长久保存标志和便于观测的地点,水准点的间距一般为1—1.5km,山岭重丘区可根据需要适当加密,一个测区一般至少埋设三个以上的水准点。 4、三、四等及五等水准测量的精度要求和技术要求列于表中。

二、三、四等水准测量的观测方法 三、四等水准测量观测应在通视良好、望远镜成像清晰及稳定的情况下进行。一般采用一对双面尺。 1、三等水准一个测站的观测步骤:(后-前-前-后;黑-黑-红-红) (1)照准后视尺黑面,精平,分别读取上、下、中三丝读数,并记为(1)、(2)、(3)。 (2)照准前视尺黑面,精平,分别读取上、下、中三丝读数,并记为(4)、(5)、(6)。 (3)照准前视尺红面,精平,读取中丝读数,记为(7) (4)照准后视尺红面,精平,读取中丝读数,记为(8) 这四步观测,简称为“后一前一前一后(黑一黑一红一红)”,这样的观测步骤可消除或减弱仪器或尺垫下沉误差的影响。对于四等水准测量,规范允许采用“后一后一前一前(黑一红一黑一红)”的观测步骤。

电子水准仪测量步骤

往、返测奇数站照准标尺顺序为: a)后视标尺; b)前视标尺; c)前视标尺; d)后视标尺。 往、返测偶数站照准标尺顺序为: a)前视标尺; b)后视标尺; c)后视标尺; d)前视标尺。 一测站操作程序如下(以奇数站为例): a)首先将仪器整平(望远镜绕垂直轴旋转,圆气泡始终位于指标环中央); b)将望远镜对准后视标尺(此时,标尺应按圆水准器整置于垂直位置),用垂直丝照准条码中央,精确调焦至条码影像清晰,按测量键; c)显示读数后,旋转望远镜照准前视标尺条码中央,精确调焦至条码影像清晰,按测量键; d)显示读数后,重新照准前视标尺,按测量键; e)显示读数后,旋转望远镜照准后视标尺条码中央,精确调焦至条码影像清晰,按测量键。显示测站成果。测站检核合格迁站。 间歇与检测 观测间歇时,最好在水准点上结束。否则,应在最后一站选择两个坚稳可靠、光滑突出、便于放置标尺的固定点,作为间歇点。如无固定点可选择,则间歇前应对最后两测站的转点尺桩(用尺台作转点尺承时,可用三个带帽钉的木桩)做妥善安置,作为间歇点。 间歇后应对间歇进行检测,比较任意两尺承点间歇前后所测高差,若符合限差(见表8)要求,即可由此起测;若超过限差,可变动仪器高度再检测一次,如仍超限,则应从前一水准点起测。 检测成果应在手簿中保留,但计算高差时不采用。 数安水准仪测量间歇可用建立新测段等方法检测,检测有因难时最好收测在固定点上。

GB/T12879-2006 测站观测限差与设置 测站观限差 测站观测限差应不超过表8的规定。 表8 使用双摆位自动安平水准仪观测时,不计算基辅分划读数差。 对于数字水准仪,同一标尺两次读数差不设限差,两次读数所测高差的差执行基辅分划所测高差之差的限差。 测站观测误差超限,在本站发现后可立即重测,若迁站后才检查发现,则应从水准点或间歇点(应经检测符合限差)起始,重新观测。 数字水准仪测段往返起始测站设置 a)仪器设置主要有: 一—测量的高程单位和记录到内存的单位为米(m); ——最小显示位为 01 m; ——设置日期格式为实时年、月、日; ——设置时间格式为实时24小时制。 b)测站限差参数设置: ——视距限差的高端和低端; ——视线高限差的高端和低端; ——前后视距差限差; ——前后视距差累积限差;

