当前位置:文档之家› 低氮燃烧技术精编图文稿

低氮燃烧技术精编图文稿

低氮燃烧技术精编图文稿
低氮燃烧技术精编图文稿

低氮燃烧技术精编 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

低NOx燃烧技术简介

一概述:

用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。

二低NOx燃烧技术方法:

1、空气分级燃烧

空气分级法是将燃烧用的空气分阶段送入,进行“缺氧燃烧”和“富氧燃尽”,使其避开温度过高和大过剩空气系数同时出现,降低NOx的生成。

在“缺氧燃烧”阶段,由于氧气浓度较低,燃料的燃烧速度和温度降低,抑制了热力型NOx生成;由于不能完全燃烧,部分中间产物如HCN

和NH3会将部分已生成的NOx还原成N2,从而抑制了燃料NOx的排放;然后在将燃烧所需空气的剩下部分以二次风形式送入,即“富氧燃尽”阶段,虽然空气量多,但此阶段的温度已经降低,新生成的NOx量十分有限,因此总体上NOx的排放量明显减少。

2、燃料分级燃烧

燃料分级法是把燃料分为两股或多股燃料流,这些燃料流经过三个燃烧区发生燃烧反应。

把80%-85%的燃料送入主燃烧区进行富氧燃烧,余下15%-20%经主燃烧器上部送入再燃烧区,在空气系数小于1的条件下进行缺氧燃烧,主燃

烧区产生的NOx被还原,从而减少NOx的排放量;为减少不完全燃烧需加空气进行燃尽。

3、烟气再循环燃烧

烟气再循环法是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉膛,或渗入一次或二次风中,降低氧浓度、火焰温度,使NOx的生成受到抑制,降低NOx的排放。

将部分低温烟气直接送入炉内或与空气(一次风或与二次风)混合后送入炉内,因烟气的吸热和对氧浓度的稀释作用,会降低燃烧速度和炉内温度,因而减少了热力型NOx。

三低NOx燃烧器

根据上述低NOx燃烧技术,我公司引进开发出以下型号的低NOx燃烧器:

1、HDRB型低NOx燃烧器;

2、HHT-NR型低NOx燃烧器;

3、HXCL型低NOx燃烧器;

4、HWS型低NOx燃烧器;

5、HDS型低NOx燃烧器;

6、HSM型低NOx燃烧器;

7、HPM型低NOx燃烧器。

8、低氮燃烧器分类

燃烧器是工业炉的重要设备,它保证燃料稳定着火燃烧和燃料的完全燃烧等过程,因此,要抑制NOx的生成量就必须从燃烧器入手。根据降低

NOx的燃烧技术,低氮氧化物燃烧器大致分为以下几类:

1.阶段燃烧器

根据分级燃烧原理设计的阶段燃烧器,使燃料与空气分段混合燃烧,由于燃烧偏离理论当量比,故可降低NOx的生成。

2.自身再循环燃烧器

一种是利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。由于烟气再循环,燃烧烟气的热容量大,燃烧温度降低,NOx减少。

另一种自身再循环燃烧器是把部分烟气直接在燃烧器内进入再循环,并加入燃烧过程,此种燃烧器有抑制氧化氮和节能双重效果。

3.浓淡型燃烧器

其原理是使一部分燃料作过浓燃烧,另一部分燃料作过淡燃烧,但整体上空气量保持不变。由于两部分都在偏离化学当量比下燃烧,因而NOx都很低,这种燃烧又称为偏离燃烧或非化学当量燃烧。

4.分割火焰型燃烧器

其原理是把一个火焰分成数个小火焰,由于小火焰散热面积大,火焰温度较低,使“热反应NO”有所下降。此外,火焰小缩短了氧、氮等气体在火焰中的停留时间,对“热反应NO”和“燃料NO”都有明显的抑制作用。

5.混合促进型燃烧器

烟气在高温区停留时间是影响NOx生成量的主要因素之一,改善燃烧与空气的混合,能够使火焰面的厚度减薄,在燃烧负荷不变的情况下,烟气在火焰面即高温区内停留时间缩短,因而使NOx的生成量降低。混合促进型燃烧器就是按照这种原理设计的。

6.低NOx预燃室燃烧器

预燃室是近10年来我国开发研究的一种高效率、低NOx分级燃烧技术,预燃室一般由一次风(或二次风)和燃料喷射系统等组成,燃料和一次风快速混合,在预燃室内一次燃烧区形成富燃料混合物,由于缺氧,只是部分燃料进行燃烧,燃料在贫氧和火焰温度较低的一次火焰区内析出挥发分,因此减少了NOx的生成。

低氮分级燃烧技术的介绍

低氮分级燃烧技术 一.低NO x优化燃烧技术的分类及比较 为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉脱氮,另一类是尾部脱氮。 1.1炉脱氮 炉脱氮就是采用各种燃烧技术手段来控制燃烧过程中NO x的生成,又称低NO x 燃烧技术,下表给出了现有几种典型炉脱氮技术的比较。 表2

1.2尾部脱氮 尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NO x排放。烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。 催化还原法是在催化剂作用下,利用还原剂将NO x还原为无害的N2。这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NO x效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。 液体吸收法是用水或者其他溶液吸收烟气中的NO x。该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。 吸附法是用吸附剂对烟气中的NO x进行吸附,然后在一定条件下使被吸附的NO x脱附回收,同时吸附剂再生。此法的NO x脱除率非常高,并且能回收利用。但一次性投资很高。 炉脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。表2中各种低NO x燃烧技术是降低燃煤锅炉NO x排放最主要也是比较成熟的技术措施。一般情况下,这些措施最多能达到50%的脱除率。当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NO x排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。 根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间,我国更适合发展投资少、效果也比较显著的炉脱氮技术。即使采用烟气净化技术,同时采用低NO x燃煤技术来控制燃烧过程NO x的产生,以尽可能降低化设备的运行和维护费用。

