当前位置:文档之家› 05 500kV变电所自耦变中性点经小电抗接地对抑制220kV短路电流的研究

05 500kV变电所自耦变中性点经小电抗接地对抑制220kV短路电流的研究

05 500kV变电所自耦变中性点经小电抗接地对抑制220kV短路电流的研究
05 500kV变电所自耦变中性点经小电抗接地对抑制220kV短路电流的研究

500kV变电所自耦变中性点经小电抗接地对抑制220kV短路电流的研究

叶远波孙月琴

(安徽电力调度通信中心230022 合肥)

摘要随着安徽电网的发展,电网日趋紧密,导致500kV变电所220kV 单相接地短路电流超过三相短路电流,甚至现超过220kV断路器遮断电流50kA 的情况发生。本文对500kV自耦变压器中性点串联小电抗抑制短路电流的方案进行了可行性研究,并对二台500kV自耦变的中性点串联电抗器两套方案的进行了比较研究,并得出了相关技术结论。

关键字: 自耦变压器、断路器遮断电流、中性点串联小电抗、抑制短路电流

1 前言

随着安徽电网的飞速发展,电网内部联系变得更加紧密,而且由于500kV自耦变压器在系统中大量使用,降压型自耦变压器中压侧电抗常接近于零,导致了500kV肥西变220kV 单相接地短路电流超过三相短路电流。目前肥西变220kV母线三相短路电流为39.58KA,而单相接地短路电流为43.42KA,随着系统的发展,单相接地短路电流势必会出现超过220kV 断路器50kA遮断电流的情况。

技术上一般可以采用两种方法解决该问题。方法一是将多台自耦变压器在220kV侧分列运行,以减少220kV侧的短路电流,该方法要求220kV母线分段,投资大,并且降低了供电可靠性;方法二是500kV自耦变压器中性点经小电抗接地,该方法投资少,能有效地降低220kV的单相接地短路电流。

为此,省调通中心保护处进行了500kV自耦变压器中性点加装小电抗的可行性研究,以减小肥西变220kV系统单相短路电流超标问题。

2. 500kV自耦变压器中性点经小电抗接地的电抗值

自耦变正序和负序等值电路与中性点是否经小电抗接地无关,其等值电抗不变。

对于零序阻抗则不然,由于自耦变压器有一个公共线圈,各线圈共用一个中性点和接地阻抗,中性点的入地电流,应等于两个自耦绕组零序电流之差的三倍。当自耦变压器的中性点经小电抗接地时,中性点的电位,不像普通变压器那样只取决于一个绕组的零序电流,而要受两个绕组的零序电流的影响。

图1为中性点经小电抗接地的自耦变压器电路图及其零序等值电路。(a)、(b)分别为自耦变压器将绕组3开路(即三角形开口)和绕组2开路时,归算到500kV侧的零序等值电路图。

图1中性点经小电抗接地的自耦变压器及其零序等值电路

U1为500kV 侧电压,U2为220kV 侧电压,k=U1/U2,Xn 为中性点小电抗值。X1、X2、X3为中性点直接接地时各侧归算到500kV 侧的零序阻抗,可以得到归算到500kV 侧的零序等值电抗为:

()()??

???+=-+=-+=-+=-+=-+=---------k

X X X X X X k k X X X X X X k X X X X X X n n n 32/)(132/)(132/)(3'31'32'31'32'31'32'21'21'

32'31'21'1 (1) 由式(1)可以看出,中性点经电抗接地的自耦变压器与普通变压器不同,它的零序等值

电路中,均包含有与中性点接地电抗有关的附加项,而普通变压器则仅在中性点电抗接入侧增加附加项。

3.中性点接入阻抗方案研究

对肥西变一台和二台500kV 主变中性点分别接入小电抗器的方案进行了研究。并且为了选择合适的电抗值,分别计算了肥西变500kV 主变中性点串联5、10、15、20、25、30、35、40 Ω等八组阻值电抗器的效果。

3.1 方案一:肥西变一台500kV 主变中性点接入电抗器

计算方式采用的是在系统大方式下,肥西变220kV 母线发生单相接地、二相接地短路、

三相短路时的短路电流研究。

由表一可知,在500 kV主变中性点串接了电抗后,其220 kV母线的单相、二相接地短路电流逐步下降。在中性点串联电抗值为15Ω时,与中性点直接接地方式相比:单相接地短路电流下降了6.9%,二相接地短路电流下降4.2%,而三相短路电流没有变化。这说明500 kV主变中性点串接了电抗仅仅影响系统的零序网络,这和预先的理论分析结果是一致的。