电子水准仪自动记录数据生成观测手薄操作说明

电子水准仪自动记录数据生成观测手薄操作说明 1、首先打开文件夹里的DDM6.0.EXE文件运行程序。 2、运行程序后点击工程菜单选择新建工程或直接点击按钮新 建工程,弹出新建工程对话框,在工程位置点击浏览出现选择工程目录对话框,选择你想要存储的位置点击确定,在工程名称里输入你要新建的工程名称点击新建,此时会出现一个运行提示框显示“找不到路径”点击确定关闭新建工程对话框,如果没有选择路径,直接输入名称点击确定,新建的工程项目文件夹将会默认新建在程序文件夹根目录下。 3、选择工程菜单里的打开工程或点击按钮弹出打开工程对话 框,在对话框里会看到我们新建的工程,点击打开工程。 4、选择数据准备菜单里的导入原始观测数据选项或直接点击 按钮弹出导入原始观测数据对话框,选择导入水准数据选项,找到我们需要转换为手薄的原始数据,点击打开然后回到原始观测数据对话框点击确定。 5、选择预处理菜单里的观测手薄选项或点击按钮弹出一个名 称为GMASVBA.XLS的Excel表格。 6、选择Excel表格里的水准观测手薄选项,弹出水准观测手薄对 话框,在此对话框选择好相应的设置,如观测仪器、气温、观测记录等……特别注意在等级选项里只能选择二等,点击生成观测手薄按钮,选择要生成手薄的文件后自动回到水准观测手

薄对话框,然后点击浏览手薄选项,在Excel表格中会出现以转换的观测数据。 7、软件生成的手薄文件会自动存储到我们刚开始新建工程的文件 夹中,然后修改手薄文件名。 8、当新建工程显示太多时我们可以选择工程菜单里面的删除工程 选项或按钮来删除工程,在弹出的对话框中有两个选项,删除按钮是直接删除工程文件夹包括数据,而从工程列表中清除按钮只是清除列表中的工程名称而不删除数据。

四等水准测量步骤简述

四等水准测量步骤简述 一、目的和要求 (1)进一步熟练水准仪的操作,掌握用双面水准尺进行四等水准测量的观测、记录与计算方法。 (2)熟悉四等水准测量的主要技术指标,掌握测站及线路的检核方法。 视线高度:三丝能读数;视线长度≤80m;前后视距差≤3m;前后视距累积差≤10m;红黑面读数差≤3mm ;红黑面高差之差≤5mm;观测次数:与已知点联测是往返各一次,闭合路线是往一次;附和或闭合路线闭合差往返较差:±20√L 二、水准测量原理 水准测量是利用水准仪提供的一条水平视线,对竖立的两观测点上的水准尺进行读数,来测定地面两点之间的高差,再由已知点推算出未知点的高程。如下图,欲测定A、B两点上的高差h,可在A、B两点上分别竖立水准尺,并在A、B两点之间安置一台水准仪。根据仪器的水平视线,在A尺上读数,设为a,在B尺上读数,设为b,则A、B两点之间的高差为 h=a-b 三、仪器和工具 水准仪1台,双面水准尺2支,尺垫2个 DS 3

四、方法与步骤 1、了解四等水准测量的方法 双面尺法四等水准测量是在小地区布设高程控制网的常用方法,是在每个测站上安置一次水准仪,但分别在水准尺的黑、红两面刻划上读数,可以测得两次高差,进行测站检核。除此以外,还有其他一系列的检核。 2、四等水准测量的实验 (1)从某一水准点出发,选定一条闭合水准路线。路线长度200~400米,设置4~6站,视线长度50m以内 (2)安置水准仪的测站至前、后视立尺点的距离,应该用步测使其相等。在每一测站,按下列顺序进行观测: 后视水准尺黑色面,读上、下丝读数,精平,读中丝读数; 前视水准尺黑色面,读上、下丝读数,精平,读中丝读数; 前视水准尺红色面,精平,读中丝读数; 后视水准尺红色面,精平,读中丝读数 (3)记录者在“四等水准测量记录”表中按表头表明次序⑴~⑻记录各个读数,⑼~ ⒃为计算结果: 后视距离⑼=100×{ ⑴-⑵ } 前视距离⑽=100×{ ⑷-⑸ } 视距之差⑾=⑼-⑽ 前、后视距累积差⑿=上站⑿+本站⑾ 前视尺黑红面读数差(13)=K前+(6)-(7) 后视尺黑红面读数差(14)=K后+(3)-(8) 红黑面差⒀=⑹+K-⑺,(K=4.687或4.787) ⒁=⑶+K-⑻ 黑面高差⒂=⑶-⑹ 红面高差⒃=⑻-⑺ 高差之差⒄=⒂-⒃=⒁-⒀±0.1 平均高差⒅=1/2{ ⒂+⒃ }

