当前位置:文档之家› 阻抗变换

阻抗变换

阻抗变换
阻抗变换

湖南铁道职业技术学院

阻抗变换

阻抗变换

变压器不但具有电压变换和电流变换的作用,还具有阻抗变换的作用,

如图所示,当变压器二次绕组接上阻抗为Z的负载后,则11'I U Z 相当于直接接在一次绕组

上的等效阻抗 主讲人王婧博

高频电子线路_杨霓清_答案_第一章-选频网络与阻抗变换

第一章 选频网络与阻抗变换 思考题与习题 1.1 已知LC 串联谐振回路的C =100pF ,0f =1.5MHz ,谐振时的电阻5r =Ω,试求:L 和 0Q 。 解:由 012f LC π = 得 2 6 12 011 (2)(2 1.510)10010 L f C ππ-== ???? 6 112.6 10112.6 H H μ-=?= 6 6 002 1.510112.610 5 L Q r ωπ-????= = 212.2 = 1.2 对于收音机的中频放大器,其中心频率0f =465kHz ,0.7BW =8kHz ,回路电容C=200pF ,试计算 回路电感L 和e Q 的值。若电感线圈的0Q =100,问在回路上应并联多大的电阻才能满足要求? 解:由 012f LC π = 得 2 2 2 0012533025330585.73(μH )(2)0.465200 L f C f C π= = = ≈? 由 00.7e f BW Q = 得 00 .7 46558.1258 e f Q BW = = = 00 3 10 001 100 171(k )2246510210 eo Q R Q C f C ωππ-== = ≈Ω???? 58.125 17199.18(k ) 100 e eo Q R R Q ∑= = ?=Ω 外接电阻 017199.18 236.14(k ) 17199.18 eo e R R R R R ∑∑ ?= = ≈Ω--

1.3 有一并联回路在某频段内工作,频段最低频率为535kHz ,最高频率1605 k Hz 。现有两 个可变电容器,一个电容器的最小电容量为12pF ,最大电容量为100 pF ;另一个电容 器的最小电容量为15pF ,最大电容量为450pF 。试问: 1)应采用哪一个可变电容器,为什么? 2)回路电感应等于多少? 3)绘出实际的并联回路图。 解:1) m a x m a x m i n m i n '16053' 535 f C f C = = = 因而 m a x m i n '9'C C = 但 100912 <, 45030915 => 因此应采用m ax m in = 450PF, = 15pF C C 的电容器。 但因为 m ax m in 30C C =, 远大于9,因此还应在可变电容器旁并联一个电容C X ,以使max min C C X X C C ++=3, 解之得 C X ≈40pF 。 2) 将m ax 'C =C X +m ax C =490pF 代入 2 2 2 min max min max 1 2533025330180(μH )(2)''0.535490 L f C f C π= = = ≈? 3 )实际的并联回路如下 1.4 给定并联谐振回路的0f =5MHz ,C =50 pF ,通频带0.7BW =150kHz 。试求电感L 、品质 因数0Q 以及对信号源频率为5.5MHz 时的失调。又若把0.7BW 加宽至300kHz ,应在回路 两端再并联上一个阻值多大的电阻? 解:回路电感值为 22 2 01 253302533020.2 μH 550 L C f C ω= == =? 又 00.70 f BW Q =

阻抗匹配和阻抗变换是什么-阻抗变换和阻抗匹配的详细概述

阻抗匹配和阻抗变换是什么?阻抗变换和阻抗匹配的详细概述阻抗匹配是无线电技术中常见的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩,音机的工作,声音还会产生失真.因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输入、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路. 下面对纯电阻电路和电抗电路的阻抗匹配问题分别进行简要的分。1、纯电阻电路在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上(见图1),在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。 2、电抗电路电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感.元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示.其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而.容

阻抗变换器的设计与仿真

摘要 射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。本文介绍了一种中心频率为400MHz、频宽为40MHz的50~75欧姆T型阻抗变换器的设计与仿真过程。文中概述了射频阻抗变换器的种类、用途及发展。在分析了阻抗匹配理论基本知识的基础上,论述了射频阻抗变换器的设计过程,然后通过ADS软件进行设计和仿真,并对仿真结果进行了分析总结。 关键词:射频;阻抗匹配;阻抗圆图;VSWR(电压驻波比);ADS 目录 摘要 (1) ABSTRACT................................................ 错误!未定义书签。第一章引言 (2) 1.1 概述 (2) 1.2 射频阻抗变换电路的类型 (2) 1.3 射频阻抗变换器的用途 (2) 1.4射频阻抗变换器设计的发展 (3) 第二章基本原理 (3) 2.1 阻抗匹配 (3) 2.2 史密斯圆图 (4) 2.2.1 等反射圆 (4) 2.2.2 等电阻圆图和等电抗圆图 (5) 2.2.3 Smith圆图(阻抗圆图) (7) 2.3 电压驻波比 (8) 第三章 T型阻抗变换器的设计 (9) 3.1 T型阻抗变换器(R S