燃煤锅炉低氮燃烧器改造浅谈

燃煤锅炉低氮燃烧 器改造浅谈ABSTRACT:To reduce the running costs of SCR De NOx, Zhangjiakou Power Plant No. 3 boiler burner for transformation after transformation, the burner will reduce the coal combustion process in the furnace of NOx generation. This article focuses on the boiler burners with low nitrogen transformation programs, combined with the 3rd Zhangjiakou Power Plant boiler burner and effect the transformation of the actual situation, On the mechanism of coal-fired units generate NOx boilers and burners for NOx generated control. KEY WORD:Retrofit NOx Boiler 摘要:为降低脱硝SCR的运行费用,张家口发电厂对3号锅炉燃烧器进行改造,改造后的燃烧器将降低燃煤在炉膛燃烧过程中NOx的生成量。本文重点介绍锅炉低氮燃烧器改造的方案,并结合张家口发电厂3号锅炉燃烧器改造的实际情况及效果,浅谈燃煤机组锅炉NOx生成机理和燃烧器对NOx生成的控制。 关键词:锅炉燃烧器改造 NOx 1 概况 1.1 脱硝的必要性 在国家“十二五”规划中,对火电发电企业大气污染物排放作出了严格的规定。其中,京津唐地区要求NOx排放量小于100mg/Nm3。机组烟气脱硝改造在降低烟气NOx含量的同时,高昂的脱硝运行费用又使发电企业不堪重负。于是,为了减少SCR入口处NOx含量,降低脱硝运行费用,低氮燃烧器的改造已逐渐成为火力发电企业降低烟气NOx含量的重点改造之一。在今后火力发电机组的脱硝改造中,“先降后脱”的方案必然是大势所趋。1.2 氮氧化物的形成 煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等燃烧条件有关。研究表明,在煤的燃烧过程中生成NOx的主要途径有三个: a 热力型NO x是空气中的氧(O2)和氮(N2)在燃料燃烧时所形成的高温环境下生成的NO和NO2的总和,其总反应式为: N2+O2←→2NO NO+O2←→NO2 当燃烧区域的温度低于1000℃时,NO 的生成量很小,而温度在1300~1500℃时,NO的浓度大约为500~1000ppm,而且随着温度的升高,NOx的生成速度按指数规律增加。因此,温度对热力型NOx的生成具有决定作用。 b 快速型NOx主要是指燃料中的碳氢化合物在燃料浓度较高区域燃烧时所产生的烃与燃烧空气中的N2分子发生反应,形成的CN、HCN,继续氧化而生成的NOx。因此,快速型NOx主要产生于碳氢化合物含量较高、氧浓度较低的富燃料区,多发生在内燃机的燃烧过程。而在燃煤锅炉中,其生成量很小。 c 燃料型NOx是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx。燃煤电厂锅炉中产生的NOx中大约75~90%是燃料型NOx。在一般情况下,燃料型NOx 的主要来源是挥发份N,其占总量的60~80%,其余为焦炭N所形成。在氧化性环境中生成的NOx遇到还原性气氛时,会还原成N2,因此,锅炉燃烧最初形成的NOx,并不等于其排放浓度,而随着燃烧条件的改变,生成的NOx可能被还原,或

低氮燃烧器改造施工方案

国电东南电力有限公司 双河发电厂#2锅炉双尺度低NOx燃烧技术 改造工程施工方案 批准: 审核: 编写: 烟台龙兴电力技术股份有限公司 沈阳龙兴电站燃烧技术有限公司

目录 一、工程概述 二、编写依据 三、施工组织 四、主要工作量 五、工程准备 六、施工过程关键质量控制点 七、施工工艺流程 八、质量保证措施 九、安全施工措施 十、危害辨识及预防 十一、环保及文明施工注意事项

一、工程概述 国电东北电力有限公司双河发电厂#2炉为哈尔滨锅炉有限公司制造300MW亚临界燃煤机组锅炉,型号为HG-1021/18.2-HM5。锅炉为亚临界压力、一次中间再热、自然循环汽包炉。锅炉采用直流燃烧器,六角切圆燃烧,单炉膛、Π型布置,全钢架悬吊结构、平衡通风,固态排渣。制粉系统采用正压直吹式系统。每台锅炉配备六台风扇磨,型号为FM340.1060,五台运行,一台备用 主燃烧器采用大风箱结构,由隔板将大风箱分隔成若干风室,每个风室均布置一个固定式喷嘴,整体结构呈单元式布置。每角燃烧器共有一次风喷嘴3个、二次风喷嘴11个:其中每个一次风喷嘴上下各布置2个二次风喷嘴,唯有下端部二次风喷嘴布置1个,一次风喷嘴中间布置有十字中心风,油配风器2个,将燃烧器分成相对独立的三部分,这样可以使每部分的高宽比都不太大以增强射流刚性减弱气流贴墙的趋势,另外还可以降低燃烧器区域壁面热负荷以减轻炉膛下部炉内结焦。本燃烧器合煤粉燃烧器空气风室和油燃烧器为一体,每组燃烧器共设有2层油点火燃烧器,作为锅炉启动时暖炉,煤粉喷嘴点火和低负荷稳燃之用。六角二层12只油枪的热功率为锅炉最大连续负荷时燃料总放热量的20%。 二、编写依据 2.1国电东北电力有限公司双河发电厂#2炉低NOx燃烧器改造图纸 2.2 国电东北电力有限公司双河发电厂原#2炉燃烧器图纸 2.3《电力建设施工及验收技术规范》(锅炉机组篇)