数字水准仪的功能特点及测量原理

数字水准仪的功能特点及测量原理 【摘要】数字水准仪的问世革新了传统意义上的水准测量,利用水准标尺上(条形码)得到的光学图像转换成数字电子图像并加以处理,避免了测量员目估分划值的误差,极大地提高了测量精度和生产效率。 【关键词】数字水准仪;测量系统;工作原理;误差;精密工程测量 0.引言 数字水准仪是20世纪90年代初出现的新型几何水准测量仪器,它的出现解决了水准仪数字化读数的难题,标志着大地测量完成了从精密光机仪器到光机电测一体化的高科技产品的过渡。由于数字水准仪克服了传统水准测量的诸多弊端,具有读数客观、精度高、速度快、能够减轻作业强度、测量结果便于输入计算机和容易实现水准测量内外业一体化的特点,其市场应用前景十分乐观。目前占据数字水准仪市场的主要是瑞士Leica公司、德国Zeiss公司以及日本Topcon 和Sokkia公司生产的几种型号的产品。本文以瑞士Leica公司为例介绍数字水准仪的特点、误差来源、测量系统的组成及工作原理等。 1.数字水准测量系统的组成及工作原理 一个数字水准仪测量系统主要是由编码标尺、光学望远镜、补偿器、CCD 传感器以及微处理控制器和相关的图象处理软件等组成。工作基本原理是标尺上的条码图案经过光反射,一部分光束直接成像在望远镜分划板上,供目视观测,另一部分光束通过分光镜被转折到线阵CCD传感器的像平面上,经光电转换、整形后再经过模数转换,输出数字信号被送到微处理器进行处理和存储,并将其与仪器内存的标准码(参考信号)按一定方式进行比较,即可获得视线高度和水平距离。就象光学水准测量一样,测量标尺要直立,只要把标尺照亮,还可以在夜间进行测量(传感器的敏感范围从最高频率的可见光到亚红光的频率)。 2.数字水准仪的特点 数字水准仪是以自动安平水准仪为基础,在望远镜光路中增加了分光镜和探测器(CCD),并采用条码标尺和图象处理电子系统而构成的光机电测量一体化的高科技产品。主要优点是感光读数,自动识别,消除了人为误差。可进行地球曲率及气象改正。采用普通标尺时,又可象一般自动安平水准仪一样使用。它与传统仪器相比有以下共同特点: 2.1读数客观 不存在误差、误记问题,没有人为读数误差。 2.2精度高

水准仪检测报告

水准: 水准,形容某技能技巧的熟练程度。也用来形容人的素质。也是一种评判事物的标准。 水准仪: 水准仪(英文:level)是建立水平视线测定地面两点间高差的仪器。原理为根据水准测量原理测量地面点间高差。主要部件有望远镜、管水准器(或补偿器)、垂直轴、基座、脚螺旋。 仪器原理: 微倾水准仪 借助于微倾螺旋获得水平视线的一种常用水准仪。作业时先用圆水准器将仪器粗略整平,每次读数前再借助微倾螺旋,使符合水准器在竖直面内俯仰,直到符合水准气泡精确居中,使视线水平。微倾的精密水准仪同普通水准仪比较,前者管水准器的分划值小、灵敏度高,望远镜的放大倍率大,明亮度强,仪器结构坚固,特别是望远镜与管水准器之间的联接牢固,装有光学测微器,并配有精密水准标尺,以提高读数精度。中国生产的微倾式精密水准仪,其望远镜放大倍率为40倍,管水准器分划值为10″/2毫米,光学测微器最小读数为0.05毫米,望远镜照准部分、管水准器和光学测微器都共同安装在防热罩内。 自动安平 借助于自动安平补偿器获得水平视线的一种水准仪。它的特点主要是当望远镜视线有微量倾斜时,补偿器在重力作用下对望远镜作相