阻抗变换

1变压器的简介 变压器是利用电磁感应原理传输电能或电信号的器件, 它具有变压、 变流和变阻抗的作用。 变压器的种类很多, 应用十分广泛。 比如在电力系统中用电力变压器把发电机发出的电压升高后进行远距离输电, 到达目的地后再用变压器把电压降低以便用户使用, 以此减少传输过程中电能的损耗; 在电子设备和仪器中常用小功率电源变压器改变市电电压, 再通过整流和滤波, 得到电路所需要的直流电压; 在放大电路中用耦合变压器传递信号或进行阻抗的匹配等等。 变压器虽然大小悬殊, 用途各异, 但其基本结构和工作原理却是相同的。 1.1变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。 变压器是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1N ,副绕组匝数为2N 。 图(1)变压器结构示意图

当一次绕组两端加上交流电压u 1时,绕组中通过交流电流i 1,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通φ。 m 1144.4? ? Φ-=f N j E (1-1-1) 1111.1111.)(? ??+-=++-=I Z E I jX R E U (1-1-2) m 2244.4? ? Φ-=f N j E (1-1-3) 2222. 2222. )(? ? ? -=+-=I Z E I jX R E U (1-1-4) k N N E E U U ===2 1 2121 (1-1-5) k U U 1 2= (1-1-6) 说明只要改变原、副绕组的匝数比,就能按要求改变电压。 1.1.2 电流变换 变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流 1I 的大小则取决于2I 的大小。 012211? ??=+I N I N I N (1-2-7) K I I U U I 22121== (1-2-8) 说明变压器在改变电压的同时,亦能改变电流。

功分器的设计原理

设计资料项目名称:微带功率分配器设计方法 拟制: 审核: 会签: 批准: 二00六年一月

微带功率分配器设计方法 1. 功率分配器论述: 1.1定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2分类: 1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。 1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。

下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.设计原理: 2.1分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。下面我们以一分二微带线功率分配的设计为例进行分析。传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。 图1:一分二功分器示意图 在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。 2.2阶梯阻抗变换: 在微波电路中,为了解决阻抗不同的元件、器件相互连接而又不使其各自的性能受到严重的影响,常用各种形式的阻抗变换器。其中最简单又最常用的四分之一波长传输线阶梯阻抗变换器(图2)。它

阻抗变换变换的方法和计算

变压器和其阻抗 理想变压器是一个端口的电压与另一个端口的电压成正比,且没有功率损耗的一种互易无源二端口网络。它是根据铁心变压器的电气特性抽象出来的一种理想电路元件。 理想变压器阻抗变换作用的性质由以上的全部叙述可见,理想变压器既能变换电压和电流,也能变换阻抗,因此,人们更确切地称它为变量器。 在电子线路中,常利用理想变压器的阻抗变换作用来实现阻抗匹配,使负载获得最大功率。 1.在电子设备中,往往要求负载能获得最大输出功率。负载若要获得最大功率,必须满足负载电阻与电源电阻相等的条件,称为阻抗匹配。但在一般情况下,负载电阻是一定的,不能随意改变。而利用变压器可以进行阻抗变换,适当选择变压器的匝数比,把它接在电源与负载之间,就可实现阻抗匹配,使负载获得最大的输出功率。 如图,从变压器原绕组两端点看进去的阻抗为 从变压器副绕组两端点看进去的阻抗为 因为 表明:变比为K的变压器,可以把其副绕组的负载阻抗,变换成为对电源来说扩大到K2倍的等效阻抗。

