当前位置:文档之家› 氮系阻燃剂MCA阻燃尼龙6的机理研究

氮系阻燃剂MCA阻燃尼龙6的机理研究

氮系阻燃剂MCA阻燃尼龙6的机理研究
氮系阻燃剂MCA阻燃尼龙6的机理研究

 V o l.14高分子材料科学与工程N o.4 1998年7月PO LYM ER M A T ER I A LS SC I EN CE AND ENG I N EERI NG Ju l.1998氮系阻燃剂MCA阻燃尼龙6的机理研究

彭治汉 邓向阳*

(岳阳石油化工总厂研究院,岳阳,414014)

摘要 采用热失重(T G)、差热分析(D T A)等热分析方法和红外光谱热示踪法研究了氮系阻燃剂M CA对尼龙6热氧降解行为的影响及其作用本质。结果表明M CA改变了尼龙6热氧降解的历程,促进尼龙6直接碳化分解而达到阻燃目的。这一研究结果否定了藤野文雄建立的“升华吸热”的物理阻燃机制,提出了M CA凝聚相催化碳化膨胀的阻燃机理,为该M CA的深度应用和工业化生产奠定了理论基础。

关键词 氮系阻燃剂M CA,阻燃尼龙6,膨胀,阻燃机理

氮系阻燃剂M CA(以下简称M CA)是一种新型高效的聚酰胺用添加型阻燃剂,由于其本身及分解产物的低毒性,迎合了当今阻燃剂向高效低毒方向发展的潮流,近年来在国内外受到了广泛的研究和应用。关于其阻燃机理,藤野文雄认为是“升华吸热”的物理阻燃方式,即通过M CA的“升华吸热”降低聚合物材料的表面温度并隔绝空气而达到阻燃的目的[1],这种观点已时常被认可[2]。

从阻燃剂对聚合物材料阻燃作用机制是制约或延缓聚合物热氧降解行为这一基本特征出发,我们采用热分析方法研究了M CA对尼龙6树脂的阻燃机理。研究结果表明,M CA对尼龙6的阻燃作用在于它改变了尼龙6热氧降解的历程,即两者相互作用使表面形成碳化膨胀层。由此提出了M CA阻燃尼龙6的阻燃作用是凝聚相催化碳化膨胀和气相稀释阻燃的作用机理。

1 实验部分

1.1 试验材料

尼龙6树脂:工业Ⅱ型,相对粘度≥3.0,上海塑料制品十八厂产品。M CA:岳阳石油化工总厂研究院试制。

1.2 挤出造粒

尼龙6树脂在110℃真空干燥8h后,与M CA 及少量分散助剂按一定配方混料,在ZSK-30双螺杆挤出机上于240~260℃挤出造粒,再干燥注塑制成样条,按U L-94测试标准检测阻燃性能达到V-0级。

1.3 热重分析

取样条切片,用DU PONG1090热分析天平测试。气氛为80m L/m in的空气,以10℃/m in的升温速率从室温升至600℃。

1.4 热氧降解红外光谱

将样条切片置于小瓷舟,在已恒定温度的马弗炉中热处理2~5m i n,观察样品变化并用PE973型红外光谱仪测试处理过的样品的红外光谱图。

1.5 差热分析

取样条切片用DT-39B型差热分析仪测试,气氛为80m L/m i n的空气,以5℃/m in速率从室温升至600℃。

2 结果与讨论

M CA的热失重和差热分析结果如F ig.1。

TG

F ig.1 T

G and DT A curves o fMCA

收稿日期:1996-02-28 *参加本项工作的还有冯美平、伍仟新、程茵、龚军、肖玉莲、张西华等同志 联系人及第一作者:彭治汉,男,35岁,博士生,高级工程师.

曲线上M CA 的热失重在400~440℃温区,DTA 曲线相应在430℃附近出现1个很强的吸热峰,即M CA 的升华吸热峰。

尼龙6和M CA 阻燃尼龙6的热失重和差热分析结果见F ig .2和F ig .3

F i g .2 T

G curves of ny l on -6and fire retarded nylon -6w ith

MCA

a

:ny l on -6;b :fire re tard ed ny l on -6w ith M CA

.F i g .3 DTA curves of ny lon -6and f i re retarded ny lon -6w ith

M CA

a and

b sa m e as i n F i g .2.

从TG 曲线可以看出,M CA 阻燃尼龙6的初始

分解温度比纯尼龙6样品要低50℃,表明M CA 降低了尼龙6的热稳定性。M CA 阻燃尼龙6在340~370℃有1个急剧失重的过程,这与纯尼龙样品大不相同。这个温区也远低于F i g .1中M CA 的热失重温区,因而不可能发生M CA 单纯升华失重的物理过程。这种急剧失重过程只能是M CA 与尼龙6的相互作用而导致催化分解的化学过程。

F ig .3的DTA 曲线中,两个样品在220℃左右的吸热峰是尼龙6的相变吸热峰。与F i g .2T

G 曲线十分吻合的是,M CA 阻燃尼龙6在350℃附近出现了1个很强的吸热峰,对应于催化分解的化学过程,纯尼龙6试样则无此峰。

为了进一步探讨这种碳化机制,我们对尼龙6和

M CA 阻燃尼龙6分别作了红外光谱热示踪试

验。将样品在空气气氛中热氧处理,发现M CA 阻燃

尼龙6在350~400℃温区受热时表面严重碳化并且膨胀发泡。说明M CA 阻燃尼龙6的分解是直接碳化分解机制,而不是链断裂方式降解为易燃的烃类物质。其结果如F ig .4和F i g .5。

F i g .4 I R s pectru m o f ny l on -6t hat hea ted or not

a :no h eat trea t m en t ;

b :h eat trea t m en t at 330℃for 5m i n i n th e air ;

c :heat treat m en t at 390℃fo r 2m i n in th e air ;b:h eat treat m en t a t 390℃fo r 5m in i n the air .

F i g

.5 I R spectru m o f fire retarded ny lon -6w ith M CA that heate d or not

a ,b,c ,d sam e as i n F i g.4.

由F ig .4可知,纯尼龙6样品随热处理温度的

升高,其热降解行为逐渐加剧,产生了1740c m -1

处的尼龙6解聚分解终端基团-C (O )-NH 2的特征吸收,并有所增强。F ig .5中M CA 阻燃尼龙6随着热处理温度升高,未见解聚终端基团-C (O )-NH 2的

特征吸收出现,再次证明了M CA 使尼龙6从解聚分解变为直接碳化分解。从F ig .5还可以看到,随着热处理的进程,M CA 阻燃尼龙6中1741c m -1

1781c m -1

处的M CA 特征吸收峰逐渐消失,却可看

见明显的2246c m -1的-C ≡N 吸收峰,说明M CA 的三嗪环已被彻底打开。这不但证明M CA 不是升华

的物理变化,而且说明M CA 在催化尼龙6分解的同时,其本身也发生了分解碳化。正因如此,F ig .2中M CA 分解殆尽后,两条热失重曲线又趋一致。

108

高分子材料科学与工程1998年 

上述结果说明M CA 的阻燃作用在于M CA 改变了尼龙6的热氧降解历程,使之快速直接碳化形成不燃性的碳质,这些碳质因膨胀发泡作用而覆盖在材料表面形成薄层,隔断了氧气的界面接触,从而有力地抑制了材料的继续燃烧。此外,分解产生的水、氮气等不燃性气体通过发泡作用使材料变成膨胀体,大大降低了热传导性,也有利于材料离火自熄。综上所述,M CA 阻燃机理并非简单的“升华吸热”的物理过程,而是凝聚相中M CA 与尼龙6相互