对移动,从而能自动而迅速地获得视线水平时的标尺读数。补偿的基本原理是:当望远镜视线水平时,与物镜主点同高的水准标尺上物点P构成的像点Z0应落在十字丝交点Z上。当望远镜对水平线倾斜一小角α后,十字丝交点Z向上移动,但像点Z0仍在原处,这样即产生一读数差Z0Z。当很小时可以认为Z0Z 的间距为α×f′(f′为物镜焦距),这时可在光路中K点装一补偿器,使光线产生屈折角β,在满足α×f′=β×S0(S0为补偿器至十字丝中心的距离,即KZ)的条件下,像Z0就落在Z点上;或使十字丝自动对仪器作反方向摆动,十字丝交点Z落在Z0点上。 如光路中不采用光线屈折而采用平移时,只要平移量等于Z0Z,则十字丝交点Z落在像点Z0上,也同样能达到Z0和Z重合的目的。自动安平补偿器按结构可分为活动物镜、活动十字丝和悬挂棱镜等多种。补偿装置都有一个“摆”,当望远镜视线略有倾斜时,补偿元件将产生摆动,为使“摆”的摆动能尽快地得到稳定,必须装一空气阻尼器或磁力阻尼器。这种仪器较微倾水准仪工效高、精度稳定,尤其在多风和气温变化大的地区作业更为显著。 激光水准仪 利用激光束代替人工读数的一种水准仪。将激光器发出的激光束导入望远镜筒内,使其沿视准轴方向射出水平激光束。 利用激光的单色性和相干性,可在望远镜物镜前装配一块具有一定遮光图案的玻璃片或金属片,即波带板,使之所生衍射干涉。经过望远镜调焦,在波带板的调焦范围内,获得一明亮而精细的十字型或

天宝DINI12电子水准仪道路路线测量的操作流程

1.关于天宝DINI 12 电子水准仪道路路线测量的操作流程 首先架站整平,按 在主测量界面按 在线路测量模式界面按下 在input line number 提示下的空格内输入线路测量点号,按 在sequence of measurem 模式提示下,按 Bf :后视—前视BFFB:后视—前视—前视—后视BFBF:后视—前视—后视—前视BBFF:后视—后视—前视—前视点ok下面对应的键进入下一模式。 在inp benchmark height 提示下,输入基站点高程,点击ok对应得键进入测量状态。 照准后视点back 开始测量。 搬站换站时可不关机,假如关机,换站后开机即可照准测量,不需重新设置。 假如一个测段测量结束,点击end of line end with closing benchmark 是否闭合到基点,点击 Sh:起始点和终点的高程之差. 如果您的起始点高程是635 并且您的终点的高程是634 那Sh 就是–1.00. Dz: 如果您测量的是闭合环,那这个值就是最后一点的高程(您输入的)和有仪器测量所得的高程之差. Db:后视点距离的总和Df:前视点的距离的总和 2.关于路线测量过程中,重新测量的问题以及若干操作问题。 Repeat measurement 重新观测和repeat station 重新架站观测假如不移动测站按重新观测Repeat measurement 下面对应得按键,假如需要移动测站,点击repeat station 下面对应的按键重新架站观测,重新架站观测需要重新照准后视点,重新定向,以方便数据文件格式的保存和符合测量模式需要。 在线路测量时,注意屏幕右上方提示是照准后视点back还是照准前视fore根据仪器提示进行严密操作。