图1. 单台500kV主变中性点串接电抗器短路电流图

由图1 可知当500kV主变中性点串联电抗值大于15Ω时,其抑制220kV单、两相接地短路短路电流水平的作用趋于减弱。其总体的短路电流的趋势为:单相接地短路电流>二相接地短路电流>三相短路电流,说明系统的总体零序阻抗仍然大于正(负)序阻抗。

3.2 方案二:肥西变二台500kV主变中性点均接入电抗器

计算方式采用的是在系统大方式下,肥西变220kV母线发生单相接地、二相接地短路、三相短路时的短路电流研究。

接地短路电流与方案1相比逐步下降。在中性点串联电抗值为15Ω时,单相接地短路电流已经下降20.2%,二相接地短路电流已经下降9.6%,而三相短路电流没有变化。方案2中的单相、两相接地短路电流水平有着显著的下降。

图2. 两台500kV主变中性点均串接电抗器短路电流图

由图2 可知,当两台500kV主变中性点均串接入电抗值器,其抑制220kV单相、两相接地短路电流能力大大增加。其总体的短路电流的趋势为:单相接地短路电流<二相接地短路电流<三相短路电流,说明系统的总体零序阻抗已经小于正(负)序阻抗。

4 综合分析

据华东电网公司的有关资料表明,主变中性点加装小电抗对限制500kV系统短路电流效果不明显。这跟自耦变的特征有关,自耦变压器有一公共绕组,高、中压绕组间除磁的联系外,还有直接电的联系。高、中压绕组共用中性点及接地电抗,500kV侧接地短路时的故障电流主要由500kV系统提供,因此加装小电抗对限制500kV侧接地故障电流效果很不明显。

500kV变压器中性点经小电抗接地能有效地抑制220kV侧接地短路电流。因为220kV侧系统零序阻抗较小,流经中性点的电流也较大,加装小电抗后主变零序电抗增大,对限制接地故障电流就有较明显的效果。两台主变中性点均接入小电抗器,是降低220kV侧单相、两相接地短路电流的一种有效措施。主变中性点加装小电抗对于限制三相短路电流没有任何效果,因为三相短路电流仅跟系统正序网络有关。

220kV短路电流计算书

XX220kV 变电站短路电流计算书 一、系统专业提供2020年系统阻抗值(Sj =1000MV A ) 220kV 侧:Z1=0.070,Z0=0.129。 220kV 侧按不小于50kA 选设备。 110kV 侧:Z1=无穷,Z0=0.60。 主变选择:220±8×1.25%/121/38.5kV ;主变容量:120/120/60MV A ; 变压器短路电压:U k(1-2)%=14,U k(1-3)%=24,U k(2-3)%=8。 二、短路电流计算 1、则由公式得各绕组短路电压: %)%%()()()(32-k 3-1k 2-1k 1U U U 2 1-+=k U =15 %)%%()()()(3-1k 32-k 2-1k 2U U U 2 1-+=k U =-1 %)%%()()()(2-1k 32-k 3-1k 3U U U 2 1-+=k U =9 2、变压器电抗标么值由e j S S X ?=100U d d *%(S e 指系统最大绕组的容量)得: X *1=1.25;X *2=-0.083;X *3=0.75。 3、限流电抗器电抗标么值:2k k *3100U j j e e U S I U X ??= %=()21005.11000431010012????=1.57。 三、三相短路电流的计算(对称) 1、当220kV 母线发生短路时(d 1) 220kV 系统提供的短路电流标么值为:I *=1/0.07=14.29; 短路电流周期分量有效值为:=??=?=2303100029.143*)3(j j per U S I I 35.86kA ; 由于110kV 侧不提供电源,所以==)3()3(1per d I I 35.86kA ; 短路冲击电流峰值=?="= 86.3555.22I K i ch ch 91.45kA 。(注:K ch 为冲击系数,远离发电厂选2.55); 容量:==d dj S S )3(14290MV A 2、当110kV 母线短路时(d 2)

单相短路电流计算

1、替代定理 在任意具有唯一解的电路中,某支路的电流为i k ,电压为u k ,那么该支路可以用独立电压源u k ,或者独立电流源i k 来等效替代,如下图所示。替代后的电路和原电路具有相同的解。 图 叠加定理 由全部独立电源在线性电阻电路中产生的任一电压或电流,等于每一个独立电源单独作用所产生的相应电压或电流的代数和。 注意点:(1)只适用于线性电路;(2)一个电源作用,其余电源为零,如电压源为零即电压为零——>短路,电流源为零即电流为零——>开路;(3)各回路电压和电流可以叠加,但功率不能叠加。 3、三相系统及相量图的应用 交流变量 正常的电力系统为三相系统,每相的电压和电流分量均随着时间作正弦变化,三相间相互角偏差为120°,比如以A 相为基准,A 相超前B ,B 相超前C 各120°,就构成正序网络,如下式所示: ) 120sin()360240sin()240sin(); 120sin(); sin( t U t U t U u t U u t U u m m m c m b m a 以A 相为例,因为三角函数sin 是以360°(或2π)为周期变化,所以随着时间t 的流逝,当 t 值每增长360°(或2π)时,电压ua 就经过了一个周期的循环,如下图所示:

图 如上图,t代表时间, 代表t=0时刻的角度(例如上图中ua当t=0时位于原点, ), 表示角速度即每秒变化多少度。例如电网的频率为50Hz,每即代表0 秒变化50个周期,即变化50*360°或者50*2π。此处360°和2π仅是单位制的不同,分别为角度制和弧度制,都是代表一个圆周;值得注意的是用360°来分析问题更加形象,而2π为国际单位制中的标准单位,计算时更通用。 向量的应用 用三角函数分析问题涉及较为繁琐的三角函数计算,图的正弦波形图可表示出不同周期分量的峰值和相差角度,但使用范围有限。为此,利用交流分量随时间做周期变化,且变化和圆周关系密切的特点,引入向量如下,方便交流分量的加减乘除计算:

(完整版)短路电流的计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

110KV变电站设计负荷及短路电流计算部分

第二章 负荷及短路电流计算 一、负荷计算 同时系数,出线回路较少的时候,可取0.9-0.95,出线回路数较多时,取 0.85-0.9 ;针对课题实际情况可知同时系数取0.9。 在不计同时系数时计算得 : 1、主变负荷计算 由所给原始资料可知: 110KV 侧负荷量为: KW P 356400.9240002000300026300270000=??+++?+?=∑ )(var 162560.924749.040004358.020004358.0300024749.0630024358.07000(0K Q =???+?+?+??+??=∑ )KVA Q P S 391722 200=∑+∑=∑ 35KV 侧负荷量为: KW P 263610.9200709900920050280001=??+++?+?=∑ )(var 117000.923584.00074358.09907494.000924559.0050024358.08000(1K Q =???+?+?+??+??=∑ )KVA Q P S 2884021211 =∑ +∑=∑ 变电站站用负荷量: KVA S S S 06.340)2884039172(%5.0)(%5.01 2 =+?=∑+∑?=∑ ar 159.8282Kv 0.4706.340in w 2528.29988.006.340os 2222=?=∑ =∑=?=∑ =∑??S S Q K C S P 因为变电站站用负荷是从35KV 侧通过站用降压变压器得到,35KV 出线考虑5%的损耗;考虑站用电的损耗和站用变压器的效率,取损耗为5%;因为选用一台220KV 到35KV 的三绕组主变,故主变35KV 侧的容量为: 在计及同时系数0.9时: KVA S S S 272759.005.1)2 1 35kv =??∑+∑≥(三绕主 如果再考虑该变电站5~10年的10%发展,则: KVA S S S 303321.19.005.1)2 1 35kv =???∑+∑≥(三绕主

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 1.1 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 1.2 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 2.1 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。2.2电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络

110KV变电站负荷及短路电流计算及电气设备的选择及校验

第一章短路电流计算 1、短路计算的目的、规定与步骤 1.1短路电流计算的目的 在发电厂和变电站的电气设计中,短路电流计算是其中的一个重要环节。其计算的目的主要有以下几方面: 在选择电气主接线时,为了比较各种接线方案,或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算。 在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。例如:计算某一时刻的短路电流有效值,用以校验开关设备的开断能力和确定电抗器的电抗值;计算短路后较长时间短路电流有效值,用以校验设备的热稳定;计算短路电流冲击值,用以校验设备动稳定。 在设计屋外高压配电装置时,需按短路条件校验软导线的相间和相相对地的安全距离。 1.2短路计算的一般规定 (1)计算的基本情况 1)电力系统中所有电源均在额定负载下运行。 2)所有同步电机都具有自动调整励磁装置(包括强行励磁)。 3)短路发生在短路电流为最大值时的瞬间。 4)所有电源的电动势相位角相等。 5)应考虑对短路电流值有影响的所有元件,但不考虑短路点的电弧电阻。对异步电动机的作用,仅在确定短路电流冲击值和最大全电流有效值时才予以考虑。 (2)接线方式 计算短路电流时所用的接线方式,应是可能发生最大短路电流的正常接线方式(即最大运行方式),不能用仅在切换过程中可能并列运行的接线方式。 1.3 计算步骤 (1)画等值网络图。 1)首先去掉系统中的所有分支、线路电容、各元件的电阻。