催化直接碳化膨胀机理。M CA 在阻燃过程中同时表现促进碳化和发泡双重功能。这一研究结果为M CA 日后的工业应用具有良好的理论指导作用。

致谢:本院物化室廖玉贞、樊芬咸、曾曙等配合完成了红外光谱和热

分析等测试工作,在此一并致谢。

参考文献

1 藤野文雄.昭56-151754

2 季敬钟(J i Jingzong ),等.合成树脂及塑料(Syn th eti c Res i n an d

P l as tics),1988,(1):29~30

S TUDY ON THE M EC HAN IS M OF F I RE RETARDED NYLON -6W I TH

NITR OGEN C ONTAI NI NG F I RE RETARDANTM CA

Peng Zh ihan ,Deng X iangy ang

(R esear ch Institu te of Y ueyang P etroche m ical G enera lW ork s ,Y uy ang )

ABSTRACT T he a ffections and cha racte ristics o f nitrog en co nta ining fire reta rdan tM CA tow ards ny lon -6have been studied by m eans o f TG and DTA m e thods and IR spectrum.T he re su lts show tha tM CA ha s chang ed the deg rada tion proce ss o f ny lon-6,na m e l y ,it can accelrate ny lon-6to be decom po sed and car-bon izi n ed

,so tha t play the fire re tardance ro les .F rom th is resu lts a ne w m echan is m o f fire reta rded ny lon -6w ith M CA ha s been ascer tan ied ,it is d ifferen t from the phy sicalm echan ism o f “sub li m ation -hea t ab so rp-tion".T hen,the fire re ta rdance m echanis m o f accele ra ti n g the ca rbonizi n ed intum ecen t in the condenced sy ste m o f fire re tarded ny lon-6w ith M CA is sugg ested .

K eywor ds

 nitrog en sy ste m fla m e re tardan tM CA ,fla m e reta rdan t ny lon -6,intum escen t ,fla m e re tardan t m echan ism

1997年度《高分子材料科学与工程》继续入选美国“C A 千种表”

据美国《化学文摘资料来源索引》(C h e m icalA b s tract S erv i ce S ou rce In dex ,Q uar terl y N o .4,1997)统计结果,我国共有57种期刊入选“C.A.千种表”,本刊居“CA 千种表”第578位,在我国入选的57种期刊中居第17位.

刊 名

国内排序C .A .名次刊 名

国内排序C .A .名次高等学校化学学报1159化学试剂20628生物化学与生物物理进展39870分析化学2200机械工程材料21638橡胶工业40871物理学报

3207环境工程22642光谱实验室41872中国化学快报(英文版)4226化学世界23663中国中药理学通报42912科学通报(英文版)5229铸造

24675山西医药杂志43921中国物理快报(英文版)6442高能物理与核物理25685精细化工44930光学学报7461石油化工26709核物理动态45938江苏医学8467化学研究与应用27718中国药理学报46958电化学9488中国科学,B 辑(英文版)28726材料保护47960化学学报10489中国激光29727功能材料48962应用化学11491广东医学

30730功能高分子学报

49963物理化学12529光谱学与光谱分析31731华南理工大学学报(自然科学版)50964化学通报

13533钢铁32739材料研究学报

51971中国医药工业杂志14551催化学报33758中国科学,C 辑(英文版)52974药学学报15567复合材料学报34799石油炼制与化工53975色谱

16571高分子学报35800合成橡胶工业54979高分子材料科学与工程17578核技术

36827中国药学杂志55983金属学报

18597硅酸盐学报37844化学物理学报56988广东微量元素科学

19

602

上海环境科学

38

869

炼油设计

57

999

109

 第4期

彭治汉等:氮系阻燃剂M CA 阻燃尼龙6的机理研究

阻燃尼龙起作用的5种方式

阻燃尼龙起作用的5种方式 驰通金轮网销部讯:在日常生活中,我们会常常见到尼龙两个字,比如我们的衣服面料大部分都是含有尼龙成分的,这些尼龙成分就是纺丝级的尼龙,在解放初期为替代棉花立下了汗马功劳。今天驰通金轮并不是说的衣物上的尼龙材料,而是主要用于工业生产的阻燃尼龙颗粒。尼龙作为一种重要的工程塑料,具有耐磨耐油自润滑等优点,但其自身具备一定的可燃性,因此在一定程度上限制了它的使用,尤其是电子电气、汽车等行业对阻燃性能的要求较高,也正是这方面的需求,阻燃尼龙的发展阔步向前。 尼龙本身是据欧一定程度阻燃型的,属于最低级阻燃,但这往往满足不了大家的需求,阻燃尼龙是在尼龙原料中添加阻燃剂完成的,其中真正起作用的就是阻燃剂。阻燃剂是一种能够提高易燃或可燃材料难燃性、自熄性或消烟性的助剂,是重要的精细化工产品和合成材料的主要助剂之一。近年来,随着防火安全标准的日益严格,全球阻燃剂用量一直呈上升趋势。所谓"阻燃",并不是指材料不燃烧,而是使材料在火焰中能降低其可燃性,减缓火焰蔓延速度,不形成大面积燃烧,而离开火焰后,能很快自熄,没有续燃和阴燃现象发生。阻燃剂主要通过吸热作用、覆盖作用、抑制链反应、气体稀释作用等发挥阻燃效果。 驰通金轮总结阻燃尼龙起作用有5种方式,这也是阻燃尼龙的反应机理:

1、吸热作用 在高温条件下,在高温条件下,阻燃剂能够强烈地吸收燃烧过程中放出的热量,降低可燃物的表面温度,减少辐射到燃烧表面和作用于自由基的热量,可燃性气体的生成被有效抑制,燃烧的蔓延被阻止。 2、覆盖作用 在高温下,阻燃剂能形成泡沫状或玻璃状覆盖层,可以隔热、隔氧,并阻止可燃气体向外逸出,从而达到阻燃目的。 3、抑制链反应 阻燃剂可在气相燃烧区中捕捉燃烧反应中的自由基,抑制火焰的传播,使火焰的密度下降,最终使燃烧反应终止。 4、气体稀释作用 阻燃剂受热分解释放出不燃性气体,如二氧化碳、二氧化硫、氮气等,使材料裂解生成的可燃性气体被稀释到燃烧极限一下,或使火焰中心处部分区域的氧气不足,抑制燃烧的继续。例如含卤阻燃剂在受热和燃烧过程中生成不燃性气体齒化氢,稀释周围的空气,能够起到阻燃作用。 5、凝聚相阻燃 在凝聚相反应区,阻燃剂可改变材料的热裂解过程,促使材料发生脱水、缩合、环化、交联等反应,直至炭化,使炭化残渣增加,可燃性气体减少,起到阻燃作用。 目前,驰通金轮注意到,对于尼龙材料的阻燃改性通常分为含卤阻燃改性和无卤阻燃改性,而尼龙阻燃性能的关键指标可以通过极限