水准仪基本步骤

水准仪基本步骤 安置仪器在测站安置三脚架,使其高度适中,架头大致水平。调整水准仪三个脚螺旋大致等高,用连接螺旋将其安装在架头上。 粗平调节圆水准器气泡居中,从而视准轴粗略水平。调整步骤如图2.3-1所示,在整平过程中,气泡的移运方向与左手大拇指运动方向一致。 瞄准首先进行目镜对光,使十字丝清晰(因人而异);然后进行物镜对光,使水准尺清晰,并消除视差。 精平调整微倾螺旋,使符合水准器的气泡两个半边影像符合,以使视准轴精密水平。左侧影像移动方向与右手大拇指转动的方向相同。 读数在视准轴精密水平时,用中丝在水准尺上读数。 水准测量中往返测量是什么意思? 水准测量中的往返测的意思是从起点到终点的水准测量是往测,再从终点测回到起点叫返测.往返测的目的是为了提高水准测量的精度而进行的. 【建筑工程施工中全站仪坐标放步骤】 1)?选取两个已知点,一个作为测站点,另外一个为后视点,并明确标注。 2)?取出全站仪,已知点将仪器架于测站点,进行对中整平后量取仪器高;???、 3?)?将棱镜置于后视点,转动全站仪,使全站仪十字丝中心对准棱镜中心; 4)?开启全站仪,?选择“程序”进入程序界面,选择“坐标放样”,进入坐标放样界面, 选择?“设置方向角”,进入后设置测站点点名,输入测站点坐标及高程,确定后进入?????设置后视点界面,设置后视点点名,确认全站仪对准棱镜中心后输入后视点坐标及高程,点确定后弹出设置方向值界面并选择“是”,设置完毕。??????????????? ?5)?然后进入设置放样点界面,首先输入仪器高,点确定,接着输入放样点点名,确定后输入?放样点坐标及高程,完成确定后输入棱镜高,此时放样点参数设置结束,开始进行放样。?????????????? ??6)?在放样界面选择“角度”进行角度调 整,转动全站仪将dHR项参数调至零,并固 定全站?仪水平制动螺旋,然后指挥持棱镜者 将棱镜立于全站仪正对的地方,调节全站仪 垂直制? ?????动螺旋及垂直微动螺旋使全站仪十字 丝居于棱镜中心,此时棱镜位于全站仪与放 样点的? ?????连线上,接着进入距离调整模式,若 dHD值为负,则棱镜需向远离全站仪的方向 走,反?之向靠近全站仪的方向走,直至dHD 的值为零时棱镜所处的位置即为放样点,将 该点标??记,第一个放样点放样结束,然后 进入下一个放样点的设置并进行放样,直至 所有放样点放样结束。?????????????????? ?7?)?退出程序后关机,收好仪器装箱,放 样工作结束。??????? 【全站仪坐标放样原理】??? (1)?打开电源开关转动望远镜??(2)?按 (MENU)主菜单键??(3)?按?F1?放样??(4)? 按?F4?确认??(5)?按?F1?测站点设置?(6)? 按?F3(NZE)? (7)?按?F1?先输入?X?坐标(站点)然后按?F4? 确认再按?F1?输入?Y?坐标?(8)?按?3?次?F4? 确认键?(9)?按?F2?后视点设置??(10)? 按?F3(NE)? (11)?按?F1?先输入后视?X?坐标然后按?F4? 确认再按?F1?输入?Y?点坐标?(12)?按?2? 次?F4?确认?(13)?(对准棱镜对点) 按?F3(是)?(14)?按?F3?放样?(15)? 按?F3(NEZ)?? (16)?按?F1?先输入需放点?X?坐标按?F4?确 认再按?F1?输入?Y?坐标?(17)?按?3?次?F4? 确认?(18)?按?F1?极差键? 1.?测定:是指使用测量仪器和工具,通过测 量和计算,得到一系列特征点的测量数据, 或将地球表面的地物和地貌缩绘成地形图。 ?2.测设:是指用一定的测量方法将设计图纸 上规划设计好的建筑物位臵,在实地标定出 来,作为施工的依据。 ?3.水准面:处处与重力方向线垂直的连续曲 面。 ?4.水平面:与水准面相切的平面。 ?5.??大地水准面:人们设想以一个静止不动 的海水面延伸穿越陆地,形成一个闭合的曲 面包围了整个地球称为大地水准面,即与平 均海水面相吻合的水准面。6.铅垂线:重力的 方向线称为铅垂线。 ?7.绝对高程:地面点到大地水准面的铅垂距 离。 ?8.相对高程:地面点到假定水准面的铅垂距 离。 ?9.高差法:直接利用高差计算未知点高程的 方法。 ?10.高差:地面两点间的高程之差。 ?11.视线高法(仪高法):利用仪器视线高 程Hi计算未知点高程的方法。 ?12.视线高:大地水准面至水准仪水平视线 的垂直距离。 ?13.水准管轴:通过水准管零点与其圆弧相 切的切线。 ?14.视准轴:十字丝交点与物镜光心的连线。 ?15.视差:眼睛在目镜端上下移动,有时可 看见十字丝的中丝与水准尺影像之间相对移 动的现象。 ?16.后视点:在同一测站中与前进方向相反 的已知水准点。 ?17.前视点:在同一测站中与前进方向相同 的未知水准点。 ?18.转点:在水准测量中起高程传递作用的 点。 ?19.水准点:用水准测量的方法测定的高程 控制点。 ?20.水准路线:在水准点间进行水准测量所 经过的路线。 ?21.闭合水准路线:从已知高程的水准点出 发,沿各待定高程的水准点进行水准测量, 最后又回到原出发点的环形路线。 ?22.附合水准路线:从已知高程的水准点出 发,沿待定高程的水准点进行水准测量,最 后附合到另一已知高程的水准点所构成的水 准路线。 ?23.支水准路线:从已知高程的水准点出发, 沿待定高程的水准点进行水准测量,是既不 闭合又不附合的水准路线。 ?24.高差闭合差:各测段高差代数和与其理 论值的差值。 ?25.水平测量测站校核:用变动仪器高法和 双面尺法进行校核。 ?26.水平测量计算校核:后视读数总和减前 视读数总和、高差总和、终点高程与始点高 程之差进行检核,这三个数字应相等。 ?27.水平测量成果校核:高差闭合差改正数、 改正后高差、推算高程与已知高程的校核。 ?28.水平角:地面上一点到两目标的方向线 垂直投影在水平面上的夹角。 ?29.盘左:竖盘位于望远镜的左侧。 ?30.盘右:竖盘位于望远镜的右侧。 31竖直角:在同一竖直面内,一点到目标的 方向线与水平线之间的夹角。 ?32.竖盘指标差:由于竖盘水准管与竖盘读 数指标关系不正确,视线水平时读数与应有 读数有一小角度差。 ?33.水平距离:地面上两点垂直投影在同一 水平面上的直线长度。 ?34.直线定线:在地面上标定出直线丈量的 方向线的工作。 ?35.直线定向:确定直线与标准方向之间的 角度关系。 36.磁子午线方向:确定直线与标准 方向之间的角度关系。 37.真子午线方向:过地球南北极的 平面与地球表面的交线。 38.方位角:从直线起点的标准方向 北端起,顺时针方向量至该直线的水 平夹角。 39.坐标方位角:由坐标纵轴方向的 北端起,顺时针量到直线间的夹角, 称为该直线的坐标方位角,常简称方 位角。 40.坐标象限角:由坐标纵轴的北端 或南端起,沿顺时针或逆时针方向量 至直线的锐角,并注出象限名称。 41.真误差:某未知量的观测值与其 真值(理论值)之差。