整理低氮燃烧器改造施工方案

北京经济管理职业学院锅炉燃烧器低氮改造 项目 整理表 姓名: 职业工种: 申请级别: 受理机构: 填报日期:

北京经济管理职业学院锅炉燃烧器低氮改造项目 变更公告 原招标项目名称:北京经济管理职业学院锅炉燃烧器低氮改造项目 招标编号:BIECC-ZB4203 采购内容:北京经济管理职业学院(望京校区)供暖锅炉房共有3台燃气热水锅炉,其中2台热水供暖锅炉额定热功率为2.8MW,1台热水锅炉(洗浴用)额定热功率为1.4MW;3台燃气锅炉制造日期均为2001年10月,排放标准不符合《锅炉大气污染物排放标准(DB11/139-2015 )》氮氧化物排放浓度,需要按照国家和北京市最新环保要求进行低氮技术改造,详见招标文件。 采购人名称:北京经济管理职业学院 地址:北京市朝阳区花家地街12号 联系人和联(lian)系(xi)方(fang)式(shi):王老师, 招标代理机构全称:北京国际工程咨询公司 招标代理机构地址:北京市海淀区学院路30号科大天工大厦A座611 招标代理机构联(lian)系(xi)方(fang)式(shi):贾溪 项目联系人及联(lian)系(xi)方(fang)式(shi):贾溪 招标公告发布时间:2017年10月12日 变更事项:

“招标文件第四章附件-投标文件格式”附件7-10招标文件要求的和投标人认为必要的其他资格证明文件,删除“投标人须提供所投产品生产厂家的中华人民共和国特种设备制造许可证(锅炉)”的要求。 其他内容不变。 变更时间:2017年10月23日 北京国际工程咨询公司 2017-10-23 整理丨尼克 本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

低氮燃烧器_低氮改造技术方案

低氮燃烧器-低氮改造方案 1.双通道浓淡低氮燃烧技术 燃煤锅炉低氮改造考虑首先采用双通道浓淡低氮燃烧技术进行改造,保证在降低NO X的同时燃烧稳定性好,炉内避免结渣和高温腐蚀,并具有宽广煤质适应性。 双通道浓淡改造方案如下: 1)采用分级送入的高位分离燃尽风系统,燃尽风喷口能够垂直和水平方向双向摆动,有效控制汽温及其偏差; 2) 采用先进的上下浓淡及水平浓淡集成燃烧技术,使浓相相对集中,有效降低NOx排放,保证高效燃烧,降低飞灰可燃物含量; 3)两个通道错列布置,且中间设有两个腰部风来调节火焰位置,使煤粉燃烧更充分。 采用双通道浓淡低氮燃烧技术进行改造后,脱硝效率一般能达到40%-50%,且能保证在50%-70%低负荷稳燃,燃烧稳定性好、炉内避免结渣和高温腐蚀,并具有宽 广煤质适应性。 2.气体再燃技术 燃料再热低NOx燃烧技术 燃料再热低NOx燃烧技术:自下而上依次分为主燃料区、再燃区和燃尽区三段。将70%-90%的燃料送入主燃料区,在?接近于1的条件下燃烧,其余10%-30%的再燃燃料在再燃区中喷入,在?<1的条件下形成很强的还原性气氛,生成大量的烃根,使得在主燃 烧区中生成的NOx在再燃烧区中被还原成氮气,同时还抑制了新的NOx的生成。最后在燃尽 区中送入燃尽风,使未燃成分充分燃尽。虽然在燃尽区中会重新生成少量的NOx,使用炉内气体再燃技术,NOx的最终排放量可以减少50%-80%。因此,采用再燃烧技术,可以使NOx的排放量控制在120mg/Nm3以下。 采用气体再燃技术后,能够在利用双通道浓淡低氮燃烧技术改造后的基础上进一步降 低NOx浓度,一般能够进一步降低烟气中50%以上的NOx含量。烟气中NOx浓度最低可以降到100mg/m3以下。 以下是我们在整个过程应注意: 再燃区温度的影响:NOx的最大降幅发生在1004-1070℃ 再燃区停留时间的影响:再燃区内天然气和NOx的停留时间越长,但当停留时间超过0.7s,就变得不那么重要了 再燃区过量空气系数的影响:随着再燃区过量空气系数的增加或减少,最佳再燃区最佳过 量空气系数在0.85-0.9之间

燃气锅炉低氮改造方案培训课件

燃气锅炉低氮改造方案 燃气锅炉低氮排放成为了新时代的新要求,为了保护环境,保证国人健康,燃气锅炉低氮排放势在必行,使命必达。 远大锅炉紧跟时代步伐,积极响应国家政策,时刻不忘研发新产品,不忘为用户谋福利。 远大低氮燃气锅炉:FGR烟气再循环低氮燃烧技术;国外原装进口低氮燃烧器; 压力、水位多重安全防护;PLC触摸屏智能化控制技术。 远大锅炉低氮技术研发历程: 保护环境,节能减排,绿色生产,可持续发展是每一个企业的使命,远大锅炉每年按销售额的5%提取新产品研发费用,专注低氮、节能锅炉技术的研发。 2015年,远大锅炉与芬兰奥林、德国欧科、意大利利雅路、意科法兰等积极合作,通过使用超低NOx燃烧器,增加烟气外循环设计,实现氮氧化物<30mg/m 3排放标准。 NOx成分分析及产生机理: 在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮氧化物通称为氮氧化物NOx。大量实验结果表明,燃烧装置排放的氮氧化物主要为NO,平均约占95%,而NO2仅占5%左右。