2)选取基准容量d S 和基准电压c U (一般取各级电压的1.05倍)。 3)将各元件的电抗换算为同一基准值的标幺值的标幺电抗。 4)绘制等值网络图,并将各元件电抗统一编号。 (2)选择计算短路点。 (3)化简等值网络:为计算不同短路点的短路值,需将等值网络分别化简为以短路点为中心的辐射形等值网络,并求出各电源与短路点之间的总电抗的标幺值* X ∑。 (4)求计算无限大容量系统三相短路电流周期分量有效值的标幺值(3)* k I 。 (5)计算三相短路电流周期分量有效值(3) k I 和三相短路容量(3) k S 。 2、参数计算及短路点的确定 基准值的选取:100d S MVA = 2.1变压器参数的计算 (1)主变压器参数计算 由表查明可知:12%U =10.513%U =1823%U =6.5 MVA S N 75= 1121323%0.5(%%%)U U U U =+-=0.5*(18+10.5-6.5)=11 2122313%0.5(%%%)U U U U =+-=0.5*(10.5+6.5-18)=-0.5 3132312%0.5(%%%)U U U U =+-=0.5*(18+6.5-10.5)=7 电抗标幺值为: 1467.075 100 10011100%1*1=?=?= N D S S U X -0.006775100 1000.5-100%2*2=?=?= N D S S U X 0.093375 100 1007100%3*3=?=?= N D S S U X (2)站用变压器参数计算 由表查明:%4k U =5000.5N S KVA MVA ==

某110kv变电站短路电流计算书

某110kv变电站短路电流计算书

一、短路电流计算 取基准容量S j=100MV A,略去“*”, U j=115KV,I j=0.502A 富兴变:地区电网电抗X 1=S j/S dx=I j/I dx =0.502/15.94=0.031 5km线路电抗X2=X*L*(S j/Up2) =0.4*5*(100/1152)=0.015 发电机电抗X3=(Xd’’%/100)*(S j/Seb) =(24.6/100)*(100/48)=0.512 16km线路电抗X4=X*L*(S j/Up2) =0.4*16*(100/1152)=0.049 5.6km线路电抗X5=X*L*(S j/Up2) =0.4*5.6*(100/1152)=0.017 31.5MV A变压器电抗X6=X7= (Ud%/100)*(S j/Seb)=(10.5/100)*(100/31.5)=0.333 50MV A变压器电抗X=(Ud%/100)*(Sj/Seb)=0.272 X8=X3+X4+X5=0.578 X9=X1+X2=0.046 X10=(X8*X9)/(X8+X9) X11=X10+X6=0.046 地区电网支路的分布系数C1=X10/X9=0.935 发电机支路的分布系数C2=X10/X8=0.074 则X13=X11/C1=0.376/0.935=0.402 X14=X11/C2=0.376/0.074=5.08 1、求d1’点的短路电流 1.1求富兴变供给d1’点(即d1点)的短路电流 I x″=I j/(X1+X2)=0.502/(0.031+0.015)=10.913kA S x″=S j/(X1+X2)=100/(0.031+0.015) ≈2173.913MV A

两相短路电流计算

根据两相短路电流计算公式:I d=U e/2√(∑R)2+(∑X)2 其中∑R=R1/K b2+R b+R2;∑X=X X+X1/ K b2+X b+X2 式中I d--两相短路电流,A; ∑R、∑X—短路回路内一相电阻、电抗值的总和,Ω; X X—根据三相短路容量计算的系统电抗值,Ω; R1、X1—高压电缆的电阻、电抗值,Ω; K b—矿用变压器的变压比,若一次电压为10KV,二次电压为1200V、690V时,变比依次为8.3、14.5R b、X b—矿用变压器的电阻、电抗值 R2、X2—低压电缆的电阻、电抗值 U e—变压器二次侧的额定电压,对于660V网络,U e以690V 计算;对于1140V网络,U e以1200V计算 经查表: 702高压电缆R1=0.3Ω/Km,X1=0.08Ω/Km; 502高压电缆R1=0.42Ω/Km,X1=0.08Ω/Km; 352高压电缆R1=0.6Ω/Km,X1=0.08Ω/Km; 1140V变压器R b=0.0167,X b=0.1246; 660V变压器R b=0.0056,X b=0.0415; 1140V系统下X X=0.0144; 660V系统下X X=0.0048; 702低压电缆R2=0.315Ω/Km,X2=0.078Ω/Km; 502低压电缆R2=0.448Ω/Km,X2=0.081Ω/Km;