磷系阻燃剂研究新进展

磷系阻燃剂研究新进展 鹿海军 马晓燕 颜红侠(西北工业大学化工系,西安710072) 摘 要 简述了阻燃剂的阻燃作用机理,综述了协同型、膨胀型、多功能型以及红磷类磷 系阻燃剂在近几年的研究、应用、进展状况。 关键词 阻燃机理,磷系阻燃剂,研究进展 R ecent progress in phosphorus flame retardants Lu Haijun Ma Xiaoyan Yan Hongxia (Department of Chemical Engineering ,North Western Polytechnical University ,Xi ’an 710072)Abstract This paper describes the mechanism of phosphorus flame retardants in brief.The progress and applica 2 tion of synergistic ,intumescent ,multifunctional and red phosphorus flame retardants are also reviewed. K ey w ords mechanism of flame retardation ,phosphorus flame retardants ,research progress 随着合成材料的广泛应用,阻燃剂的消耗量日益增加,目前已成为塑料助剂中仅次于增塑剂的第 二大品种。阻燃剂种类繁多,其中,磷系阻燃剂是各类阻燃剂中最复杂,也是研究较充分的一类[1~4]。磷系阻燃剂大都具有低烟、无毒、低卤、无卤等优点,符合阻燃剂的发展方向,具有很好的发展前景。特别是1986年瑞士的研究机构发现了卤系阻燃剂的二 英(Dioxins )问题,即多溴二苯醚及其阻燃的高聚物在510℃~630℃下热分解产生有毒的多溴二苯并二 烷(PBDD )和多溴二苯并呋喃(PBDF ),这就给卤系阻燃剂的发展带来严峻的挑战,并促使研究人员去开发低卤无卤新产品以减少对环境的影响。磷系阻燃剂的用量因此获得高速增长,1993年日本磷系阻燃剂消耗量为01931万t ,而1995年则达1197万t ,增长了1倍多[5]。美国1993年消耗量为017716万t ,而1998年则达517658万t ,增长了近615倍[6]。随着合成工艺的不断改进,合成方法的不断完善,合成出的新型磷系阻燃剂种类也在不断增加。其中报道较多的是磷酸酯类、聚磷酸铵类以及红磷等[7~13]。本 文就阻燃作用机理及当前磷系阻燃剂的研究热点作一简单综述。 1 磷及磷化合物阻燃机理 磷及磷化合物很早就被用作阻燃剂使用,对它的阻燃机理研究得也较早。起初发现使用含磷阻燃剂的材料引燃时会生成很多焦炭,并减少了可燃性挥发性物质的生成量。燃烧时阻燃材料的热失重大大降低,但阻燃材料燃烧时的烟密度比未阻燃时增加。根据上面的事实提出了一些阻燃机理。从磷化合物在不同反应区内所起阻燃作用可分为凝聚相中阻燃机理和蒸汽相中阻燃机理[14]。 加入含磷阻燃剂的聚合物燃烧时,磷化合物受热分解,发生如下变化: 磷化合物加热 磷酸加热 偏磷酸加热 聚偏磷酸聚偏磷酸是不易挥发的稳定化合物,覆盖在聚合物表面形成一个保护层,起到阻燃作用。另外,由于磷酸和聚偏磷酸具有较强的脱水性,使聚合物表面形成碳化膜而起到阻燃作用。这是磷系阻燃剂在聚 作者简介:鹿海军,男,1975年生,研究生,硕士,主要从事高分子材料改性方面的研究。 第29卷第12期 化工新型材料 Vol 129No 112 2001年12月 N EW CHEMICAL MA TERIAL S Dec 12001

氮系阻燃剂MCA阻燃尼龙6的机理研究

V o l.14高分子材料科学与工程N o.4 1998年7月PO LYM ER M A T ER I A LS SC I EN CE AND ENG I N EERI NG Ju l.1998氮系阻燃剂MCA阻燃尼龙6的机理研究 彭治汉 邓向阳* (岳阳石油化工总厂研究院,岳阳,414014) 摘要 采用热失重(T G)、差热分析(D T A)等热分析方法和红外光谱热示踪法研究了氮系阻燃剂M CA对尼龙6热氧降解行为的影响及其作用本质。结果表明M CA改变了尼龙6热氧降解的历程,促进尼龙6直接碳化分解而达到阻燃目的。这一研究结果否定了藤野文雄建立的“升华吸热”的物理阻燃机制,提出了M CA凝聚相催化碳化膨胀的阻燃机理,为该M CA的深度应用和工业化生产奠定了理论基础。 关键词 氮系阻燃剂M CA,阻燃尼龙6,膨胀,阻燃机理 氮系阻燃剂M CA(以下简称M CA)是一种新型高效的聚酰胺用添加型阻燃剂,由于其本身及分解产物的低毒性,迎合了当今阻燃剂向高效低毒方向发展的潮流,近年来在国内外受到了广泛的研究和应用。关于其阻燃机理,藤野文雄认为是“升华吸热”的物理阻燃方式,即通过M CA的“升华吸热”降低聚合物材料的表面温度并隔绝空气而达到阻燃的目的[1],这种观点已时常被认可[2]。 从阻燃剂对聚合物材料阻燃作用机制是制约或延缓聚合物热氧降解行为这一基本特征出发,我们采用热分析方法研究了M CA对尼龙6树脂的阻燃机理。研究结果表明,M CA对尼龙6的阻燃作用在于它改变了尼龙6热氧降解的历程,即两者相互作用使表面形成碳化膨胀层。由此提出了M CA阻燃尼龙6的阻燃作用是凝聚相催化碳化膨胀和气相稀释阻燃的作用机理。 1 实验部分 1.1 试验材料 尼龙6树脂:工业Ⅱ型,相对粘度≥3.0,上海塑料制品十八厂产品。M CA:岳阳石油化工总厂研究院试制。 1.2 挤出造粒 尼龙6树脂在110℃真空干燥8h后,与M CA 及少量分散助剂按一定配方混料,在ZSK-30双螺杆挤出机上于240~260℃挤出造粒,再干燥注塑制成样条,按U L-94测试标准检测阻燃性能达到V-0级。 1.3 热重分析 取样条切片,用DU PONG1090热分析天平测试。气氛为80m L/m in的空气,以10℃/m in的升温速率从室温升至600℃。 1.4 热氧降解红外光谱 将样条切片置于小瓷舟,在已恒定温度的马弗炉中热处理2~5m i n,观察样品变化并用PE973型红外光谱仪测试处理过的样品的红外光谱图。 1.5 差热分析 取样条切片用DT-39B型差热分析仪测试,气氛为80m L/m i n的空气,以5℃/m in速率从室温升至600℃。 2 结果与讨论 M CA的热失重和差热分析结果如F ig.1。 TG F ig.1 T G and DT A curves o fMCA 收稿日期:1996-02-28 *参加本项工作的还有冯美平、伍仟新、程茵、龚军、肖玉莲、张西华等同志 联系人及第一作者:彭治汉,男,35岁,博士生,高级工程师.

常见阻燃剂

十溴二苯乙烷TDE 英文名称:2,2',3,3',4,4',5,5',6,6'-Decabromobibenzyl [1] 英文别名:DBDPE;1,2-Bis(2,3,4,5,6-pentabromophenyl)ethane CAS号:84852-53-9 分子式:C14H4Br10 分子量:971.22 熔点:~345℃. 沸点:~676.2℃. 新型溴系添加型阻燃剂(改性塑料行业必须用到的) 密封阴凉干燥保存 十溴二苯乙烷是一种使用范围广泛的广谱添加型阻燃剂,其溴含量高,热稳定性好,抗紫外线性能佳,较其他溴系阻燃剂的渗出性低;特别适用于生产电脑、传真机、电话机、复印机、家电等的高档材料的阻燃。 十溴二苯乙烷热裂解或燃烧时不产生有毒的多溴代二苯并二恶烷 (DBDO )及多溴代二苯并呋湳(DBDF ),用它阻燃的材料完全符合欧洲关于二恶英条例的要求,对环境不造成危害。二恶英(Dioxin),又称二氧杂芑(qǐ),是一种无色无味、毒性严重的脂溶性物质,二恶英实际上是二恶英类(Dioxins)一个简称,它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类物或异构体的两大类有机化合物。二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累,对人体危害严重。 十溴二苯乙烷无任何毒性,也不会对生物产生任何致畸性,对水生物如鱼等无副作用,可以说符合环保的要求。 十溴二苯乙烷在使用的体系中相当稳定,用它阻燃的热塑性塑料可以循环使用。 十溴二苯乙烷对阻燃材料性能的不利影响较传统阻燃剂十溴二苯醚小,且耐光性能好,渗出性低。 项目规格项目规格