燃料燃烧过程生成的NOx,按其形成分类,可分为三种: 1、热力型NOx (Thermal NOx),它是空气中的氮气在高温下氧化而生成的NOx; 2、快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx; 3、燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx; 燃烧时所形成NO可以与含氮原子中间产物反应使NO还原成NO2。实际上除了这些反应外,NO 还可以与各种含氮化合物生成NO2。在实际燃烧装置中反应达到化学平衡时,[NO2]/[NO]比例很小,即NO转变为NO2很少,可以忽略。 降低NOx的燃烧技术: NOx是由燃烧产生的,而燃烧方法和燃烧条件对NOx的生成有较大影响,因此可以通过改进燃烧技术来降低NOx,其主要途径如下: 1选用N含量较低的燃料,包括燃料脱氮和转变成低氮燃料; 2降低空气过剩系数,组织过浓燃烧,来降低燃料周围氧的浓度; 3在过剩空气少的情况下,降低温度峰值以减少“热反应NO”; 4在氧浓度较低情况下,增加可燃物在火焰前峰和反应区中停留的时间。 减少NOx的形成和排放通常运用的具体方法为:分级燃烧、再燃烧法、低氧燃烧、浓淡偏差燃烧和烟气再循环等。 目前低氮改造方案 1、FGR技术: 即自身再循环燃烧器,对于天燃气锅炉来说目前主流成熟低氮排放技术就是分级燃烧加烟气再循环法即FGR技术,

低氮燃烧的原理教学内容

低氮燃烧的原理

氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。 根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。 简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 关键字:燃烧条件 NOx NOx燃烧技术低NOx燃烧器 用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 目前主要有以下几种: 1 低过量空气燃烧

使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。这是一种最简单的降低NOx排放的方法。一般可降低NOx排放15-20%。但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。因此在锅炉设计和运行时,应选取最合理的过量空气系数。 2 空气分级燃烧 基本原理是将燃料的燃烧过程分阶段完成。在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。因此,不但延迟了燃烧过程,而且在还原性气氛中降低了生成NOx的反应率,抑制了NOx在这一燃烧中的生成量。为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的专门空气喷口OFA(over fire air)――称为"火上风"喷口送入炉膛,与第一级燃烧区在"贫氧燃烧"条件下所产生的烟气混合,在α>1的条件下完成全部燃烧过程。由于整个燃烧过程所需空气是分两级供入炉内,故称为空气分级燃烧法。 这一方法弥补了简单的低过量空气燃烧的缺点。在第一级燃烧区内的过量空气系数越小,抑制NOx的生成效果越好,但不完全燃烧产物越多,导致燃烧效率降低、引起结渣和腐蚀的可能性越大。因此为保证既能减少NOx的排放,又保证锅炉燃烧的经济性和可*性,必须正确组织空气分级燃烧过程。

低氮燃烧器运行探讨

低氮燃烧器运行调整探讨 0绪论 根据锅炉烟气氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。 在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。目前主要有以下几种形式:低过量空气燃烧、空气分级燃烧、燃料分级燃烧、烟气再循环。空气分级低氮燃烧技术是目前应用最广泛的低NOx燃烧技术,其主要原理是将燃烧所需的部分空气,一般称之为“分离燃尽风(SOFA)”,从炉膛上部送入,使锅炉的主燃烧器区域处于还原性气氛并在主燃烧器与SOFA燃烧器之间形成一段“还原区”,抑制NOx的生成并还原已生成的NOx,降低锅炉氮氧化物的排放。采用空气分级低NOx燃烧技术改造之后,炉膛的温度场分布将会发生较大变化,主要表现为主燃区温度降低,火焰中心上移。我公司低氮燃烧器改造也主要采用了空气分级技术。1低氮燃烧器对锅炉运行的影响 从很多电厂低氮燃烧器改造情况来看,普遍存在汽温(尤其是再热汽温)偏低,飞灰可燃物偏大的情况。主要受影响因素是锅炉的设

计情况及燃用煤质。通过燃烧调整、二次风配比、SOFA风配比,部分厂汽温参数基本达到了设计值,飞灰可燃物有明显降低。 低氮燃烧器改造后,炉内温度场的变化将会对炉膛出口烟温及汽温特性产生较大影响。这主要表现在以下两个方面: 1)纯从燃烧角度来讲,锅炉采用空气分级低氮燃烧技术改造之后,燃烧延迟,火焰中心上移,炉膛出口烟温上升,锅炉的过热汽温、再热汽温上升。 2)锅炉采用空气分级低氮燃烧技术改造之后,主燃区的温度下降较多,炉内温度分布更加均匀。水冷壁的沾污结渣情况会有很大改善,炉内水冷壁吸热增强,炉膛出口烟温下降,锅炉的过热汽温、再热汽温下降。 锅炉低氮燃烧改造之后的汽温特性变化情况主要受以上两个因素影响,哪个因素的影响占主导地位主要取决于锅炉的设计情况及燃用煤质情况。 从各厂空气分级低氮燃烧器运行情况来看,采用设计煤种,随着分离燃尽风(SOFA)风量的增加,主燃区过量空气系数降低,过热器温升、再热器温升均有较大增加。 2我公司低氮燃烧器的运行调整 我公司低氮燃烧器投运以来,主要问题有汽温偏低及甲乙侧汽温偏差大、飞灰可燃物偏大。从运行调整情况来看,建议从以下方面考虑:

低氮燃烧的原理

氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。 根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。 简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 关键字:燃烧条件NOx燃烧技术低NOx燃烧器 用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。

目前主要有以下几种: 1 低过量空气燃烧 使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。这是一种最简单的降低NOx排放的方法。一般可降低NOx排放15-20%。但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。因此在锅炉设计和运行时,应选取最合理的过量空气系数。 2 空气分级燃烧 基本原理是将燃料的燃烧过程分阶段完成。在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。因此,不但延迟了燃烧过程,而且在还原性气氛中降低了生成NOx的反应率,抑制了NOx在这一燃烧中的生成量。为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的专门空气喷口OFA(over fire air)――称为"火上风"喷口送入炉膛,与第一级燃烧区在"贫氧燃烧"条件下所产生的烟气混合,在α>1

低氮燃烧器改造工程施工组织设计方案

国电东南电力 双河发电厂#2锅炉双尺度低NOx燃烧技术 改造工程施工方案 批准: 审核: 编写: 龙兴电力技术股份 龙兴电站燃烧技术

目录 一、工程概述 二、编写依据 三、施工组织 四、主要工作量 五、工程准备 六、施工过程关键质量控制点 七、施工工艺流程 八、质量保证措施 九、安全施工措施 十、危害辨识及预防 十一、环保及文明施工注意事项

一、工程概述 国电东北电力双河发电厂#2炉为锅炉制造300MW亚临界燃煤机组锅炉,型号为HG-1021/18.2-HM5。锅炉为亚临界压力、一次中间再热、自然循环汽包炉。锅炉采用直流燃烧器,六角切圆燃烧,单炉膛、Π型布置,全钢架悬吊结构、平衡通风,固态排渣。制粉系统采用正压直吹式系统。每台锅炉配备六台风扇磨,型号为FM340.1060,五台运行,一台备用 主燃烧器采用大风箱结构,由隔板将大风箱分隔成若干风室,每个风室均布置一个固定式喷嘴,整体结构呈单元式布置。每角燃烧器共有一次风喷嘴3个、二次风喷嘴11个:其中每个一次风喷嘴上下各布置2个二次风喷嘴,唯有下端部二次风喷嘴布置1个,一次风喷嘴中间布置有十字中心风,油配风器2个,将燃烧器分成相对独立的三部分,这样可以使每部分的高宽比都不太大以增强射流刚性减弱气流贴墙的趋势,另外还可以降低燃烧器区域壁面热负荷以减轻炉膛下部炉结焦。本燃烧器合煤粉燃烧器空气风室和油燃烧器为一体,每组燃烧器共设有2层油点火燃烧器,作为锅炉启动时暖炉,煤粉喷嘴点火和低负荷稳燃之用。六角二层12只油枪的热功率为锅炉最续负荷时燃料总放热量的20%。 二、编写依据 2.1国电东北电力双河发电厂#2炉低NOx燃烧器改造图纸 2.2 国电东北电力双河发电厂原#2炉燃烧器图纸 2.3《电力建设施工及验收技术规》(锅炉机组篇) 2.4《电力建设安全工作规程》 2.5龙源电力技术股份企业标准

低氮燃烧技术

低氮燃烧技术 1 水泥窑炉系统NO X形成机理大致介绍 2 现有低氮燃烧技术大致介绍 3 低氮燃烧技术的效果 4 改变燃料物化性能 5 提高生料易烧性 6、新型干法水泥应对脱硝的相应措施 1、水泥窑炉系统NO X形成机理大致介绍 1.1NO X的生成机理 窑炉内产生的NO X主要有三种形式,高温下N2与O2反应生成的热力型NO X、燃料中的固定氮生成的燃料型NO X、低温火焰下由于含碳自由基的存在生成的瞬时型NO X. 1.2热力型NO X:由于是燃烧反应的高温使得空气中的N2与O2直接反应而产生的,以煤为主要燃料的系统中,热力型NO X为辅。 一般燃烧过程中N2的含量变化不大,根据泽里多维奇机理,影响热力型NOX 生成量的主要因素有温度、氧含量、和反应时间。 热力型NOX产生过程是强的吸热反应,温度成为热力型NOX生成最显著影响因素。研究显示,温度在1500K以下时,NO生成速度很小,几乎不生成热力型NO,1800K以下时,NO生成量极少,大于1800K时,NO生成速度每100K约增加6-7倍。 温度在1500K以上时,NO2会快速分解为NO,在小于1500K时,NO将转变为NO2,一般废气中NO2占NO X的5-10%,排入大气中NO最终生成NO2,所以在计算环境影响量时,还是以NO2来计算。 可以说,窑炉内的温度及燃烧火焰的最高温度是影响热力型NO X生成量的一个重要指标,也最终决定了热力型NO X的最大生成量。因此,在窑炉设计中,尽量降低窑炉内的温度并减少可能产生的高温区域,特别是流场变化等原因而产生的局部高温区。燃烧器设计中,要具备相对均匀的燃烧区域来保证燃料的燃烧,降低火焰的最高温度。这些都是有效降低热力型NO X的有效办法。