352低压电缆R2=0.616Ω/Km,X2=0.084Ω/Km;252低压电缆R2=0.864Ω/Km,X2=0.088Ω/Km;162低压电缆R2=1.37Ω/Km,X2=0.09Ω/Km; 1、副井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.539948 ∑X=X X+X1/ K b2+X b+X2=0.118166 I d=U e/2√(∑R)2+(∑X)2=627.27A 2、副井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.27092 ∑X=X X+X1/ K b2+X b+X2=0.20162 I d=U e/2√(∑R)2+(∑X)2=1776.73A 3、副井井下风机专用线最远端两相短路电流∑R=R1/K b2+R b+R2=0.2 ∑X=X X+X1/ K b2+X b+X2=0.086 I d=U e/2√(∑R)2+(∑X)2=1568A 4、主井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.09 ∑X=X X+X1/ K b2+X b+X2=0.06 I d=U e/2√(∑R)2+(∑X)2=3136A 5、主井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.277 ∑X=X X+X1/ K b2+X b+X2=0.2

短路电流计算

短路电流计算 第一节概述 一、电力系统或电气设备的短路故障原因 (1)自然方面的原因。如雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等等,造成单相接地短路和相间短路。 (2)人为原因。如误操作、运行方式不当、运行维护不良或安装调试错误,导致电气地设备过负荷、过电压、设备损坏等等造成单相接地短路和相间短路。 (3)设备本身原因。如设备制造质量、设备本身缺陷、绝缘老化等等造成单相接地短路和相间短路。 二、短路种类 1.单相接地短路 电力系统及电气设备最常见的短路是单相接地,约占全部短路的75%以上。对大电流接地系统,继电保护应尽快切断单相接地短路。对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。对中性点不接地系统,当单相接地电流超过允许值时,继电保护亦应有选择性地切断单相接地短路。对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。 2.两相接地短路 两相接地短路一般不超过全部短路的10%。大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。中性点非直接接地的系统中,常见是发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿造成第二点接地,此两点多数不在同一点,但也有时在同一点,继电保护应尽快切断两相接地短路。 3.两相及三相短路 两相及三相短路不超过全部短路的10%。这种短路更为严重,继电保护应迅速切断两相及三相短路。

4.断相或断相接地 线路断相一般伴随相接地。而发电厂的断相,大都是断路器合闸或分闸时有一相拒动造成两相运行,或电机绕组一相开焊的断相,或三相熔断器熔断一相的两相运行,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相。 5.绕组匝间短路 这种短路多发生在发电机、变压器、电动机、调相机等电机电器的绕组中,虽然占全部短路的概率很少,但对某一电机来说却不一定。例如,变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路能严重损坏设备,要求继电保护迅速切除这种短路。 6.转换性故障和重叠性故障 发生以上五种故障之一,有时由于故障的演变和扩大,可能由一种故障转换为另一种故障,或发生两种及两种以上的故障(称之复故障),这种故障不超过全部故障的5%。 第二节 对称短路电流计算 一、阻抗归算 为方便和简化科计算,通常将发电机、变压器、电抗器、线路等元件的阻抗归算至同一基准容量bs S (一般取100MVA 或1000MVA 基准容量)和基准电压bs U (一般取电网的平均额定电压bv U )时的基准标么阻抗(以下不作单独说明,简称标么阻抗);归算至额定容量的标么阻抗称相对阻抗。 (一)标么阻抗的归算 1.发电机等旋转电机阻抗的归算 发电机等旋转电机一般给出的是额定条件下阻抗对值,其标么可按下式计算 bs G G GN S X X S * = (1-1) 式中 G X * ——发电机在基准条件下电抗的标么值; G X ——发电机额定条件电抗的标对值; G X ——基准容量(MVA );

短路电流计算(案例分析)

4-10 某工厂变电所装有两台并列运行的S9-800(Y,yn0接线)型变压器,其电源由地区变电站通过一条8km 的10kV 架空线路供给。已知地区变电站出口断路器的断流容量为500MVA ,试用标幺制法求该厂变电所10kV 高压侧和380V 低压侧的三相短路电流k I 、sh i 、sh I 及三相短路容量k S 。 解:(1)取100=d S MVA , 5.101=d U kV ,4.02=d U kV ,则 kA 5.5kA 5 .10310031 1=?= = d d d U S I ,kA 3.144kA 4 .0310032 2=?= = d d d U S I (2)计算各元件电抗标幺值 系统 2.0500 100 * === oc d S S S X 线路 9.25 .10100 84.02 21* =??==av d WL U S l x X 变压器 625.58 .0100 1005.4100%* =?==N d k T S S U X (3)k 1点短路: 1.39.22.0* **1=+=+=∑WL S X X X kA 77.1kA 1.35 .5* 1 11=== ∑X I I d k kA 51.4kA 77.155.255.21=?==k sh I i kA 67.2kA 77.151.151.11=?==k sh I I kA 77.11==∞k I I MV A 26.32MV A 1.3100* 1 === ∑X S S d k (4)k 2点短路: 9125.52 625.59.22.02****2 =++=++=∑T WL S X X X X