2. 假说变压器初级/次级的匝数比为n:1,根据变压器的特性,次级电压为初级的1/n,电流为初级的n倍。 初级阻抗=初级电压/初级电流 次级阻抗=次级电压/次级电流=(1/n)初级电压/(n初级电流)=[1/(nn)]初级阻抗。或者说初级阻抗=(nn)次级阻抗。 这说明,变压器各线圈的阻抗,与线圈匝数的平方成正比。利用这一特点,可以用变压器不同匝数的线圈来变换阻抗。最简单的,就是电视机天线,用扁馈线时阻抗是300Ω,接电视机的天线输入端是75Ω,必须用一个阻抗变换插座,其中就是一个铁氧体磁芯的2:1的变压器,将300Ω与75Ω进行阻抗匹配。 3. 变压器除了可变压外还可作为一个阻抗变换器件,这在有线广播中经常用到。变压器的初次级的匝数比n=n1/n2=V1/V2,V1、V2分别是初、次级的电压,n1、n2分别为初、次级的绕组匝数。又有V1V1=PZ1、V2V2=PZ2 式中P是变压器的功率,Z1、Z2分别是初次的阻抗, 所以有Z1/Z2=V1V1/V2/V2=n1n1/n2n2 即变压器的初次级阻抗比等于初次级电压比的平方和等于匝数比的平方。

1/4波长阻抗变换器地分析报告

1/4波长阻抗变换器的分析 摘要:阻抗匹配网络已经成为射频微波电路中的重要组成部分,主要是由于匹配使得电路中的反射电压波变少,从而损耗减少。同时,匹配网络对器件的增益,噪声,输出功率还有着重要的影响。在微波传输系统,它关系到系统的传输效率、功率容量与工作稳定性,关系到微波测量的系统误差和测量精度,以及微波元器 λ 件的质量等一系列问题。本文讨论了传输线的阻抗匹配方法,并着重分析了4 λ阻抗变换器的优点。 阻抗变换器,并举例说明了多节4 关键字:阻抗匹配;匹配网络;匹配方法,阻抗变换器

1引言 传输理论指出,通常情况下,传输线传输的电压或电流是由该点的入射波和反射波叠加而成的,或者说是由行波和驻波叠加而成的。 在由信号源及负载组成的微波系统中,如果传输线和负载不匹配,传输线上将形成驻波。有了驻波一方面使传输线功率容量降低,另一方面会增加传输线的衰减。如果信号源和传输线不匹配,既会影响信号源的频率和输出功率的稳定性,又会使信号源不能给出最大功率、负载又不能得到全部的入射功率。因此传输线一定要匹配。 匹配可分为始端匹配和终端匹配。始端匹配是为了使信号源的输出功率最大,采用的方法是共轭匹配;终端匹配是为了使传输线上无反射波,使传输功率最大,采用的方法是阻抗匹配。 2.匹配理论 2.1共轭匹配 共轭匹配的目的是使信号源的功率输出最大,这就要求传输线信号源的内阻和传输线的输入阻抗互成共轭值。 假设信号源的内组为g g g jX R Z +=,传输线的输入阻抗为in in in jX R Z +=,如图1.1所示。 则 * =g in Z Z 即 g in g in X X R R -==,

2.4GHZ微带渐变阻抗变换器设计报告详解

2.4GHZ微带渐变阻抗变换器设计报告 一、设计任务 1.1名称:设计一个工作频率为 2.4GHZ,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。 1.2主要技术指标:S11<-20dB,S21<-0.7dB,re(Z0)=50Ω,VWAR尽量接近于1。 二、设计过程 2.1原理: 2.1.1 阻抗匹配的概念 阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。一旦匹配完善,传输线即处于行波工作状态。 在微波电路中,常用的匹配方法有: (1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。 (2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。 (3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)

将不匹配负载产生的反射波吸收掉。 传输线的核心问题之一是功率传输。对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。 2.1.2 阻抗匹配的方法 阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。 图3-1 阻抗匹配 匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。常用的匹配器有有λ/4阻抗变换换器和支节匹配器。本论文主要采用λ/4阻抗变换器。 2.1.3 λ/4阻抗变换器 λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保