尼龙阻燃配方

阻燃尼龙制造过程中,应考虑几个方面的问题,这就是制品对阻燃等级的要求;对材料力学性能的要求;对表面性质、加工性能及着色性能的要求等。根据使用要求,确定阻燃种类与用量,助剂的选择与工艺条件是十分重要的。 一、助燃剂的选择原则,助燃剂的选择主要从阻燃效率、产品性能、毒性等方面考虑。 ①.阻燃效果好、用量少; ②.与尼龙的相容性较好; ③.分解温度高,在PA加工温度下不分解; ④.耐久性优良,无明显的表面迁移; ⑤.对材料的力学性能的影响较小,大多数阻燃剂均会降低材料的性能; ⑥.产品电性能影响小,有些阻燃剂对产品电性能有很大影响,从而限制了在电子电器领域应用; ⑦.对设备的腐蚀尽可能小,一般来讲卤素阻燃剂分解产生HX,对设备有一定的腐蚀; ⑧.无毒、无臭、无污染; ⑨.价格便宜,阻燃剂价格与用量是材料生产成本的主要因素。 二、阻燃剂分为主阻燃剂和辅阻燃剂。主阻燃剂一般是阻燃效果好的,发挥主阻燃作用的阻燃剂,而辅阻燃剂则是效果不十分理想的,不能单独使用的,配合使用时效果明显的阻燃剂,辅阻燃剂起到消烟,防滴落等作用。 1、主阻燃剂有卤素、磷系、氮系、无机氢氧化物等,一般主阻燃剂加入量较大。 2、辅阻燃剂为效剂如Sb2O 3、硼酸锌等,另一类为消烟剂如ZnO、ZnS、Fe2O3等。在实际应用过程中还应注意两大问题。 ①.阻燃剂协同效应的应用,在一个配方中,有时需要使用几种阻燃剂,在选择阻燃剂搭配组合时,必须了解哪些阻燃剂组合时有相互补充的作用,哪些阻燃剂是相互抵消的。 下面介绍PA常用的几种组合。 a.卤系与锑系,Sb2O3单独使用时并没有阻燃效果,但与卤系阻燃剂配合使用时有明显效果,这是因为在燃烧是分解的卤素与Sb2O3发生了反应,生存了SbX3及SbOX3,而SbX3密度大,具有明显的隔氧效果,且SbX3具有捕捉自由基的作用,增加了卤系气相阻燃效果,卤系与锑系的配比一般为3:1. b.卤系和磷系,在卤磷复合体系中,卤系阻燃剂主要产生气相阻燃效果,磷系阻燃剂在燃烧时会形成偏磷酸盐产生固相阻燃效果,两者形成完整的气-固相阻燃体系。同时,卤、磷之间反应还可生产PX3、PX2气体,这类气体密度较HX大,不易扩散,包围在火焰表面,起到隔氧作用,卤素与磷系的配比一般为3:2。 c.磷系与氮系,氮系阻燃剂可促进磷系化合物的碳化,即成碳作用。碳层覆盖被燃物表面起到隔氧作用,从而提高了阻燃效果。 d.磷系与锑系,其协同机理基本与卤/锑体相似。 e.红磷、金属氧化物,聚磷酸酯酰胺等之间也有协同效应。 f.Sb2O3/硼酸锌配合产生协同作用,硼酸锌起到防滴落作用,硼酸锌的加入,可减少Sb2O3的用量。 g.红磷与炭黑有协同作用,添加炭黑时,红磷的用量可减少。 ②.阻燃剂间的对抗作用,很多阻燃剂组合能产生协同效应,提高其阻燃效果。但有些阻燃剂相互配合时会相互抵消阻燃作用。使用时应特别注意。 a.卤系化合物不宜同有机硅混合使用,两者混合使用,使阻燃体系的氧指数降低; b.溴系阻燃剂不宜与硬脂酸锌配合使用,否则会降低溴系阻燃效果。 c.红磷与有机硅不宜混合使用。 d.溴系阻燃剂体系中,不宜添加CaCO3和MgCO3,否则会降低其阻燃效果。

磷系阻燃剂的阻燃机理

磷系阻燃剂的现状与展望 2009-12-23 11:27:21| 分类:默认分类 | 标签: |字号大中 小订阅 磷系阻燃剂的现状与展望 -------------------------------------------------------------------------------- 来源:中国化工信息网 2009年3月24日 随着高分子材料在各个领域的广泛应用,有机高分子,在给人们的生产和生活带来巨大利益的同时,也会带来了潜在的火灾安全问题。为了减少火灾的发生,世界各国都在致力于研究和应用阻燃剂及阻燃材料。所谓阻燃剂就是能够提高可燃物的难燃性或自熄性的一种助剂,是塑料助剂中仅次于增塑剂消耗量的助剂。在各类阻燃剂中,磷系阻燃剂占有重要地位,它不仅克服了含卤型阻燃剂燃烧烟雾大、放出有毒及腐蚀性气体的缺陷,同时又改善了无机阻燃剂高添加量严重影响材料的物理机械性能的缺点,做到了高阻燃性、低烟、低毒、无腐蚀性气体产生。 1 阻燃机理及分类 1.1 磷系阻燃剂的阻燃机理 磷系阻燃剂的阻燃机理主要是形成隔离膜来达到阻燃效果,形成隔离膜的方式有2种。 (1)利用阻燃剂的热降解产物促使聚合物表面迅速脱水而炭化,进而形成炭化层。由于单质碳不进行产生火焰的蒸发燃烧和分解燃烧,因此,具有阻燃保护作用。磷系阻燃剂对含氧聚合物的阻燃作用就是通过这种方式实现的。其原因是含磷化合物热分解得到的最终产物是聚偏磷酸,而它是强脱水剂。 (2)磷系阻燃剂在燃烧温度下分解生成不挥发的玻璃状物质,它包覆在聚合物的表面,这种致密的保护层起隔离层的作用。 1.2磷系阻燃剂的分类

磷系阻燃剂根据磷系阻燃剂的组成和结构,可以分为无机磷系阻燃剂和有机磷系阻燃剂两大类。无机磷系阻燃剂包括红磷、磷酸铵盐和聚磷酸铵等。有机磷系阻燃剂包括磷酸酯、亚磷酸酯、膦酸酯和鳞盐等。下述阐述一下几种常用磷系阻燃剂的特点。 2 无机磷系阻燃剂 无机阻燃剂历史悠久,主要是红磷、聚磷酸铵(APP)、磷酸二氢铵等磷酸盐,受热分解出磷酸、偏磷酸和H2O等,并促进成炭覆于基材的表面起到阻燃的效果。应用于PVC、尼龙环氧树脂、聚酯和聚酰胺等,尤其是对后两类更为普遍。作为一种老牌阻燃剂,其无卤、低毒、稳定、效果持久等优势,使其在无机阻燃剂中占有很重的地位。1963年,由德国拜耳公司推出红磷阻燃剂以来,一直在研究塑料阻燃剂用红磷的稳定方法。 2.1 红磷 红磷是一种性能优良的阻燃剂,具有高效、抑烟、低毒的阻燃效果,红磷在400℃受热分解,,解聚形成白磷,白磷在水汽存在下被氧化成粘性的磷的含氧酸,这类酸即覆盖于被阻燃材料表面,又促使材料表面加速脱水炭化,形成炭层。液膜和炭层可起到蓄热、阻止气体交换的作用,保护下层不再被继续氧化,起到阻燃作用。但是在实际应用中易吸潮、氧化、并放出剧毒气体,粉尘易爆炸,而其呈深红色,在与树脂混炼、模塑等加工操作过程中存在着火危险,且与树脂相容性差,不宜分散均匀,导致基材物理性能下降。为了克服这些缺点,红磷颗粒的表面改性处理成为重要研究课题之一。 在我国,由于红磷作为阻燃剂未广泛使用,故国内研制开发较少。但鉴于它有着广泛的市场前景,应引起注意和重视。由于微胶囊能保护物质免受环境影响,改变物质质量、状态或表面性能,隔离活性成分,降低挥发性和毒性等多种作用,所以将该技术应用于无机阻燃剂,就可以防止无机阻燃剂迁移、提高阻燃效果、改善热稳定性等。 目前,微胶囊技术在无机阻燃剂中的工业化应用主要是微胶囊化红磷,经包覆处理的红磷具有低烟、低毒、无卤、相容性好、物化性能优良等特点。李玉荣等研制出了一种无机和有机双层包覆红磷(即IO红磷),作为矿井用阻燃抗静电橡胶和像塑导风筒,以及矿用阻燃聚乙烯塑料棚网,均表现出良好的阻燃效果,同时,减少了卤系阻燃剂和Sb2O3的用量,降低了阻燃制品燃烧时产生的有害气体。目前商品化的品种有:ClariantWC公司的ExolitRP,Albright&Wilson公司的AMGARD和AMGARDCPC系列,AmgardCRP和AmgardGHT系列,日本的RINKA系列等。 另外红磷具有抑烟效果,可以寻找合适的消烟剂与之进行复配,火灾中抑烟比防火更重要,促进发展消烟技术。 2.2聚磷酸铵 聚磷酸铵(APP)是一种性能良好的无机磷阻燃剂,是目前磷系阻燃剂比较活跃的研究领域。APP的P-N阻燃元素含量高、热稳定性好,产品近乎于中性;另外价廉、毒性低、阻燃性能持久,可单独或与其它阻燃剂复合用于塑料的阻燃。另外,聚磷酸是强脱水剂,可使聚合物脱水炭化形成炭层,隔绝聚合物与氧气的接触,在固相起阻止燃烧的作用。