短路电流大小的限制方法

限制短路电流的方法 2008-06-14 20:18 目前在电力系统中,用得较多的限制短路电流的方法有以下几种:选择发电厂和电网的接线方式;采用分裂绕组变压器和分段电抗器;采用线路电抗器;采用微机保护及综合自动化装置等。 1 选择发电厂和电网的接线方式 通过选择发电厂和电网的电气主接线,可以达到限制短路电流的目的。 在发电厂内,可对部分机组采用长度为40km及以上的专用线路,并将这种发电机—变压器—线路单元连接到距其最近的枢纽变电所的母线上,这样可避免发电厂母线上容量过份集中,从而达到降低发电厂母线处短路电流的目的。 为了限制大电流接地系统的单相接地短路电流,可采用部分变压器中性点不接地的运行方式,还可采用星形—星形接线的同容量普通变压器来代替系统枢纽点的联络自耦变压器。 在降压变电所内,为了限制中压和低压配电装置中的短路电流,可采用变压器低压侧分列运行方式;在输电线路中,也可采用分列运行的方式。在这两种情况下,由于阻抗大,可以达到限制短路电流的目的,不过为了提高供电可靠性,应该加装备用电源自动投入装置。 对环形供电网,可将电网解列运行。电网解列可分为经常解列和事故自动解列两种。电网经常解列是将机组和线路分配在不同的母线系统或母线分段上,并将母线联络断路器或母线分段断路器断开运行,这样可显著减小短路电流。电网事故自动解列,是指在正常情况下发电厂的母线联络断路器或分段断路器闭合运行,当发生短路时由自动装置将母线(或分段) 断路器断开,从而达到限制短路电流的目的。 2 采用分裂绕组变压器和分段电抗器 在大容量发电厂中为限制短路电流可采用低压侧带分裂绕组的变压器,在水电厂扩大单元机组上也可采用分裂绕组变压器。为了限制6~10 kV配电装置中的短路电流,可以在母线上装设分段电抗器。分段电抗器只能限制发电机回路、变压器回路、母线上发生短路时的短路电流,当在配电网络中发生短路时则主要由线路电抗器来限制短路电流。 3 采用线路电抗器 线路电抗器主要用于发电厂向电缆电网供电的6~10kV配电装置中,其作用是限制短路电流,使电缆网络在短路情况下免于过热,减少所需要的开断容量。 4 采用微机保护及综合自动化装置 从短路电流分析可知,发生短路故障后约0.01s时间出现最大短路冲击电流,采用微机保护仅需0.005s就能断开故障回路,使导体和设备避免承受最大短路电流的冲击,从而达到限制短路电流的目的。

.110kV降压变电所短路电流计算.doc(故障分析课程设计)

《电力系统分析》课程设计任务书 110kV降压变电所短路电流计算 原始资料 1、电气一次部分设计情况 该变电所为110/38.5/10.5kV三级电压,所内装设31.5MV A及40MV A主变各一台,2回110kV架空进线,4回35kV出线及8回10kV出线。 主接线可以考虑110kV侧采用内桥、外桥、单母分段接线,35kV可以考虑单母分段、双母线接线,10kV可以考虑单母分段、双母线接线。 2、参数部分 系统电抗标幺值" d X=0.0581,两条110kV进线为LGJ-150型,线路长度一条为16.582km,另一条为14.520km。 3、主变铭牌参数如下: #1主变:型号SFSZ8-31500/110 接线Y N/Y N0/△-11 变比110±4×2.5%/38.5±2×2.5%/10.5 短路电压(%)高-中10.47 高-低18 中-低6.33 短路损耗(Kw)高-中169.7 高-低181 中-低136.4 空载电流(%)0.46 空载损耗(kW)40.6 #1主变:型号SFSZ10-40000/110 接线Y N/Y N0/△-11 变比110±8×1.25%/38.5±2×2.5%/10.5 短路电压(%)高-中11.79 高-低21.3 中-低7.08 短路损耗(Kw)高-中74.31 高-低74.79 中-低68.30 空载电流(%)0.11 空载损耗(kW)26.71 为了方便计算,设基准容量S B =100MVA,基准电压U B =Uav 设计任务 1、设计110kV降压变电所主接线方案,用1#图纸绘制。 2、短路计算要求: 1)利用“近似法”进行标幺值计算。 2)对于110kV母线故障,考虑两条进线同时运行的情况以计算最大三相短路电流及两相短路电流。 对于35、10kV母线故障,因为不考虑两台主变长期并列运行,所以按分列运行情况进行计算,计算最大三相短路电流及两相短路电流。

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络 X c X T X L X T X d ” C V fa(1) G + + +

