当前位置:文档之家› 空间向量和立体几何

空间向量和立体几何

空间向量和立体几何
空间向量和立体几何

知识清单:

1,空间向量及运算:

空间向量和平面向量的加、减、数乘一样。

1.1 空间向量的定义:空间中既有大小又有方向的向量叫做空间向量,用有向线段表示

空间向量的定义AB u u u v 或a v

,是自由向量,不讲究起点,空间向量的大小叫做空间向

量的长度或者模。记AB u u u v 或者a v

1.2 空间向量的夹角:过空间一点O 作OA a =u u u v v ,OB b =u u u v v ,则AOB ∠叫做a v 与b v

的夹

角,记作,a b v v ,0,a b π≤≤v v ,当,a b v v 2

π

=时,a v 与b v 垂直,记a b ⊥v v 。当

,a b v v

0=或π时,//a b v v 。

1.3 特殊空间向量:当a v 0=时,称a v 为零向量,记a v

0=,与任意向量平行和垂直。

当a v 1=,称a v 为单位向量,对任意非零向量a v ,a a v v 叫做a v 的单位向量。当a v =-b v

时,

称a v 与b v

互为相反向量。

1.4 方向向量与法向量:当a v 与l 平行时,称a v

(0)≠是l 的方向向量,一直线的方向向

量有无数个。当a v 与平面α垂直时,称a v

(0)≠是平面α的法向量,一平面的法向量

有无数个。

1.5 向量的线性运算:

1.5.1 向量的加法符合平行四边形法则,减法符合三角形法则,又满足规律:

()()a b c a b c ++=++v v v v v v ,a b b a +=+v v v v

,若n 个向量相加且首尾相接,则其和向量以

开始起点为起点,以最终的终点为终点一样,即

01122103n n n A A A A A A A A A A -+++???+=u u u u v u u u u v u u u u v u u u u u v u u u u u v 。

1.5.2向量的数乘:a λv 与平面向量意义相同。a λv a λ=v

,0λ>时,a λv 与a v 同向;0λ<时,a λv 与a v 反向;满足a a λλ=v v ;()a b a b λλλ+=+v v v v

;()a a a μλμλ+=+v v v ;()()a a λμλμ=v v

1.5.3 向量的共线定理:b v 0≠时,//a b a b λ?=v v v v

1.6 空间向量的数量积:cos ,a b a b a b ?=?v v v v v v

是一个实数。

满足规律:a b b a ?=?v v v v

()

a b c a b a c ?+=?+?v v v v v v v

()()

a b a b λλ?=?v v v v

不满足结合律,即:()()a b c a b c ??≠??v v v v v v

应用:

a =v

0a b a b ⊥??=v v v v

cos (0,0)a b a b a b a b

??=≠≠?v v

v v v

v v v

2,空间向量基本定理及坐标运算:

2.1 空间向量基本定理:若向量123,,e e e u v u u v u v

是空间三个不共面向量,a v 是空间任意向量,

那么存在唯一一组实数123,,λλλ使得112233a e e e λλλ=++v u v u u v u v

,其中空间中不共面的

向量123,,e e e u v u u v u v

叫做这空间的一组基底。

2.2 单位正交基:当一组基底,,i j k v v v 两两垂直,且1i j k ===v v v

,则,,i j k v v v 叫做单位

正交基底,对于任一向量a v ,有a v xi y j zk =++v v v ,其中x a i =?v v ,y a j =?v v

z a k =?v v 叫做a v

在,,x y z 轴上的投影。

2.3 空间向量坐标运算: 111(,,)a x y z =v 222(,,)b x y z =v

121212(,,)a b x x y y z z +=+++v v

121212(,,)a b x x y y z z -=---v v

111(,,)a x y z λλλλ=v

121212(,,)a b x x y y z z ?=v v

2.4 向量坐标的应用: 111(,,)a x y z =v 222(,,)b x y z =v

若0b ≠v ,则//a b v v =1

2

1212

x x y y z z λλλ?=?=??