阻燃剂阻燃原理

通过在合成树脂或塑料中,加入一定比例的某种阻燃剂,便可大大提高塑料制品的阻燃性能。所谓阻燃剂是一类能阻止塑料等高分子材料被引燃或抑制火焰扩散的塑料助剂。阻燃技术的目的是使可燃材料具有阻燃抗燃的性能,在一定条件下使塑料不容易燃烧或者能够自熄的过程。 塑料阻燃剂的阻燃原理: 1、产生一种能窒熄火焰的气体。例如三氧化二锑,它在PVC中遇到因燃烧产生HCL时能与之反应生成一种窒熄性气体,即锑的氮氧化物,从而起到阻燃的效果。 2、吸收燃烧时产生的热量,起冷却、减慢燃烧速率的作用。例如氢氧化铝,它分子中所含化学结合水的比例高达34%,这种结合水在大多数塑料的加工温度下保持稳定,但超过200℃时开始分解,释放出水蒸汽。而且每分解一克分子氢氧化铝,要吸收36千卡热量。 3、提供一层与氧气隔绝的隔离层,因隔绝了氧气而自熄,如磷酸酯类阻燃剂燃烧时生成的磷化物即是隔氧的隔离层。 4、生成可与塑料起反应的游离基,它们与塑料的反应产物能起阻燃作用。 阻燃剂的种类 阻燃剂种类繁多,可分为﹕有机阻燃剂和无机阻燃剂。具代表性的阻燃剂是氯系、溴系、磷系及氢氧化铝、氢氧化镁等。 有机阻燃剂 有机阻燃剂,主要有三大类: 一是氯系阻燃剂:以含氯量较高的氯化石蜡如氯蜡-52和氯蜡-40。目前氯系阻燃剂正朝着无污染、高纯度、高热稳定性、高含氯量方向发展,其代表产品是氯蜡-70。氯化石蜡主要用于聚氯乙烯制品的阻燃。 二是溴系阻燃剂:大多在200℃~300℃下分解,分解时通过捕捉高分子材料在降解反应生成的自由基,延缓或终止燃烧的链反应,释放出的HBr是一种难燃气体,可以覆盖在材料的表面,起到阻隔表面可燃气体的作用。溴系阻燃剂的适用范围广泛,是目前世界上产量最大的有机阻燃剂之一,主要产品有十溴二苯醚、四溴双酚A、五溴甲苯和六溴环十二烷等。

尼龙的阻燃研究进展

尼龙的阻燃研究进展 尼龙,即聚酰胺( PA) ,是主链上含有酰胺基团( - NHCO - ) 的高分子化合物,是重要的工程树脂,居五大通用工程塑料( PA ,PC ,POM,PBT/ PET ,PPO)之首,在日常生活和工业领域的应用十分广泛。根据聚酰胺单元链节中含碳原子数目不同可分为PA6 , PA11 , PAl2 , PA46 , PA66 , PA610 , PA612 , PAl010等。其中PA6 , PA66 应用最广泛,产量最大。尼龙具有很高的力学强度,熔点高,耐磨,耐油和一般有机溶剂,耐热性能优良。由于在分子结构上带有酰胺基,因此具有良好的阻燃性。按照ASTM D635 试验,属自熄性类型。但作为一种广泛应用的材料, 尼龙大多面临比较苛刻的使用环境,如高湿度、高温度、高电压等。因此尼龙的阻燃性能在许多场合成为一个至关重要的因素,特别在电气用途,如接线柱、插座、开关等。因此有必要进一步提高尼龙的阻燃性。 1.尼龙的阻燃途径: 尼龙的阻燃途径主要有[1]:(1) 在复合过程中加入阻燃添加剂; 即通过机械混合方法,将阻燃剂加入到聚酰胺中,使其获得阻燃性。如将一定配比的APP/ talc 加入PA26 中,可获得UL94 V20 级阻燃PA26 ,其优点是使用方便,适用面广,但对聚合物的使用性能有较大影响。可用于聚酰胺的主要添加型阻燃剂有双(六氯环戊二烯) 环辛烷、多磷酸铵、十溴二苯醚等。使用添加型阻燃剂是目前尼龙阻燃的主要方法;(2) 在聚合物链上或表面上接枝或键合阻燃基团; 即阻燃剂是作为一种反应单体参加反应,并结合到聚酰胺的主链或侧链上去,使聚酰胺本身含有阻燃成分。其特点是稳定性好,毒性小,对材料的使用性能影响小,阻燃性持久,是一种较为理想的方法。但操作和加工工艺复杂,在实际应用中不及添加型阻燃方法普遍。用于聚酰胺的反应型阻燃剂有双(羟乙基) 甲基氧膦、1 ,3 ,62三(4 ,62二氨基222硫基三嗪) 己烷和三聚氰酸的混合物等; (3) 与阻燃单体(内酰胺、二元胺或二元酸) 进行共聚合作用; 2.用于尼龙的阻燃剂: 2.1卤系阻燃剂: 卤系阻燃剂主要是在气相延缓或阻止聚合物的燃烧。它在高温下可产生自由基终止剂卤化氢(HX) ,与聚合物燃烧链反应中活性物质反应,并降低或消除此种活性游离基,从而减缓或终止气相燃烧中的链式反应达到阻燃目的。另一方面,HX 是难燃性气体,稀释了氧的浓度,且其相对密度大于空气在聚合物与气相间形成气体保护层。在凝聚相中卤系阻燃剂还可通过脱水反应形成炭化状态促进成炭[2]。适用于聚酰胺的氯化阻燃剂主要有:saytex EFR25010 双(六氯环戊二烯) 环辛烷;溴化阻燃剂主要有:十溴二苯醚(DBDPO) 、十四溴二苯氧基苯( say2 tex 120) 卤系阻燃剂对未增强和增强尼龙均很有效,它可以与协效金属氧化物、金属盐、含磷化合物或成炭剂共同使用。如卤系阻燃剂与硼酸锌复配使用,其协同效果与氧化锑大致相当,其主要作用机理为: 2ZnO·3B2O3·3. 5H2O + 22RX 2ZnX2 + 6BX3 + 11R2O + 3. 5H2O ; 2ZnO·3B2O3·3. 5H2O + 22HX 2ZnX2 + 6BX3 + 14. 5H2O; 反应产生的BX3 ,ZnX2 在气相中可以捕捉自由基,削弱或消除燃烧的链反应;在固相中,促进炭 化层生成。高温下,BX3 , ZnX2 在可燃物表面形成玻璃状涂层,隔绝热氧。反应放出的水份,起到吸热、降温、消烟作用。 2.2 磷系阻燃剂: 含磷阻燃剂主要在固相发生作用,受热分解发生如下变化:磷系阻燃剂→磷酸→偏磷酸→聚偏磷酸。聚偏磷酸是不易挥发的稳定化合物,具有强脱水性,在聚合物表面形成石墨状碳化膜, 使聚合物与空气隔绝;脱出的水气吸收大量的热,使聚合物表面温度下降。在气相中,磷系阻燃剂受热分解释放出挥发性磷化物,经质谱分析表明,存在PO·游离基,同时火焰中氢原子浓度大大降低,表明PO·捕获H·,即PO·+ ·H = HPO[3]。适用于聚酰胺的磷系阻燃剂主要有赤磷、聚磷酸