海螺白马山低氮分级燃烧技术脱氮效率达30

海螺白马山低氮分级燃烧技术脱氮效率达30% 纯阅读来源:安徽海螺集团白马山水泥厂崔少俊发布日期:2015-01-20 通过对缩口尺寸、撒料板角度、分解炉燃烧器角度、新增三次风管尺寸等关键部位数据进行技改后,经过分级燃烧脱氮和精细化操作的摸索,现生产线产量稳定,质量受控,脱氮效率达到30%以上,达到了明显的环保减排目的。 摘要:通过对缩口尺寸、撒料板角度、分解炉燃烧器角度、新增三次风管尺寸等关键部位数据进行技改后,经过分级燃烧脱氮和精细化操作的摸索,现生产线产量稳定,质量受控,脱氮效率达到30%以上,达到了明显的环保减排目的。 0 前言 为响应《国家环境保护“十二五”规划》中把氮氧化物降低10%的“十二五”目标值,2012年12月26日,海螺(295.04元/吨,-0.14%)集团白马山水泥厂5000t/d生产线脱氮技改项目正式启动,于2013年1月11日改造结束。 技改前,我公司参与了优化设计;技改过程中,则进行实时跟踪监控,严格按图纸施工,以确保技改后缩口尺寸、撒料板角

度、分解炉燃烧器角度、新增三次风管尺寸等关键部位数据与图纸相符合。技改后,经过分级燃烧脱氮和精细化操作的摸索,现生产线产量稳定,质量受控,脱氮效率达到30%以上,达到了明显的环保减排目的。 1 技改方案 白马山5000t/d新型干法线的窑尾系统采用了GDC预热分解系统。如何保持和发挥CDC预热分解的优势,同时又充分满足低氮分级燃烧的需求,成为技改的关键。图1为CDC分解炉脱氮改造示意图。 水泥熟料生产过程中,燃料燃烧产生的NOx,主要由燃料型NOx、热力型NOx,两种类型。其中燃料型NOx是由燃料和原料中的氮氧化物反应生成;热力型NOx主要是由在温度高于1 500℃时,空气中的N2和O2反应而生成。回转窑中烧成带火焰温度高达1 500℃以上,除产生燃料型NO X外,大量助燃空气中的氮在高温下被氧化产生大量的热力型NOx。分解炉

低氮燃烧器改造的优缺点

低氮燃烧器改造的优缺点 近年来,有燃烧器厂家使用,炉膛下部缺氧燃烧,上部燃尽风补氧的方式。通过对该燃烧器的使用,有几点结论与大家分享一下:优点:1、低负荷燃烧平稳。因为减少了下部风量,使燃料在低浓度燃烧时,也非常平稳。甚至可以做到40%负荷稳定燃烧。2、低负荷时,炉膛火焰充满度较好。水冷壁吸热均匀。3、由于拉伸了燃烧区域,减弱了部分燃烧强度,在一定时间内,抑制了NOx的形成。缺点:1、由于减弱了下部炉膛的进风量,使下二次风的托扶能力减弱,排渣量增加,排渣含碳量增加。尤其是高负荷时。2、由于减弱了下部炉膛的进风,使风的刚性减弱,燃烧区域扩大,高负荷时,容易出现水冷壁结焦。3、由于炉膛下部缺氧燃烧,产生大量还原性气体,使灰熔点降低,甚至造成冷渣斗都有结焦的现象。4、由于燃烧区域的拉伸,在高负荷时期,会造成过热器超温,减温水量不足的现象。严重时,甚至造成屏过结焦。5、由于大量还原性气体和燃烧区域的扩大,使水冷壁中下部结焦严重,因脱焦造成的灭火、爆燃、损坏捞渣机现象都有发生。6、由于高负荷时的结焦影响了水冷壁吸热,使炉膛下部温度上升,而燃尽风由于位置只能对炉膛上部的烟气进行冷却,而对下部炉膛温度毫无影响,因此炉膛下部NOx的产生随着结焦而增加,高负荷持续时间越长,减少NOx的效果就越小,甚至超出原有NOx量。 7、炉膛下部燃烧挥发分,上部燃烧焦炭的理论,和煤粉燃烧“挥发份析出→挥发份燃烧→焦炭燃烧→表壳灰分剥离,挥发分随着表壳灰分的剥离不断析出”的理论不相符。因此,高负荷时,大量煤粉的燃

烧时间拉长,未完全燃烧的煤粉被带入烟道。造成飞灰含碳量增加。 8、由于燃尽风位置,使大量的送风在离开炉膛都未参加燃烧,而这部分热风也是从空预器吸收了大量热量的,因此会造成排烟温度过低的现象。尤其是在低负荷时。

低氮燃烧技术

低氮燃烧技术 Prepared on 24 November 2020

燃煤锅炉的低NO x燃烧技术NO x是对N2O、NO2、NO、N2O5以及PAN等氮氧化物的统称。在煤的燃 烧过程中,NO x生成物主要是NO和NO2,其中尤以NO是最为重要。实验表明,常规燃煤锅炉中NO生成量占NO x总量的90%以上,NO2只是在高温烟气 在急速冷却时由部分NO转化生成的。N2O之所以引起关注,是由于其在低温 燃烧的流化床锅炉中有较高的排放量,同是与地球变暖现象有关,对于N2O的生成和抑制的内容我们将结合流化床燃烧技术进行介绍。 因此在本章的讨论中,NO x即可以理解为NO和NO2。 一、燃煤锅炉NO x的生成机理 根据NO x中氮的来源及生成途径,燃煤锅炉中NO x的生成机理可以分为三类:即热力型、燃料型和快速型,在这三者中,又以燃料型为主。它们各自的生成量和炉膛温度的关系如图3-1所示。试验表明,燃煤过程生成的NO x中NO 占总量的90%,NO2只占5%~10%。 1、热力型NO x 热力型NO x是参与燃烧的空气中的氮在高温下氧化产生的,其生成过程是 一个不分支的链式反应,又称为捷里多维奇(Zeldovich)机理 →(3-1) O O2 2 O+ + → N N NO (3-2) 2 → N+ + NO O O (3-3) 2 如考虑下列反应 → +(3-4) N+ OH NO H 则称为扩大的捷里多维奇机理。由于N≡N三键键能很高,因此空气中的氮非常稳定,在室温下,几乎没有NO x生成。但随着温度的升高,根据阿仑尼乌斯(Arrhenius)定律,化学反应速率按指数规律迅速增加。实验表明,当温度超 过1200℃时,已经有少量的NO x生成,在超过1500℃后,温度每增加100℃,反应速率将增加6~7倍,NO x的生成量也有明显的增加,如图3-1所示。 但总体上来说,热力型NO x的反应速度要比燃烧反应慢,而且温度对其生 成起着决定性的影响。对于煤的燃烧过程,通常热力型NO x不是主要的,可以