=? R λ∈

a =v

1212120a b x x y y z z ⊥?++=v v

121212

cos ,x x y y z z a b ++=

v v

(0,0)a b ≠≠v v

2.5 待定系数法求平面法向量步骤:

(1)设平面法向量为(,,)n x y z =v

(2)找出平面内两不共线向量坐标 111(,,)a x y z =v 222(,,)b x y z =v

(3)法向量n v 与,a b v v 都垂直0

n a n b ??=????=??v v

v v

(4)解方程组,取其中一个解,就为法向量的坐标。

3,用向量解决平行和垂直问题:直线1l 的方向向量设为1s u v

,直线2l 的方向向

量设为2s u u v ,

平面α的法向量设为1n u v ,平面β的法向量设为2n u u v

,则:

1212////l l s s ?u v u u v ,1212l l s s ⊥?⊥u v u u v ,111//l s n α?⊥u v u v

111//l s n α⊥?u v u v ,12////n n αβ?u v u u v ,12n n αβ⊥?⊥u v u u v

4,用向量求夹角:

4.1 直线间夹角: 当1l ,2l 共面时,把两直线夹角中范围在[0,

]2

π内的角叫做1l ,2

l 间的夹角。当1l ,2l 互为异面直线时,在1l 上任取一点A 作//AB 2l ,把1l 和AB 间的夹角叫做异面直线1l 和2l 的夹角。

向量与夹角间的关系:已知直线1l 和2l 的方向向量为1s u v ,2s u u v

当120,2

s s π≤≤u v u u v 时,

直线1l 和2l 的夹角等于12,s s u v u u v ;当12,2

s s π

π<≤u v u u v 时,直线1l 和2l 的夹角等于

12,s s π-u v u u v 。

4.2 平面间夹角:两平面所成的二面角中,范围在0,

2π??

????

内叫做两平面间的夹角。 向量与夹角的关系:平面1π与2π法向量为1n u v 和2n u u v

,θ为两平面所称二面角的平面

角由12,n n u v u u v 确定:当120,2n n π≤≤u v u u v 时,θ=12,n n u v u u v ; 当12,2

n n π

π<≤u v u u v 时,

θ=π-12,n n u v u u v

4.3 直线与平面的夹角:平面外一条直线与它在平面内投影的夹角叫做直线与平

面的夹角,范围在0,2π??

????

。设直线l 方向向量为a v ,平面法向量为n v ,直线与平面

所成的角为θ,则:

sin cos ,a n a n a n

θ?==?v v v v

v v

当,2a n π>v v 时,θ=,2a n π-v v ,sin cos ,a n θ=-v v

当,2a n π

,2

a n π-v v

5,用向量求距离:一个图形中任一点与另一个图形中任一点间距离的最小值叫做图

与图形之间的距离。

5.1 点到直线距离:因为直线和直线外一点确定一个平面,所以空间一点到直线距离

实际上就是空间中某一平面内点到直线的距离。l 是过点p 平行于向量s v

的直线,

A 是直线l 外一定点,点A 到l 的距离为220

d PA PA s =-?u u u v u u u v u u v (0s u

u v 为向量s v 方向上的单位向量)

5.2 点到平面的距离:π是过点p 的垂直向量n v

的平面,A 是π外一定点,点A 到平

面π的距离0d PA n =?u u u v u u v (0n u u

v 为向量n v 方向上的单位向量)。

5.3 线面距离和面面距离:

5.3.1 直线到它平行平面间的距离:一直线与一平面平行,这直线上任一点到面间的

距离称为线面距离,一般将线面距离转化为点面距或面面距来求。

5.3.2 两个平行平面间的距离:和两个平行平面同时垂直的直线叫做这两平面的公垂

线,公垂线夹在两平面之间的部分叫做这两个平面的公垂线段,公垂线段的长度称为面面距,一般将面面距转化为点面距来求。

基础题:

1,在空间四边形ABCD 中,若AB a =u u u r r ,BD b =u u u r r ,AC c =u u u r r ,则CD uuu r

等于 ( )

A .()a b c --r r r

B .()c b a --r r r

C .a b c --r r r

D .()b c a --r r r

2. 在以下命题中,正确命题的个数为 ( )

①若,a b r r

共线,则a r 与b r 所在直线平行;

②若,a b r r

所在直线是异面直线,则a r 与b r 一定不共面; ③若,,a b c r r r 三向量两两共面,则,,a b c r r r

三向量共面;

④若,,a b c r r r 三向量共面,则由,a b r r 所在直线所确定的平面与由,b c r r

所在直线确定的平面是

同一个平面

A .0

B .1

C .2

D .3

3,(广东省高明一中2009届高三上学期第四次月考)若a 、b 、c 为任意向量,m ∈R ,下列等式不一定成立的是( )