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 2010-11-28 01:58:11| 分类:工程测量|举报|字号订阅 [教程]第二章水准测量 未知2009-12-13 16:21:06 网络 内容:理解水准测量的基本原理;掌握 DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量( Height Measurement )的概念 测量地面上各点高程的工作 , 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量 (leveling) (2)三角高程测量 (trigonometric leveling) (3)气压高程测量 (air pressure leveling) (4)GPS 测量 (GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数 A ——后视点 b ——前视读数 B ——前视点 1、A 、 B 两点间高差: 2、测得两点间高差后,若已知 A 点高程,则可得B点的高程: 。 3、视线高程: 4、转点 TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

四等水准测量步骤

三、四等水准测量(2008-10-10 23:27:42) 三、四等水准测量 控制测量除了要完成平面控制测量外,还要进行高程控制测量。小区域地形测图或施工测量中,多采用三、四等水准测量作为高程控制测量的首级控制。 一、三、四等水准测量(leveling)的技术要求 1、高程系统:三、四等水准测量起算点的高程一般引自国家一、二等水准点,若测区附近没有国家水准点,也可建立独立的水准网,这样起算点的高程应采用假定高程。 2、布设形式:如果是作为测区的首级控制,一般布设成闭合环线;如果进行加密,则多采用附合水准路线或支水准路线。三、四等水准路线一般沿公路、铁路或管线等坡度较小、便于施测的路线布设。 3、点位的埋设:其点位应选在地基稳固,能长久保存标志和便于观测的地点,水准点的间距一般为1—1.5km,山岭重丘区可根据需要适当加密,一个测区一般至少埋设三个以上的水准点。 4、三、四等及五等水准测量的精度要求和技术要求列于表中。 二、三、四等水准测量的观测方法 三、四等水准测量观测应在通视良好、望远镜成像清晰及稳定的情况下进行。一般采用一对双面尺。 1、三等水准一个测站的观测步骤:(后-前-前-后;黑-黑-红-红)

(1)照准后视尺黑面,精平,分别读取上、下、中三丝读数,并记为(1)、(2)、(3)。 (2)照准前视尺黑面,精平,分别读取上、下、中三丝读数,并记为(4)、(5)、(6)。 (3)照准前视尺红面,精平,读取中丝读数,记为(7) (4)照准后视尺红面,精平,读取中丝读数,记为(8) 这四步观测,简称为“后一前一前一后(黑一黑一红一红)”,这样的观测步骤可消除或减弱仪器或尺垫下沉误差的影响。对于四等水准测量,规允许采用“后一后一前一前(黑一红一黑一红)”的观测步骤。 2、一个测站的计算与检核: 观测记录参看书本表7-11。 ①视距的计算与检核 后视距(9)=[(1)—(2)]X100m 前视距(10)=[(4)—(5)]Xl00m 三等≯75m,四等≯l00m 前、后视距差(11)=(9)—(10) 三等≯3m,四等≯5m 前、后视距差累积(12)=本站(11)+上站(12) 三等≯6m,四等≯l0rn

DNA03电子水准仪原始数据编制软件使用说明书.