选频网络最新题库

选频网络 一、选择题 1、在调谐放大器的LC 回路两端并上一个电阻R ,可以 C 。 A .提高回路的Q 值 B .提高谐振频率 C .加宽通频带 D .减小通频带 2、在高频放大器中,多用调谐回路作为负载,其作用不包括 ( D ) A .选出有用频率 B .滤除谐波成分 C .阻抗匹配 D .产生新的频率成分 3、并联谐振回路的通频带是指其输出电压下降到谐振电压的 所对应的频率范围, 用7.02f ?表示。 ( D ) A 、1/2 B 、1/3 C 、1/3 D 、1/2 4、LC 并联谐振回路具有选频作用。回路的品质因数越高,则 ( A ) A 、回路谐振曲线越尖锐,选择性越好,但通频带越窄。 B 、回路谐振曲线越尖锐,选择性越好,通频带越宽。 C 、回路谐振曲线越尖锐,但选择性越差,通频带越窄。 D 、回路谐振曲线越尖锐,但选择性越差,通频带越宽。 5、地波传播时,传播的信号频率越高,损耗 。 ( B ) A 、越小 B 、越大 C 、不变 D 、无法确定 6、并联谐振回路谐振时,电纳为零,回路总导纳为 。 ( B ) A .最大值 B .最小值 C .零 D .不能确定 7、谐振回路与晶体管连接时,常采用部分接入方式实现阻抗匹配,控制品质因数以达到对通频带和选择性的要求,图示电路中Is 信号源的接入系数s p 为 。 ( D ) s i A .12L L B .21L L C .112L L L + D .2 12L L L + 8、电路与上题同,晶体管基极与谐振回路的接入系数L p 为 。 ( C ) A .12C C B .21 C C C .112C C C + D .2 12C C C + 9、考虑信号源内阻和负载后,LC 选频回路的通频带变 ,选择性变 。( D ) A 、小、好 B 、大、好 C 、小、差 D 、大、差

GHZ微带渐变阻抗变换器设计报告

微带渐变阻抗变换器设计报告 一、设计任务 名称:设计一个工作频率为,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。 主要技术指标:S11低于-20dB,S21接近,re(Z0)接近50Ω,VWAR接近1。 二、设计过程 1.原理: 1.1 阻抗匹配的概念 阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。一旦匹配完善,传输线即处于行波工作状态。 在微波电路中,常用的匹配方法有: (1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。 (2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。 (3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)

将不匹配负载产生的反射波吸收掉。 传输线的核心问题之一是功率传输。对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。 .阻抗匹配的方法 阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。 图3-1 阻抗匹配 匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。常用的匹配器有有λ/4阻抗变换换器和支节匹配器。本论文主要采用λ/4阻抗变换器。 . λ/4阻抗变换器 λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。

阻抗变换器设计

射频电路设计实训报告 设计题目阻抗变换器设计 系别 年级专业 设计组号 学生姓名/学号 指导教师

摘要:射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。阻抗变换器就是起到将压电传感器的高阻抗变换为信号放大处理部分需要的低阻抗。本设计是关于阻抗匹配和阻抗转换器的一些阻抗匹配电路以及阻抗匹配的方法,用以实现匹配以及50Ω到75Ω以及75Ω到50Ω的阻抗转换器。从而得到所需要的输出阻抗以达到变换的目的。本次实验以2个无源阻抗匹配器为例,分别采用简单的电容电感的方式设计所需要的阻抗转换器,制作出实物并进行测试。 Abstract: One of the main RF design is a part of the circuit and the other part of the match between the two parts to achieve maximum power transfer, which requires adding the RF circuit impedance converter to achieve impedance matching purposes. Impedance transformer is played to a high impedance piezoelectric sensor signal amplification process is transformed into some of the needs of low impedance. This design is about impedance matching and impedance converter circuit and impedance matching impedance matching some of the methods used to achieve matching and 50Ω to 75Ω and 75Ω to 50Ω impedance converter. In order to get the required output impedance of achieving the purpose of transformation. The experiment with two passive impedance matching device, for example, capacitance and inductance, respectively, a simple way to design the required impedance converter to produce a physical and tested. 关键词: 射频设计 阻抗变换器 阻抗匹配 无源 一、基本阻抗匹配理论 当负载阻抗与传输线特性阻抗不相等或连接两段特性阻抗不同的传输线时,由于阻抗不匹配会产生反射现象,从而导致传输系统的功率容量和传输效率下降,负载不能获得最大功率。为了消除这种不良反射现象,可在其间接入阻抗变换器,以获得良好的匹配。 由图2-1(a )可知,当R L =R S 时可得最大输出功率,称此状况为匹配状态。 图(a ) 输入输出功率关系图 图(b ) 广义阻抗匹配 此时:2 2 2 () S out L L S L V P I R R R R =?=?+ L S R k R =? 22 (1) S S in S L S V V P R R R k == ++ ? 1o u t i n k P P k =?+ 推而广之,如图2-1(b )所示,当输入阻抗Z S 与负载阻抗Z L 互为共轭,即Z S =Z L * 时,形成广义阻抗匹配。因此,阻抗匹配电路亦可称为阻抗变换器。