变电站设计短路计算

第5章短路电流的计算 在电力供电系统中,对电力系统危害最大的就是短路。所谓短路是指一切不正常的相与相之间或相与地发生通路的情况。 产生短路的原因很多,主要有以下几个方面: (1)元件损坏,例如绝缘材料的自然老化,设计、安装及维护不良所带来的设备缺陷发展成短路等; (2)气象条件恶劣。例如雷击造成的闪络放电或避雷动作,架空线路由于大风或导线覆冰引起电杆倒塌等; (3)人为事故,例如运行人员带负荷拉刀闸,线路和设备检修后未拆除接地线就加上电压等; (4)其他,例如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。 在三相系统中短路的形式可以分为三相短路、两相短路、两相短路接地、单相短路接地。三相短路也叫对称短路,系统各相与运行正常时仍处与对称状态,其他类型的短路都不是对称短路。 电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会很少发生,但情况较严重,应给与足够的重视。况且,从短路计算方法来看,一切不对称短路的计算,在采用对称分量法后,都归结为对称短路的计算。因此,对三相短路的研究具有重要的意义。在短路电流计算过程中,便都以最严重的短路形式为依据。因此,本文的短路电流计算都以三相短路为例。 5.1短路电流的计算目的 5.1.1短路电流的危害 在供电系统中发生短路故障时,在短路回路中短路电流要比额定电流大几倍至几十倍,通常可达数千安,短路电流通过电气设备和导线必然要产生很大的电动力,并且使设备温度急剧上升有可能损坏设备和电缆;在短路点附近电压显著下降,造成这些地方供电中断或影响电动机正常工作;发生接地短路时所出现的不对称短路电流,将对通信线路产生干扰;当短路点离发电厂很近时,将造成发电机失去同步,而使整个电力系统的运行解列。 5.1.2 计算短路电流的目的 计算短路电流的目的是为了正确选择和校验电器设备,避免在短路电流作用下损坏电气设备,如果短路电流太大,必须采用限流措施,以及进行继电保护装置的整定计算。 为了达到上述目的,须计算出下列各短路参数: I″—次暂态短路电流,用来做为继电保护的整定计算和校验断路器额定断流容量。应采用(电力系统在最大运行方式下)继电保护安装处发生短路时的次暂态短路电流来计算保护装置的整定值。

电力系统分析短路电流的计算汇总

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求:(1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15. 01=T X 15 . 00=T X 25 . 02=T X 25. 02==''X X d 图1-1

1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1. 在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2. 正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3. 负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入 代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4. 零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1. 单相(a相接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I =

两相接地短路电流的计算

目录 1?前言........................................................................... ?仁1.1短路电流的危害 ............................................................... 1.. 1.2短路电流的限制措施 .......................................................... 1. 1.3短路计算的作用 .............................................................. 2.. 2.数学模型 (3) 2.1对称分量法在不对称短路计算中的应用 (3) 2.2电力系统各序网络的制订 ....................................................... 9. 2.3两相接地短路的数学分析 (10) 2.4变压器的零序等值电路及其参数 (10) 3两相接地短路运行算例............................................................ 1.4 4. 结果分析....................................................................... 1.8. 5. 心得体会 (19) 6. 参考文献....................................................................... 20.

道路照明设计中单相短路电流计算

道路照明设计中单相短路电流计算 照明设计是城市道路设计中比较重要的一项设计内容。为了确保城市道路照明能为车辆驾驶人员以及行人创造良好的视看环境,达到保障交通安全,提高交通运输效率,方便人民生活,防止犯罪活动和美化城市环境的效果,建设部于91年特制定了《城市道路照明设计标准》CJJ45-91.标准要求道路照明设计原则为“安全可靠、技术先进、经济合理、节约能源、维修方便。”并对照明标准、光源和灯具的选择、设计、照明供电和控制以及节能措施等方面做了较详尽的规定和要求,笔者在工程设计中运用和深入了解标准的过程中,确实得到了很多的益处,同时也发现一些不完善之处,比较突出的是规范中对照明供电保护及电缆选择没有做详细说明和要求,而这部分内容的设计正确与否直接影响到“安全可靠、技术先进、经济合理、节约能源、维修方便”这个基本原则。在道路实际使用中发生的电气故障,小到电缆烧毁,大到人身触电伤亡事故的出现,都于与此相关。笔者希望本文起抛砖引玉的作用,以引起有关部门的重视,并与本行业同仁一同探讨。 在道路照明配电中,由于配电线路较长,配电线路零序阻抗较大,单相接地(零)短路电流相对较小。为了计算低压配电系统的单相接地(零)电流,需要利用不对称短路电流的计算方法。不对称短路电流可利用计算三相短路的原则进行计算。因为电压的对称分量