DNA03电子水准仪原始数据编制软件使用说明书 程序的主要用途: 依据已有的点高差、距离编制成各等级水准原始观测数据*.GSI 格式数据(分8位、16位的单次读数格式和多次读数格式可选。程序界面 数据准备

参数设置 数据编制 完成 操作步骤 点名用实际点名输入,过渡点点名不用考虑,全部用1或Z 表示(如左表所示;高程栏输入转点的高程,高程尽可能保留5位小数。根据需要可以在两控制点之间内插N 个高程点(即为测站数,如左表中 CPI222~D125-1中5个测站,则需要在两点间插入4行,因为上点处也是两点间的测站。需要增减测站数可在两点间增减高程点来做到,注意每站的高差不能超过2.1米,即输入数据时两转点的高程差不能超过2.1米;距离为测量时的前后视距,输入时视距≤规范规定的视距限差即可。如表中的34.5为第一测站的前视或者后视距离,软件在生成时在此距离的基础上加减了一个随机数,注意表中的距离为本点与前一

点的测量视距,如表中的14.2为D125-1至D125-2之间的测量视距长度。起点处距离栏为空格。因为第二行开始才是第一测站,首行是后视点。线路里程长短可依据增减两点间的测站数达到目的。 1、数据准备 保存的文本文件格式如下:点名,高程,距离 CPII222,1238.257, 1,1238.784,34.5 1,1238.048,23.7 1,1238.825,31.6 1,1239.038,12.7 D125-1,1239.326,15.3 D125-2,1239.317,14.2 D126-1,1239.649,23.6 D126- 2,1239.673,12.5 1,1239.532,26.9 D127-1,1239.869,11.8 D127-2,1239.877,9.5 1,1239.638,13.6 1,1239.852,15.7 D128-1,1240.327,11.3 D128-2,1240.359,10.9 1,1240.953,17.5 1,1241.539,26.8 1,1242.328,27.9 1,1241.985,38.7 CPI085,1242.586,15.3转点用“1”或者以“z”开头表示,形成的转点点名将会以 Z1、Z2、Z3……….。依次类推形成转点点名。

二等水准测量方法与步骤

二等水准测量方法与步骤 (1)从实验场地的某一水淮点出发,选定一条闭合水准路线;或从一个水准点出发至另一水淮点,选定一条附合水准路线。路线长度为2000-3000m。 (2) 安置水准仪的测站至前、后视立尺点的距离,应该量距使其相等,其观测次序如下:往测奇数站的观测程序:后前前后;往测偶数站的观测程序:前后后前;返测奇数站的观测程序:前后后前;返测偶数站的观测程序:后前前后; (3)手薄记录和计算见表“二等水准测量记录”中按表头的次序次序(1)-(8)、(9)一(10)为计算结果:后视距离(9)=100×((1)-(2)) 前视距离(10)=100×((5)-(6))视距之差(11)=(9)-(10) 视距累计差(12)=上站(12)十本站(11)基辅分划差(13)=(4)+K -(7),(k=30155或60655视标尺而定) (14)=(3)+K -(8)基本分划高差(15)=(3)-(4),辅助分划高差(16)=(8)-(7)高差之差(17)=(14)-(13)=(15)-(16)平均高差(18)={(15)+(16)}/2 每站读数结束记录(1)-(8),随即进行各项计算(9)一(10),并按上表进行各项检查后,满足如下限差后,才能搬站。 (4) 依次设站,用相同的方法进行观测,直至线路终点,计算线路的高差闭合差,按二等水准测量的规定,线路高差闭合差的容许值±4。

水准测量作业技术要求 注:K——测段、区段或路线长度,km;测自-______至________ 20 年月日时间始______时______分末______时______ 分成像_____________ 温度____________云量______________ 风向风速_____________ 天气____________

相关主题
文本预览
相关文档 最新文档