磷系阻燃剂的阻燃机理

磷系阻燃剂的现状与展望2009-12-23 11:27:21| 分类:默认分类| 标签:|字号大 中 小订阅 磷系阻燃剂的现状与展望 -------------------------------------------------------------------------------- 来源:中国化工信息网2009年3月24日 随着高分子材料在各个领域的广泛应用,有机高分子,在给人们的生产和生活带来巨大利益的同时,也会带来了潜在的火灾安全问题。为了减少火灾的发生,世界各国都在致力于研究和应用阻燃剂及阻燃材料。所谓阻燃剂就是能够提高可燃物的难燃性或自熄性的一种助剂,是塑料助剂中仅次于增塑剂消耗量的助剂。在各类阻燃剂中,磷系阻燃剂占有重要地位,它不仅克服了含卤型阻燃剂燃烧烟雾大、放出有毒及腐蚀性气体的缺陷,同时又改善了无机阻燃剂高添加量严重影响材料的物理机械性能的缺点,做到了高阻燃性、低烟、低毒、无腐蚀性气体产生。 1 阻燃机理及分类 1.1 磷系阻燃剂的阻燃机理 磷系阻燃剂的阻燃机理主要是形成隔离膜来达到阻燃效果,形成隔离膜的方式有2种。 (1)利用阻燃剂的热降解产物促使聚合物表面迅速脱水而炭化,进而形成炭化层。由于单质碳不进行产生火焰的蒸发燃烧和分解燃烧,因此,具有阻燃保护作用。磷系阻燃剂对含氧聚合物的阻燃作用就是通过这种方式实现的。其原因是含磷化合物热分解得到的最终产物是聚偏磷酸,而它是强脱水剂。 (2)磷系阻燃剂在燃烧温度下分解生成不挥发的玻璃状物质,它包覆在聚合物的表面,这种致密的保护层起隔离层的作用。 1.2磷系阻燃剂的分类 磷系阻燃剂根据磷系阻燃剂的组成和结构,可以分为无机磷系阻燃剂和有机磷系阻燃剂两大

阻燃剂的阻燃机理

1阻燃剂的阻燃机理 阻燃剂是通过若干机理发挥其阻燃作用的,如吸热作用、覆盖作用、抑制链反应、不燃气体的窒息作用等[2]。多数阻燃剂是通过若干机理共同作用达到阻燃目的。 1.1吸热作用 任何燃烧在较短的时间所放出的热量是有限的,如果能在较短的时间吸收火源所放出的一部分热量,那么火焰温度就会降低,辐射到燃烧表面和作用于将已经气化的可燃分子裂解成自由基的热量就会减少,燃烧反应就会得到一定程度的抑制。在高温条件下,阻燃剂发生了强烈的吸热反应,吸收燃烧放出的部分热量,降低可燃物表面的温度,有效地抑制可燃性气体的生成,阻止燃烧的蔓延。Al(OH)3阻燃剂的阻燃机理就是通过提高聚合物的热容,使其在达到热分解温度前吸收更多的热量,从而提高其阻燃性能。这类阻燃剂充分发挥其结合水蒸汽时大量吸热的特性,提高其自身的阻燃能力。 1.2覆盖作用 在可燃材料中加入阻燃剂后,阻燃剂在高温下能形成玻璃状或稳定泡沫覆盖层,隔绝 O2,具有隔热、隔氧、阻止可燃气体向外逸出的作用,从而达到阻燃目的。如有机磷类阻燃剂受热时能产生结构更趋稳定的交联状固体物质或碳化层。碳化层的形成一方面能阻止聚合物进一步热解,另一方面能阻止其内部的热分解产生物进入气相参与燃烧过程。 1.3抑制链反应 根据燃烧的链反应理论,维持燃烧所需的是自由基。阻燃剂可作用于气相燃烧区,捕捉燃烧反应中的自由基,从而阻止火焰的传播,使燃烧区的火焰密度下降,最终使燃烧反应速度下降直至终止。如含卤阻燃剂,它的蒸发温度和聚合物分解温度相同或相近,当聚合物受热分解时,阻燃剂也同时挥发出来。此时含卤阻燃剂与热分解产物同时处于气相燃烧区,卤素便能够捕捉燃烧反应中的自由基,从而阻止火焰的传播,使燃烧区的火焰密度下降,最终使燃烧反应速度下降直至终止。 1.4不燃气体窒息作用 阻燃剂受热时分解出不燃气体,将可燃物分解出来的可燃气体的浓度冲淡到燃烧下限以下。同时也对燃烧区内的氧浓度具有稀释的作用,阻止燃烧的继续进行,达到阻燃的作用。 2无卤阻燃剂 2.1氢氧化铝 氢氧化铝在205~230℃下受热分解放出结晶水,吸收大量的热,产生的水蒸气降低了聚合物表面燃烧速率,稀释了O2与降低可燃性气体的浓度而达到阻燃的目的[3]。新生的耐火金属氧化物(Al2O3)具有较高的活性,它会催化聚合物的热氧交联反应,在聚合物表面形成一层碳化膜,碳化膜会减弱燃烧时的传热、传质效应,从而起到阻燃的作用。另外,氧化物还能吸附烟尘颗粒,起到抑烟作用。该阻燃剂还具有阻涎滴,促碳化,不挥发,不渗出,能长期保留在聚合物中等功效[4]。 氢氧化铝广泛应用于PP,PE,EVA等聚烯烃的阻燃改性中,尤其是电线电缆行业被广泛应用。对于对阻燃性能要求高的材料,为了达到阻燃的要求,需在高聚物复合材料中填充大量氢氧化铝(50%~60 %)这将导致复合材料的物理力学性能恶化。 考虑到阻燃作用是由化学反应所支配的,而相同量的阻燃剂,其粒径越小,比表面积就越大,阻燃效果就越好。随着氢氧化物粒度的减小,在相同添加量时氧指数迅速上升,材料越难燃烧。超细化、纳米化是一个主要研究开发方向。

常见阻燃剂的类型

常见阻燃剂的类型 随着全球安全环保意识的日益加强,人们对防火安全及制品阻燃的要求越来越高,无卤、低烟、低毒的环保型阻燃剂已成为人们追求的目标。 目前国内塑料改性用阻燃剂近80%为含卤阻燃剂,其中以多溴二苯醚和多溴联苯类物质为代表,溴系阻燃剂效率高、用量少,对材料的性能影响小,且价格适中。和其它类型的阻燃剂相比,其效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但溴-锑阻燃体系在热裂解及燃烧时会生成大量的烟尘及腐蚀性气体,而且近年欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF),2003年2月,欧盟出台了RoHS和WEEE两个禁令,其中RoHs是限制有害物质的禁令(The Restriction ofHazrdOus Substances Directive),它规定自2006年1月1日起,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。 常用环保型阻燃剂 一、环保型溴系阻燃剂 1、十溴二苯乙烷8010 8010不属于多溴二苯醚,在燃烧中绝对不可能产生PBDD或PBDF;8010的相对分子量为971;溴含量82%,和DBDPO含溴量相当(83%),因此阻燃性能基本一致;初熔点345℃,热稳定性较DBDPO(305℃)高;它的耐光性以及不易渗析的特点都优于DBDPO,最可贵的是其阻燃的塑料可以回收使用,这是许多溴系阻燃剂所不具备的特点。8010工业品为平均粒度3μm、自由流动、微颗粒化的白色结晶粉末,在塑料改性中容易分散,塑料制品颜色自由。而且工业化成本和DBDPO相当,是DBDPO最为理想的替代品。 作为添加型溴系阻燃剂,8010在使用过程也需要和锑化物配合使用,配合比例和DBDPO/锑化物比例相同;和DBDPO相比,8010更适用于高温高粘特性的工程塑料。 首先对8010进行工业化生产的是美国雅宝公司,并申请了生产和使用专利;这一度使国内阻燃剂研究生产单位迟迟没有开展这方面的研究,但经查询发现,雅宝公司的专利范围是在中国之外的地区,因而可以在中国生产和使用8010,只是不能出口及申请专利。柳暗花明,国内研究生产单位纷纷投入研究,2002年年底以工业规模试验成功。目前,国内市场厂商代表有:雅宝公司,大湖公司,苏州晶华工有限公司,山东莱玉化工等。 2、溴化环氧树脂 阻燃剂用溴化环氧树脂又称为四溴双酚A环氧树脂齐聚物,溴含量可达50%,分子量在1000~45000之间,分为EP型和EC型;EP型和EC型相比,前者的耐光性较好,但溴含量较低,而后者阻燃的ABS和HIPS具有较好的抗冲强度。商业品溴化环氧树脂是乳黄色半透名晶片和白色粉末的混合物,国产溴化环氧树脂有刺激性气味,而以色列死海溴产品则无气味。溴化环氧树脂具有令人满意的熔体流速和较高的阻燃效率,优良的热稳定性和光稳定性,且能赋予阻燃基材良好的机械性能,产品不起霜。