宽带传输线阻抗变换器的设计

宽带传输线阻抗变换器的设计 【摘要】利用传输线理论和基本电路理论,得出宽带阻抗变换器负载吸收最大功率时,负载阻抗、源阻抗与传输线特性阻抗之间应该满足的关系。并通过实验表明,满足这关系时,传输线阻抗变换器容易达到宽带。 【关键词】传输线理论;电路理论;阻抗关系;阻抗变换 0.引言 阻抗变换器是短波多模多馈天线馈电网络的重要组成部分。以传输线变压器理论为基础,将扭绞双线或同轴线绕在高磁导率的软磁铁芯上形成线圈实现阻抗变换的功能。在阻抗变换器的设计中,负载阻抗、源阻抗与传输线特性阻抗之间是否满足最佳传输条件十分重要,因此有必要明确阻抗变换器各端之间的阻抗关系。 根据阻抗变换器的电路示意图,线圈上的V和I必然满足传输线方程。结合传输线理论中的V和I之间的关系和电路方程,利用边界条件,推导宽带阻抗变换器各端之间阻抗满足的关系,以及与传输线特性阻抗的关系,可以得出一些结论。本文以1:4阻抗变换器为例分析,制作了50-200欧姆的阻抗变换器。其他阻抗变换器的分析方法类似,并根据其结论设计并制作了50欧姆-75欧姆的阻抗变换器。 1.宽带阻抗变换器的阻抗关系 双线1:4阻抗变换电路示意如图1所示,且为不平衡-不平衡变换。这种变换用双线传输线或同轴线绕制,称为双线1:4阻抗变换。 在图1中,源端阻抗为Rg,负载阻抗为Rb,电压、电流如图标示,图2是阻抗变换器的电路模型。 图1 宽带1:4阻抗变换器电路示意图图2 阻抗变换器的电路模型 参见图2,根据传输线理论和基本电路理论可列出下列方程: V=(V-V)cos l+jZIsin l(1) I=Icos l+jsin l (2) E=(I+I)R+V(3) V=IR (4)

选频网络教学目的理解选频网络基本电路构成特性和功能

第二章选频网络 教学目的: 理解选频网络基本电路构成、特性和功能,抽头阻抗变换;熟练掌握单调谐回路的谐振曲线、特性分析和通频带分析;掌握耦合回路的调谐特性的分析;了解耦合回路的频率特性。 教学内容: 1 串联谐振回路 2 并联谐振回 3 串、并联阻抗的等效互换与回路抽头时的阻抗变换 4 耦合回路 5 滤波器的其它形式 教学重点: 串、并联谐振回路的谐振特性、谐振曲线和通频带分析 教学难点: 阻抗变换的原理及等效关系 引言 选频网络是其它功能单元电路的基本组成部分,它的作用就是选出需要的频率分量并且滤除不需要的频率分量。因此掌握各种选频网络的特性是很重要的 通常选频网络可以分为两大类,一类是由电感电容组成的振荡回路,它有可分为单振荡回路和耦合振荡回路;另一类是各种滤波器,如LC集中滤波器、石英晶体滤波器、陶瓷滤波器等,重点讨论第一类滤波器。 §2.1 串联谐振回路 一电路结构: C V 图2.1.1

由电感线圈和电容器组成的单个振荡电路称为单振荡回路。信号源与电容和电感串接,就构成串联振荡回路。振荡回路具有谐振特性,所以它具有选频和滤波作用。 二 电路分析 1 阻抗特性 ()1 ()||j z R jX R j L z e C ?ωωω=+=+- = ||z == 1 L X C a r c t g a r c t g R R ωω?- == 图2.1.2 讨论: 当0,0X ωω==,Z R ==最小Z ,0 s v I I R = = 称回路发生串联谐振,谐振频率为 00f ω= =或 当0,0X ωω>> 回路呈感性 当0,0X ωω<< 回路呈容性 2 谐振特性 1)回路阻抗Z R ==最小Z 最小,回路电流最大,且电压与电流同相 2)00000S L S V L V I j L j L j V R R ωωω== = 00 000111S C S V V I j V C R j C CR ωωω===-