低氮燃烧技术方案讲解

35吨链条炉排燃煤锅炉 低氮燃烧工程 技术方案 西安鑫龙能源技术服务有限公司有限公司 2013年12月 目录

一、公司简介.................................................... 2... 二、工程概况................................................... 4.. 三、客户资料及设备工况分析..................................... 5.. 1.客户提供资料............................................ 5... 2. 工况分析................................................ 6... 四、设计所遵循的标准........................................... 7... 五、低氮燃烧技术方案........................................... 8... 1.方案制定原则............................................ 8... 2. 在线式低氮燃烧系统概述.................................. 9.. 3. 设备技术说明............................................ 1.1. 4. 设备规格............................................... 2..2. 5. 设备的技术特点.......................................... 2.3. 6. 电气及控制系统.......................................... 2.5. 六. 设备供货范围及性能指标..................................... 2..6 1. 设备供货范围........................................... 2..6. 2.设备供货分交点.......................................... 2.7. 3. 低氮燃烧系统的性能指标:................................ 2..7 七、设备的制造、安装、调试、培训............................... 2.7 1. 设备制造............................................... 2..7. 2. 包装和运输............................................. 2..8. 3. 安装和调试............................................. 2..8. 八、运行、维护和检修 (33)

水泥窑低氮燃烧改造方案

低氮燃烧建设方案
低氮燃烧器工艺流程
燃料型 NOx 是在煤粉着火的阶段生成的,改变燃烧器结构来改
变燃烧方式降低 NOx 的生成是非常实用的脱硝方法。据统计低 NOx
燃烧器一般可以降低 35%的氮氧化物。相对于传统的燃烧方式,低
NOx 燃烧器是通过时间上延迟燃料、空气的混合,在空间上隔离燃
料、空气的过早充分接触,以营造一个富燃料、缺氧的燃烧环境。这
样推迟了氧气的供给,会延迟焦炭的燃尽,造成火炬拉长,峰值温度
低,再加上这种长火焰对外辐射散热的面积大,整体的温度低,减少
热力型 NOx 的生成。
空气分级燃烧工艺流程
水泥窑炉空气分级燃烧是目前最为普遍的降低 NOx 排放的燃烧
技术之一。其基本原理如图 6.2-1 所示。将燃烧所需的空气量分成两
级送入,使第一级燃烧区内过量空气系数小于 1,燃料先在缺氧的富
燃料条件下燃烧,使得燃烧速度和温度降低,从而降低了热力型 NOx
的生成。同时,燃烧生成的 CO 与 NOx 发生还原反应,以及燃料氮
分解成中间产物(如 NH、CN、HCN 和 NHx 等)相互作用或 NOx
还原分解,从而抑制了燃料型 NOx 的生成,具体反应如下:
2CO + 2NO → 2CO2 + N2
(1)

NH + NH → N2 + H2 NH + NO → N + OH
(2) (3)
在二级燃烧区(燃尽区内,将燃烧用空气的剩余部分以二次空气
的形式输入,成为富氧燃烧区。此时,空气量增多,一些产物被氧化
生成 NOx,但因温度相对常规燃烧较低,因而总的 NOx 生成量不高,
具体反应如下:
CN + O → CO + NO
(4)
分级燃烧脱氮技术具有以下优点:
有效降低的 NOx 排放,可达到 25~30%的 NOx 脱除率;
无运行成本,且对水泥正常生产无不利影响;
无二次污染,分级燃烧脱氮技术是一项清洁的技术,没有任何固
体或液体的污染物或副产物生成;
空气分级燃烧系统
分级燃烧脱氮系统主要包含:三次风管调整和改造、脱氮风管配
置、C4 筒下料调整、煤粉储存、输送系统、分解炉用煤粉燃烧器和
相应的电器控制系统,其分解炉调整如图所示。
脱氮系统的用煤经煤粉秤精确计量后,由罗茨风机送到窑尾烟室
的脱氮还原区,在脱氮还原区的合适位置均布着一套燃烧喷嘴,煤粉
经燃烧喷嘴高速进入还原区内并充分分散,一方面保证了分级燃烧的
脱氮效率,另一方面减少了煤粉在壁面燃烧出现结皮的负面影响。此
外,根据还原区操作温度、C1 出口 NOx 等系统参数,可及时调整脱
氮用煤量。

低氮分级燃烧技术介绍

低氮分级燃烧技术介绍 Prepared on 22 November 2020

低氮分级燃烧技术 一.低NO x优化燃烧技术的分类及比较 为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉内脱氮,另一类是尾部脱氮。 炉内脱氮 炉内脱氮就是采用各种燃烧技术手段来控制燃烧过程中NO x的生成,又称低NO x燃烧技术,下表给出了现有几种典型炉内脱氮技术的比较。 表2