磷系阻燃剂研究进展(图文并茂版)

磷系阻燃剂研究进展 1.磷系阻燃剂 随着合成材料的广泛应用, 阻燃剂的消耗量日益增加, 目前已成为塑料助剂中仅次于增塑剂的第二大品种。阻燃剂种类繁多, 其中, 磷系阻燃剂是各类阻燃剂中最复杂, 也是研究较充分的一类[ 1]。磷系阻燃剂大都具有低烟、无毒、低卤、无卤等优点, 符合阻燃剂的发展方向, 具有很好的发展前景。 磷系阻燃剂-CEPPA 2.磷及磷化合物阻燃机理 加入含磷阻燃剂的聚合物燃烧时, 磷化合物受热分解, 发生如下变化: 聚偏磷酸是不易挥发的稳定化合物, 覆盖在聚合物表面形成一个保护层, 起到阻燃作用。另外, 由于磷酸和聚偏磷酸具有较强的脱水性, 使聚合物表面形成碳化膜而起到阻燃作用。这是磷系阻燃剂在聚合物的凝聚相中的阻燃机理。 另外, 磷系阻燃剂在阻燃过程中产生的水分,一方面可以降低凝聚相的温度, 另一方面可以稀释气相中可燃物的浓度, 从而更好地起到阻燃作用。 3.磷系阻燃剂研究进展 3.1磷系协同型阻燃剂 所谓协同型阻燃剂就是指利用阻燃剂或阻燃元素之间的相互作用而提高阻燃效果的阻燃剂, 其优点是: 阻燃性能增强, 应用范围扩大, 经济效益提高, 是实现阻燃剂低卤无卤化有效途径之一。 3.1.1磷- 卤系阻燃剂

磷- 卤型阻燃剂是一类含卤较低的阻燃剂, 其协同阻燃作用已被许多实验所证实。燃烧时能产生聚偏磷酸、三卤化磷、三卤氧磷等, 它们相作用, 覆盖于聚合物表面以隔绝空气, 从而发挥了凝聚相和蒸气相阻燃作用。 如:美国的FMC 公司现销售的PB - 460 也是一种溴代磷酸酯, 在聚碳酸酯( PC) / 聚对苯二甲酸乙二酯( PET) 以及PC/ ABS 三元共聚物中表现出明显的磷- 溴协同作用, 阻燃 效率远远高于只含磷或只含溴的阻燃剂。 PB-460 磷酸三(溴苯基)酯 3.1.2磷- 氮系阻燃剂 由于磷- 氮之间的协同与增效作用, 使得这类阻燃剂显示出了良好的阻燃性能, 且发烟 量小, 有毒气体生成量少, 被认为是今后阻燃剂发展的方向之一。其主要包括如下三类: a.磷酸盐( 酯) 类如聚磷酸铵( APP ) 、季戊四醇三聚氰胺磷酸酯( 也是优良的大分子 膨胀型阻燃剂) 等。 b.聚磷酰胺类如APO ( 商品名) 。 c.磷腈聚合物如PR- 1000 、PNF 等。[2] 聚磷酸铵(APP)-阻燃剂 3.2多功能阻燃剂 多功能化是阻燃剂的发展趋势之一。多功能化阻燃剂可以减少助剂的用量, 降低成本, 避免对聚合物物性产生大的影响。磷酸酯类化合物大都具有阻燃、增塑等功能。1 - 氧代- 4 - 羟甲基- 2 , 6 , 7 - 三氧杂- 1 - 磷杂双环[ 2, 2 , 2 ] 辛烷引进叠氮基团便成为对体系有能 量贡献, 又有增塑和键合等性能的多功能添加剂。 如:溴代芳基磷酸酯很早就被作为阻燃剂使用, 一般用于工程塑料及透明材料, 经研究发现:BPP ( 即溴代芳基磷酸酯之一) 不仅可以作工程塑料的阻燃剂, 而且还具有极佳的防霉、避鼠的功能, 是应用于塑料的一种多功能助剂。三芳基磷酸酯属于添加型有机无毒阻燃剂, 具有阻燃和增塑的双重功能, 可广泛应用于PVC 软制品中。[3] 3.3红磷 红磷添加量少, 阻燃效果好, 对材料物性影响小, 是一种很有发展前途的阻燃剂, 但也

阻燃剂

阻燃剂:溴系、磷系、三嗪系、硅系、膨胀型、无机填料等。常用于PP、PE、PVC、 PS、HIPS、ABS、聚酰胺、PC、PBT、PET、不饱和聚酯、PU和环氧树脂等热塑性通用塑料、热塑性工程塑料和热固性塑料阻燃。 高聚物(各种塑料包括工程塑料)的阻燃技术,当前主要是以添加型溴系阻燃剂为主,常用的有十溴二苯醚、八溴醚、四溴双酚A、六溴环十二烷等,这中间尤以十溴二苯醚使用量最大。 目前对溴系阻燃剂的偏见会随着科学进一步的发展来证实,它依旧会在面20年内被大量使用,我们对它的评价是:我们讨厌它,但我们离不开它。阻燃剂家族中的其他品种有磷系、三嗪系、硅系、膨胀型、无机填料等[3],这些阻燃剂在各种不同使用领域发挥各自独特的阻燃效果。其中磷系阻燃剂中有机磷系品种大多是油状,在高聚物加工过程中不易添加,一般在聚氨酯泡沫、软PVC、变压器油、纤维素树脂、天然和合成橡胶中使用。而无机磷系中的红磷,由于是纯阻燃元素,所以阻燃效果好,应用面较广,但它色泽鲜艳,因而应用受到部分限制。 红磷的应用要注意微粒化和表面包覆(胶囊化),这样使它在高聚物中分散性好,与聚合物的相容性好,不易迁移,能保持高聚物的难燃性能长久。另外,聚磷酸铵的聚合度是决定上述两种产品质量的关键,聚合度越高,阻燃防火效果越好,国内已经有聚合度超过100的产品,而国外APP(聚磷酸铵)的聚合度在500以上已是常见。 膨胀型阻燃剂是近年来开发的以磷、氮为主要组成的阻燃剂,含这类阻燃剂受热时,表面能形成一层致密泡沫炭层,起到隔热、隔氧、抑烟,又能防止熔滴,具有良好的阻燃性能。我国自1992年就开始有研究成功的报告,至今有多个研究单位从事这方面的开发,但仍未见工业规模的生产报道。一直没有达到规模生产的原因可能有两个:一是产品中留有尚未反应的无机酸,反映在阻燃制品表面有吸潮现象;另外一个就是N-P膨胀型阻燃剂是一些大分子化合物合成,其最后一步是固相反应,它的传质、传热过程太复杂而至今工业化有一定困难。 最近有些文章谈及无机纳米粒子的阻燃优越性,我们的工作经验认为,这些纳米粒子的添加或许对改善机械强度有好处,但对阻燃性能不会有太大影响。因为无机阻燃剂阻燃机理是通过受热分解释放水蒸气来降低体系温度,同时水蒸气又稀释了可燃性气体来达到阻燃效果,它是以水蒸气的量来决定它的阻燃效果,因此与阻燃剂的量有关,与阻燃剂是否纳米粒子无关,一般来讲无机阻燃剂的粒径分布在2μm5μm之间已足矣。 阻燃聚苯乙烯和高抗冲聚苯乙烯 ①对于挤出PS泡沫来讲,使用普通的六溴环十二烷(HBCD)即可达到阻燃目的。这种处理不必使用阻燃协效剂三氧化二锑,因为起不到协效作用,反而由于它的存在会使体系燃烧时产生熔滴。 ②对于常用的普通聚苯乙烯阻燃,要求使用热稳定性能好的HBCD,PS的加工温度在180℃210℃左右,在此加工温度下,普通的HBCD会产生不稳定,易分解。因此,要求使用耐高温的HBCD(它耐温达230℃240℃)。 ③高抗冲聚苯乙烯阻燃技术更难,由于它要用于电子、电器元件,阻燃级别要求更高,需达到UL94 V-0级。如果使用溴系阻燃剂就可达到这种要求,但要注意材料的耐光性、热变形温度、抗冲强度、阻燃剂有否渗出等各方面因素是否受到影响。常用的溴系阻燃剂有十溴二苯醚、溴化环氧树脂(BER)、耐高温HBCD等。