与相应的电流对称分量成正比,因此在正序、负序和零序分量中,都能独立地满足欧姆定律和克希荷夫定律。正序、负序和零序电流也只产生相应地正序、负序和零序电压降,利用这一个重要的性质,可以用电工学中对称分量法分析在对称电路中所产生的各种不对称短路。 单相接地(零)短路电流的计算 不对称短路时,由于距发电机的电气距离很远,降压变压 器容量与发电机电源容量相比甚小,因此,可假定正序阻抗约等于负序阻抗。单相接地(零)短路电流按下式计算: 式中Up平均线电压(V)R0Σ,X0Σ,Z0Σ配电网络的总零序电阻,总零序电抗,总零序阻抗。R1Σ,X1Σ,Z1Σ配电网络的总正序电阻,总正序电抗,总正序阻抗。 电路中主要元件阻抗 1、电力系统正序电抗的计算在计算低压电力网络短路时,有时需要计入系统电抗XX,如果系统电抗不知,只有原线圈方面的 短路容量或高压短路器的额定容量Sdn(MVA)时,则系统正序电抗 可近似地按下式计算:式中 Uj=Up平均线电压(V)Sdn原线圈方面的短路容量或高压短路器的额定容量(KVA)。 2、变压器阻抗的计算 变压器的正序电阻: 变压器的正序电抗:式中ΔPd 变压器短路损耗(kW)Ue 变压器二次侧额定电压(V)Se 变压器额定容量(KVA)Ud% 变压器阻 抗电压百分比,变压器的零序电抗是与其本身结构和绕组的接法有关。

最新8.1.2三相和两相短路电流的计算汇总

8.1.2三相和两相短 路电流的计算

8.1.2.2 三相和两相短路电流的计算 在220/380网络中,一般以三相短路电流为最大。一台变压器供电的低压网络三相短路电流计算电路见图8?1?1。 图8?1?1 低压网络三相短路电流计算电路 (a )系统图;(b )等效电路;(c )用短路阻抗表示的等效电路图 低压网络三相起始短路电流周期分量有效值按下式计算 22 22230 3 /05.13/k k k k n k n X R X R U Z cU I + = +== '' kA (8-1-19) L m T s k R R R R R +++= L m T s k X X X X X +++= 式中 n U ——网路标称电压(线电压),V ,220/380V 网络为380V ; c ——电压系数,计算三相短路电流时取1.05; k Z 、k R 、k X ——短路电路总阻抗、总电阻、总电抗,mΩ; s R 、s X ——变压器高压侧系统的电阻、电抗(归算到400V 侧),mΩ; T R 、T X ——变压器的电阻、电抗,mΩ; m R 、m X ——变压器低压侧母线段的电阻、电抗,mΩ; L R 、L X ——配电线路的电阻、电抗,mΩ; I ''、k I ——三相短路电流的初始值、稳态值。 只要2222/s s T T X R X R ++≥2,变压器低压侧短路时的短路电流周期分量不衰减,即I I k ''=。

短路全电流k i 包括有周期分量z i 和非周期分量f i 。短路电流非周期分量的起始值 I i f ''=20,短路冲击电流ch i ,即为短路全电流最大瞬时值,它出现在短路发生后的半周期(0.01s )内的瞬间,其值可按下式计算 I K i ch ch ''=2 kA (8?1?20) 短路全电流最大有效值ch I 按下式计算 2)1(21-+''=ch ch K I I kA (8?1?21) 式中 ch K ——短路电流冲击系数,f ch T e K 01 .01+=; f T ——短路电流非周期分量衰减时间常数,s ,当电网频率为50Hz 时,∑ ∑ = R X T f 314; ∑X ——短路电路总电抗(假定短路电路没有电阻的条件下求得),Ω; ∑R ——短路电路总电阻(假定短路电路没有电抗的条件下求得),Ω。 如果电路只有电抗,则∞=f T ,2=ch K ,如果电路只有电阻,则0=f T ,1=ch K ;可见2≥ ch K ≥1。 电动机反馈对短路冲击电流的影响,仅当短路点附近所接用电动机额定电流之和大于短路电流的1%(I I M r ''>∑?01.0)时,才予以考虑。异步电动机起动电流倍数可取为6~7,异步电动机的短路电流冲击系数可取1.3。由异步电动机馈送的短路冲击电流的计算式(8?1?22)。 由异步电动机提供的短路冲击电流M ch I .按下式计算 rM qM M ch M ch I K K I ..29.0= kA (8?1?22) 计入异步电动机影响后的短路冲击电流ch i 和短路全电流最大有效值ch I ,按下列两式计算 M ch s ch ch i i i ..+= kA (8?1?23) ])1()1[(2)(..2M M ch s s ch M s ch I K I K I I I ''-+''-+''+''= (8?1?24) 以上式中 s ch i .——由系统送到短路点去的短路冲击电流,kA ;

相关主题
文本预览
相关文档 最新文档