负阻抗变换器及其应用

实验十四 负阻抗变换器及其应用 一、实验目的 1、 学习用线性集成运算放大器构成负阻抗变换器。 2、 学习负阻抗变换器的测量方法。 3、 了解负阻抗变换器的应用。 二、 实验属性(综合性) 三、实验仪器设备及器材 计算机及其EWB 软件。 四、实验要求 1、 预习时仔细阅读实验指导书,复习教材的有关内容。 2、 了解实验目的、原理和任务。 五、实验原理 1、负阻抗变换器 负阻抗是电路理论中的一个重要基本概念,在工程实践中有广泛的应用。负阻抗的产生除某些非线性元件(如隧道二极管)在某个电压或电流的范围内具有负阻抗特性外,一般都有一个有源双网络来形成一个等值的线性负阻抗。该网络由线性集成电路组成,这样的网络称作负阻抗变换器。 按有源网络输入电压和电流与输出电压和电流的关系,可分为电流反向型和电压反向型两种(INIC 及VNIC ),INIC 的电路模型如图14--1所示。 图14—1 INIC 在理想情况下,其电压、电流关系为: 对于INIC 型:21U U =,21I k I =(k 为电流增益) 对于VNIC 型:21U k U -=,2 1I I -=(k 为电压增益) 如果在INIC 的输出端接上负载Z L ,如图14--2所示,则它的输入阻抗Z i 为: L i Z k I k U I U Z 1 2 211-=== 2 1 I I ' 12 L Z

图14-2 本实验用线性运算放大器组成如图14-3所示的INIC 电路,在一定的电压、电流的范围内可获得良好的线性度。 图14-3 根据运放理论可知: 2 1U U U U ===-+ 31I I = , 42I I = ∴ 2211Z I Z I = L i Z Z Z I k U I U Z 212 21 1-== = 当Ω==K R Z 111,Ω==30022R Z 时; 10 3121 2== =R R Z Z k 若 L i L L R Z R Z 3 10 -==时,; 若 ω jc Z L 1 = , 则 i Z 310-=C j ω1L j ω=, C L 21310ω= 若 =L Z L j ω, = i Z L j ω3 10 - = C j ω1 ,=C L 21103ω 2、应用负阻抗变换器构成一个具有负内阻的电压源,电路如图14-4所示 i Z L Z

负阻抗变换器

U =U 2 I 1=( K 1)( 12 ) 实验五负阻抗变换器的研究 一、实验目的 1. 了解负阻抗变换器的原理及其运放实现。 2. 通过负阻器加深对负电阻(阻抗)特性的认识,掌握对含有负阻的电路的分析测量方法。 、实验原理 负阻抗变换器(NIC )是一种二端口器件,如图 5 — 1所示。 图5— 1 通常,把端口 1— 1处的U 和I i 称为输入电压和输入电流,而把端口 2—2处的U 2和-I 2 称为输出电压和输出电流。 Ui 、I 1和U 2>12的指定参考方向如图 5— 1中所示。根据输入电 压和电流与输出电压和电流的相互关系, 负阻抗变换器可分为电流反向型 (CNIC )和电压反向 型(VNIC )两种,对于 CNIC,有 式中K 1为正的实常数,称为电流增益。由上式可见,输出电压与输入电压相同,但实 际输出电流-I 2不仅大小与输入电流I 1不同(为丨1的1/ K 1倍)而且方向也相反。换言之,当 输入电流的实际方向与它的参考方向一致时,输出电流的实际方向与它的参考方向相反 (即 和I 2的参考方向相同)。对于VNIC,有 U= K 2U 2 I 1 = 12 式中K 2是正的实常数,称为电压增益。由上式可见,输出电流 -I 2与输入电流I 1相同, 但输出电压U 2不仅大小与输入电压 U 1不同(为U 1的1/K 2倍)而且方向也相反。若在 NIC 的输 出端口 2—2接上负载Z L ,则有L b = -I 2乙。对于CNIC 从输入端口 1 — 1看入的阻抗为

乙n1 Ui 丨 1 K1I2 1 K1 Z L 对于VNIC,从输入端口 1 —1'看入的阻抗为 Z in1 Ui I1 K2U2 K2 U2 K2Z L 若倒过来,把负载Z L接在输入端口 CNIC,有 1 —1',则有U=-l 1Z L,从输出端口2—2看入,对于

2.4GHZ微带渐变阻抗变换器设计报告

2.4GHZ微带渐变阻抗变换器设计报告

2.4GHZ微带渐变阻抗变换器设计报告 一、设计任务 1.1名称:设计一个工作频率为 2.4GHZ,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。 1.2主要技术指标:S11<-20dB,S21<-0.7dB,re(Z0)=50Ω,VWAR尽量接近于1。 二、设计过程 2.1原理: 2.1.1 阻抗匹配的概念 阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。一旦匹配完善,传输线即处于行波工作状态。 在微波电路中,常用的匹配方法有: (1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。 (2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。 (3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)