尾部脱氮 尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NO x排放。烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。 催化还原法是在催化剂作用下,利用还原剂将NO x还原为无害的N2。这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NO x效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。 液体吸收法是用水或者其他溶液吸收烟气中的NO x。该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。 吸附法是用吸附剂对烟气中的NO x进行吸附,然后在一定条件下使被吸附的NO x脱附回收,同时吸附剂再生。此法的NO x脱除率非常高,并且能回收利用。但一次性投资很高。 炉内脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。表2中各种低NO x燃烧技术是降低燃煤锅炉NO x排放最主要也是比较成熟的技术措施。一般情况下,这些措施最多能达到50%的脱除率。当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NO x排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。 根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间内,我国更适合发展投资少、效

施工方案-燃烧器施工方案

1.燃烧设备简介 山西大唐平旺热电有限责任公司供热机组替代改造工程为2×200MW 直接空冷供热机组,其中锅炉岛为武汉锅炉厂制造的WGZ670/13.7-11型超高压锅炉。锅炉的基本型式是:自然循环、倒U形布置、单锅筒、单炉膛、一次中间再热,直流燃烧器四角切圆燃烧,配中速磨正压直吹制粉系统、尾部竖井为双烟道、挡板调温、三分仓回转式空气预热器、平衡通风、固态排渣、紧身封闭、全悬吊、高强螺栓连接的全钢构架。自然循环汽包型燃煤锅炉,燃料为大同烟煤。 锅炉后烟道下部布置有两台型号为27VNT1750容克式三分仓回转空气预热器,选用中英合资豪顿华工程有限公司的产品。 锅炉配有两台上海鼓风机厂生产的FAF17-10-1型动叶可调轴流送风机,两台引风机为成都电力机械厂生产的AN25e6型轴流风机。锅炉采用正压直吹式制粉系统,两台一次风机为成都电力机械厂生产的G6-11No22F型单吸双支撑离心式风机。 磨煤机为北京电力机械总厂生产的ZGM80G型中速辊式磨煤机。其原理是由中央落煤管落到磨盘中的原煤,通过3个磨辊与磨盘的碾磨成为煤粉,煤粉从磨盘上切向甩出,被一次风吹入分离器,在分离器中粗粉被分离出来返回磨盘重磨,合格的煤粉被带出分离器送到锅炉中燃烧。三个磨辊沿圆周方向均布于磨盘滚道上,研磨力是经磨环、磨辊、压架、拉杆、传动盘、减速机、液压缸后通过底板传至基础。一次风进入风室后,以一定流速通过喷嘴进入磨内,其作用是干燥原煤和输送碾磨后的煤粉。较重的石子煤、黄铁矿、铁块等被吹不起由喷嘴落到一次风室,被刮板刮进排渣箱,定期清理。 磨煤机电机为北京电力设备厂生产的YMKQ450-6型280KW鼠笼型异步电机,并配有油站对电机进行冷却和润滑。减速机为SXJ120型立式伞齿轮行星减速机,既传递磨盘的转矩又承担磨盘加载力及磨煤机振动产生的冲击力。 燃烧器喷口采用耐高温、耐磨损的新型合金材料。为防止燃烧器区域结渣,燃烧器分为上、下二组,并适当拉开喷口间的距离以降低燃烧器区域壁

锅炉低氮燃烧技术优化改造施工方案(精编文档).doc

【最新整理,下载后即可编辑】 锅炉低氮燃烧技术优化改造 施 工 方 案 编制: 批准: 审核:

响应国家“节能减排”号召,计划对其135MW燃煤锅炉进行低NOx燃烧技术改造,锅炉本体采用钢筋混凝土结构,П型露天布置、固态排渣及平衡通风,采用中储式钢球磨煤机制粉系统,热风送粉四角直流燃烧器燃烧系统。 一、改造范围 根据锅炉燃烧器改造要实现的效果,本方案涉及以下范围内的改造: 1.四角三层一次风室整体旋转2度;切园由?300改变为? 760 2.更换上二次风、中上二次风、中下二次风、下二次风4 层,四角共计16件二次风喷口。 3.中上二次风位置的三次风更换新三次风室后移位安装于 下二次风位置,四角共计8件 4.箱壳、保温改造4角 5.更换上下三次风室组件8套 6.三次风管路改造4角二层 7.一次风管路改造4角三层

8.Sofa燃烧器移位4角 9.Sofa风道改造4角 10.Sofa管屏改造4角 11.辅助设备电缆等移位4角 二、施工工艺及方法 1 25T汽车吊及卷扬机布置工序卡 1.1用25T吊车将新旧设备吊运至9m层。 1.2在9m层平台设置四台3t卷扬机,具体布置按现场吊装需要确定。 2 旧燃烧器拆除工序卡 2.1在炉膛的水冷壁转折角上部搭设脚手架,水冷壁早标高位置用切割机切割并且封堵。 2.2按照设计要求,对旧燃尽风做保护性拆除,首先拆除一次风 弯头和煤粉管弯头部分,并将开口部分密封; 2.3拆除的旧燃烧器喷口及弯头移至电厂指定位置放置。 3 新燃烧器检查工序卡 3.1新燃烧器及水冷壁管到达现场后,首先对其进行外观检查, 核实其水冷壁长度,确定炉膛燃烧器放置处的开口尺寸;

相关主题
文本预览
相关文档 最新文档