(完整版)阻燃剂的市场现状

阻燃剂的市场现状 概述 随着我国合成材料工业的发展和应用领域的不断拓展,阻燃剂在化学建材、电子电器、交通运输、航天航空、日用家具、室内装饰、衣食住行等各个领域中具有广阔的市场前景。此外,煤田、油田、森林灭火等领域也促进了我国阻燃、灭火剂生产较快的发展。我国阻燃剂已发展成为仅次于增塑剂的第二大高分子材料改性添加剂,目前的生产能力20万t/a左右,年生产量在15万-17万t 之间,年消费量20万t左右。不足部分主要从美国和以色列进口,进口的主要品种为有机溴及卤—磷系阻燃剂。我国阻燃剂生产厂60余家,能够生产50余种产品,主要为溴磷系列,其中溴系阻燃剂是最重要的系列,约占我国有机阻燃剂的30%。、 国内阻燃剂的品种和消费量还是以有机阻燃剂为主,无机阻燃剂生产和消费量还较少,但近年来发展势头较好,市场潜力较大。阻燃剂中最常用的卤系阻燃剂虽然具有其他阻燃剂系列无可比拟的高效性,但是它对环境和人的危害是不可忽视的。环保问题是助剂开发和应用商关注的焦点,所以国内外一直在调整阻燃剂的产品结构,加大高效环保型阻燃剂的开发。 1.环保型阻燃剂应用和生产现状 随着人们环保、安全、健康意识的日益增强,世界各国开始把环保型阻燃剂作为研究开发和应用的重点,并已经取得了一定的成果。阻燃剂按有效元素分类,可分为磷系、氯系、溴系和锑基、铝基、硼基阻燃剂等。本文根据阻燃有效元素将阻燃剂分为无卤阻燃剂、溴系阻燃剂、卤—磷协同阻燃剂及其他阻燃剂四个种类,分别介绍其中几种环保且具有应用前景的阻燃剂。 1.1无卤阻燃剂 无卤、低烟、低毒的环保型阻燃剂一直是人们追求的目标,近年来全球一些阻燃剂供应和应用商对阻燃无卤化表现出较高热情,对无卤阻燃剂及阻燃材料的开发也投入了很大的力量。据分析,无卤阻燃剂主要品种为磷系阻燃剂及无机水合物。前者主要包括红磷阻燃剂,无机磷系的聚磷酸铵(APP)、磷酸二氢铵、磷酸氢二铵、磷酸酯等,有机磷系的非卤磷酸酯等。后者主要包括氢氧化镁、氢氧化铝、改性材料如水滑石等。聚磷酸铵、水滑石为该系列环保型且市场前景较好的代表产品,以下就这两种产品展开分析。 1.1.1聚磷酸铵 聚磷酸铵(ammoniumpolyphosphate,简称为APP)是长链状含磷、氮的无机聚合物,其分子通式为:(NH4P03)n。由于其具有化学稳定性好、吸湿性小、分散性优良、比重小、毒性低等优点,近年来广泛用于塑料、橡胶、纤维作阻燃处理剂;还可用于配制膨胀性防火涂料,用于船舶、火车、电缆及高层建筑的防火处理;也用于生产干粉灭火剂,用于煤田、油井、森林大面积灭火;此外,还可作肥料用。聚磷酸铵的聚合度是决定其作为阻燃剂产品质量的关键,聚合度越高,阻燃防火效果越好。国内已经有聚合度超过100的产品,而国外APP(聚磷酸铵)的聚合度在500以上已是常见。国内聚磷酸铵研制始于1978年,经过20多年的发展,我国聚磷酸铵生产已具有一定的基础,基本

有机磷系阻燃剂.

阻燃剂及有机磷系阻燃剂的综述 1引言 材料是实现工业、农业、国防和科学技术现代化的重要物质基础,它与信息、能源并列为现代文明的三大支柱,是现代社会赖以生存和发展的基本条件之一。然而,自20世纪30年代,有机高分子材料进入国民经济的各个领域及人民生活的各个方面后,人类即开始面临新的火灾威胁,原因是这类材料大部分是易燃或可燃的。这不但限制了它们的应用,还给人类社会带来频繁的火灾危害和严重的经济损失,表1.1列举了半个世纪以来世界各国部分特大火灾。据统计,经济发达的国家和地区在1989-1993年间的年均火灾损失达国民生产总值的0.1-0.4%。 因此,阻燃已成为当前人类提高社会消防能力,确保人民生命和财产免遭火灾的重要措施,以阻燃为目的的高分子材料改性也愈加引人注目,从而大大促进了阻燃材料和技术的研究、生产。制备应用低烟、低毒和环境污染低的阻燃剂是加工绿色阻燃材料的需求。 阻燃剂是用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。阻燃剂主要用于阻燃合成和天然高分子材料(包括塑料、橡胶、纤维、木材、纸张、涂料等)。

一个理想的阻燃剂最好能同时满足下述条件,但这实际上几乎是不可能的,所以选择实用的阻燃剂时大多是在满足基本要求的前提下,在其他要求间折中和求得的最佳的平衡: (1)阻燃效率高,获得单位阻燃效能所需的用量少。 (2)本身低毒或基本无毒(对大鼠口服的LD50)5000mg/kg),燃烧时生成的有 毒和腐蚀性气体量及烟量尽可能少。 (3)与被阻燃基材的相容性好,不易迁移和渗出。 (4)具有足够高的热稳定性,在被阻燃基材加工温度下不分解,但分解温度 也不宜过高,以在250~400度之间为宜。 (5)不致过多恶化被阻燃基材的加工性能和最后产品的物理-机械及电气性 能。可以认为,现有的阻燃剂和阻燃工艺无一不或多或少地对被阻燃高 聚物的某一性能或某几种性能会产生不利的影响,而且阻燃剂用量越多,影响越大,所以性能优良的阻燃剂和合理的阻燃剂配方在于能在材料阻 燃性和实用性间求得和谐的统一。 (6)具有可接受的紫外线稳定性和光稳定性。 (7)原料来源充足,制造工艺简便,价格低廉。因为阻燃剂的用量一般比较 大,所以它的价格也是一个不可忽视的考虑因素,一个性能较优而价格 偏贵的阻燃剂在于一个性能尚能满足使用要求但不甚理想而价格低廉的 阻燃剂竞争时,前者往往败北。 2阻燃剂的分类 按化学组成来分,阻燃剂可分为有机阻燃剂和无机阻燃剂两大类;按使用方式的不同,阻燃剂可分为添加型阻燃剂和反应型阻燃剂两种。按照阻燃元素的不同,阻燃剂可分为卤系、有机磷系及卤磷系、磷-氮系、锑系、铝磷系、无机磷系、硼系和钼系、锡系、钙化合物、铁化合物等。前三种属于有机阻燃剂,后几类属于无机阻燃剂。

相关主题
文本预览
相关文档 最新文档