将不匹配负载产生的反射波吸收掉。 传输线的核心问题之一是功率传输。对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。 2.1.2 阻抗匹配的方法 阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。 图3-1 阻抗匹配 匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。常用的匹配器有有λ/4阻抗变换换器和支节匹配器。本论文主要采用λ/4阻抗变换器。 2.1.3 λ/4阻抗变换器 λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保

阻抗变换器

实验六 滤波器 一、实验要求 设计一节4节切比雪夫匹配变换器,以匹配40Ω的传输线到60Ω的负载,在整个通带上最大允许的驻波比值为1.2,求出其带宽,并画出输入反射系数与频率的关系曲线。 二、实验目的 (1) 掌握切比雪夫电路的原理及其基本设计方法。 (2) 利用Microwave Office 或Ansoft Designer 软件进行相关电路设计和仿真。 三、预习内容 (1)切比雪夫的相关原理。 (2)切比雪夫匹配变换器的设计方法。 四、理论分析 切比雪夫变换器是以通带内的波纹为代价得到最佳带宽的。若能容忍这种通带特性的话,对于给定节数,切比雪夫变换器的带宽将明显其他变换器的带宽。切比雪夫变换器是通过使Γ与切比雪夫多项式相等的方法设计的,因为切比雪夫多 项式具有这类变换器所需的最佳特性。 1、切比雪夫多项式 第n 阶切比雪夫多项式是用() x T n 表示的n 次多项式。前4阶切比雪夫多项式 是 188341224433221+-=-=-==x x T x x T x T x T 从而得到切比雪夫的递推公式: ()()() x T x xT x T n n n 112-+-= 现在令θcos =x ,得切比雪夫表达式可表示为:θθn T n cos )(cos =

或者更一般的表达式() () () ?? ? ? ? > ? ≤ ? = - - 1 1 cos cos 1 1 x x ch n ch x x n x T n 因为θn cos可展开为θ) 2 cos(m n-形式的多项和,从而切比雪夫又可改写为: 上面的结果用于高到4节的匹配变换器的设计。 2、切比雪夫变换器的设计 我们现在通过使) (θ Γ正比于 ()θ θcos sec m N T 来综合切比雪夫的等波纹通带,此处N是变换节数。 ()()() {} ()θ θ θ θ θ θ θ θ cos sec 2 cos 2 cos cos 2 1 m N jN n jN T Ae n N N N e - - = + - Γ + + - Γ + Γ = ΓL L 我们可令θ=0求出常数A,于是有 所以,我们有 现在,若通带内最大允许的反射系数的幅值为 m Γ,则有A m = Γ。因为在通带内 ()θ θcos sec m N T 的最大值为1。另外可确定 m θ为

负阻抗变换器

实验五 负阻抗变换器的研究 一、实验目的 1. 了解负阻抗变换器的原理及其运放实现。 2. 通过负阻器加深对负电阻(阻抗)特性的认识,掌握对含有负阻的电路的分析测量方法。 二、实验原理 负阻抗变换器(NIC)是一种二端口器件,如图5—1所示。 图5—1 通常,把端口1—1’ 处的U 1和I 1称为输入电压和输入电流,而把端口2—2’ 处的U 2和-I 2 称为输出电压和输出电流。U 1、I 1和U 2、I 2的指定参考方向如图5—1中所示。根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(CNIC)和电压反向型(VNIC)两种,对于CNIC ,有 U 1 =U 2 I 1=( 1K -)(2I -) 式中K 1为正的实常数,称为电流增益。由上式可见,输出电压与输入电压相同,但实际输出电流-I 2不仅大小与输入电流I 1不同(为I 1的1/ K 1倍)而且方向也相反。换言之,当输入电流的实际方向与它的参考方向一致时,输出电流的实际方向与它的参考方向相反(即和I 2的参考方向相同)。对于VNIC ,有 U 1= 2K - U 2 I 1 = 2I - 式中K 2是正的实常数,称为电压增益。由上式可见,输出电流-I 2与输入电流I 1相同,但输出电压U 2不仅大小与输入电压U 1不同(为U 1的1/K 2倍)而且方向也相反。若在NIC 的输出端口2—2’ 接上负载Z L ,则有U 2= -I 2Z L 。对于CNIC ,从输入端口1—1’ 看入的阻抗为 L in Z K I K U I U Z 1 2121111-=== 对于VNIC ,从输入端口1—1`看入的阻抗为 L in Z K I U K I U K I U Z 22 22222111-==--== 若倒过来,把负载Z L 接在输入端口1—1’ ,则有U 1=-I 1Z L ,从输出端口2—2’ 看入,对于 CNIC ,有

绪论 选频网络练习题

绪论 选频网络练习题 一、选择题 1、在调谐放大器的LC 回路两端并上一个电阻R ,可以 C 。 A .提高回路的Q 值 B .提高谐振频率 C .加宽通频带 D .减小通频带 2、在高频放大器中,多用调谐回路作为负载,其作用不包括 ( D ) A .选出有用频率 B .滤除谐波成分 C .阻抗匹配 D .产生新的频率成分 3、并联谐振回路的通频带是指其输出电压下降到谐振电压的 所对应的频率范围, 用7 .02f ?表示。 ( D ) A 、1/2 B 、1/3 C 、1/3 D 、1/2 4、LC 并联谐振回路具有选频作用。回路的品质因数越高,则 (A ) A 、回路谐振曲线越尖锐,选择性越好,但通频带越窄。 B 、回路谐振曲线越尖锐,选择性越好,通频带越宽。 C 、回路谐振曲线越尖锐,但选择性越差,通频带越窄。 D 、回路谐振曲线越尖锐,但选择性越差,通频带越宽。 5、地波传播时,传播的信号频率越高,损耗 B 。 ( ) A 、越小 B 、越大 C 、不变 D 、无法确定 6、并联谐振回路谐振时,电纳为零,回路总导纳为 B 。 ( ) A .最大值 B .最小值 C .零 D .不能确定 7、谐振回路与晶体管连接时,常采用部分接入方式实现阻抗匹配,控制品质因数以达到对通频带和选择性的要求,图示电路中Is 信号源的接入系数s p 为 C 。 ( ) s i s R 1 L 2 L 1 C 2 C A .12L L B .21L L C .112L L L + D .2 12L L L + 8、电路与上题同,晶体管基极与谐振回路的接入系数L p 为 D 。 ( ) A .12 C C B . 21 C C C .112C C C + D .2 12C C C + 9、考虑信号源内阻和负载后,LC 选频回路的通频带变 D ,选择性变 。( ) A 、小、好 B 、大、好 C 、小、差 D 、大、差

阻抗变换变换的方法和计算

1.在电子设备中,往往要求负载能获得最大输出功率。负载若要获得最大功率,必须满足负载电阻与电源电阻相等的条件,称为阻抗匹配。但在一般情况下,负载电阻是一定的,不能随意改变。而利用变压器可以进行阻抗变换,适当选择变压器的匝数比,把它接在电源与负载之间,就可实现阻抗匹配,使负载获得最大的输出功率。 如图,从变压器原绕组两端点看进去的阻抗为 从变压器副绕组两端点看进去的阻抗为 因为

表明:变比为K的变压器,可以把其副绕组的负载阻抗,变换成为对电源来说扩大到K2倍的等效阻抗。 2. 假说变压器初级/次级的匝数比为n:1,根据变压器的特性,次级电压为初级的1/n,电流为初级的n倍。 初级阻抗=初级电压/初级电流 次级阻抗=次级电压/次级电流=(1/n)初级电压/(n初级电流)=[1/(nn)]初级阻抗。或者说初级阻抗=(nn)次级阻抗。 这说明,变压器各线圈的阻抗,与线圈匝数的平方成正比。利用这一特点,可以用变压器不同匝数的线圈来变换阻抗。最简单的,就是电视机天线,用扁馈线时阻抗是300Ω,接电视机的天线输入端是75Ω,必须用一个阻抗变换插座,其中就是一个铁氧体磁芯的2:1的变压器,将300Ω与75Ω进行阻抗匹配。 3. 变压器除了可变压外还可作为一个阻抗变换器件,这在有线广播中经常用到。变压器的初次级的匝数比n=n1/n2=V1/V2,V1、V2分别是初、次级的电压,n1、n2分别为初、次级的绕组匝数。又有V1V1=PZ1、V2V2=PZ2 式中P是变压器的功率,Z1、Z2分别是初次的阻抗, 所以有Z1/Z2=V1V1/V2/V2=n1n1/n2n2 即变压器的初次级阻抗比等于初次级电压比的平方和等于匝数比的平方。

相关主题
文本预览
相关文档 最新文档