A. (a+ b) +c=a+ (b+ c)

B. (a+ b) ·c=a·c+ b·c

C. m(a+ b)=ma+ mb

D. (a·b)c=a(b·c)

4,(陕西省西安铁一中2009届高三12月月考) 与向量(-3,-4,5)共线的单位向量是 ( ) (A )(

32222,,-)和(32222,,--); (B )(32222

,,-

); (C )(32222,,1052)和(32222,,1052---); (D )(32222

,,

1052

--); 5,在平行六面体1111ABCD A B C D -中,化简1()AB AD DD BC ++-u u u r u u u r u u u u r u u u r

的结果为

______________;

6,若空间三点A (1,5,-2),B (2,4,1),C (p,3,q+2)共线,则p=______,q=______。

7,(湖南省衡阳市八中2009届高三第三次月考试题)已知123F i j k =++u u r r r r

223F i j k =-+-u u r r r r ,3345F i j k =-+u u r r r r ,若123,,F F F u u r u u r u u r

共同作用于一物体上,使物体从点

M (1,-2,1)移动到N (3,1,2),则合力所作的功是 .

8,(广东省北江中学2009届高三上学期12月月考)在正三棱柱ABC —A1B1C1中,若AB=

BB1,则AB1与C1B 所成角的大小为( )

A.60°

B.90°

C.105°

D.75°

9,设向量()()3,5,4,2,1,832,,a b a b a b =-=-?r r r r r r

,计算并确定,λμ的关系,使

a b z λμ+r r

与轴垂直

10,如图,E 是正方体ABCD —A1B1C1D1的棱C1D1的中点,试求向量

所成

角的余弦值.

巩固题:

1,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是…( ) A.

B.4

C.3

D.2

2,在平面直角坐标系中, (2,3),(3,2)A B --,沿x 轴把平面直角坐标系折成120?的二面角后则线段AB 的长度为( )

A .2

B .211

C .32

D .42

3,若向量a=(1,λ,2),b=(2,-1,2),a 、b 夹角的余弦值为,则λ等于( )

A.2

B.-2

C.-2或

255 D.2或2

55- 4,( 湖南省衡阳市八中2009届高三第三次月考试题)已知,a b r r 均为单位向量,它们的夹角为

60?,那么3a b +r r

等于( )

A .7

B .10

C .13

D .4 5,设a=(x,4,3),b=(3,2,z),且a ∥b,则xz 等于( )

A.-4

B.9

C.-9

D. 649

6,如图,平面PAC ⊥平面ABC ,ABC ?是以AC 为斜边的等腰直角三角形,,,E F O 分

别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.设G 是OC 的中点, 证明://FG 平面BOE ;

7,(山西大学附中2008届二月月考)正三棱柱111ABC A B C -所有棱长都是2,D 是棱AC 的中点,E 是棱1CC 的中点,AE 交1A D 于点.H (1)求证:1AE A BD ⊥平面;

(2)求二面角1D BA A --的大小(用反三角函数表示); (3)求点1B 到平面1A BD 的距离.

8,(09山东理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1分别是棱AD 、AA 1的中点.

(1) 设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1; (2) 证明:平面D 1AC ⊥平面BB 1C 1C. 提高题:

1,(09山东理)设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B. 0PB PC +=u u u r u u u r r C. 0PC PA +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r

2,(09山东理)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

3,(2010文科)直三棱柱111ABC A B C -中,若90BAC ?∠=,1AB AC AA ==,则异面直

线1BA 与1AC 所成的角等于( )

E

A

B

C

F

E 1

A 1

B 1

C 1

D 1

D

A, 30? B, 45? C, 60? D, 90?

4,(2010文科9)正方体1111ABCD A B C D -中,1BB 与平面1ACD 所成的角的余弦值为( )

A,

23 B, 3 C, 2

3

D, 6 5,(2011全国理)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题

12:10,3P a b πθ??+>?∈???? 22:1,3P a b πθπ??

+>?∈

???

3:10,3P a b πθ??->?∈???? 4:1,3P a b πθπ??

->?∈ ???

其中的真命题是( )

A .14,P P

B .13,P P

C .23,P P

D .24,P P 6,(2011浙江理)下列命题中错误..的是( )

A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β

B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β

C .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ?,那么l γ⊥平面

D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β

7,(2011全国文)若直线l 不平行于平面a ,且l a ?,则( ) A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线

C .a 内存在唯一的直线与l 平行

D .a 内的直线与l 都相交

8,(2011全国文)(本题满分14分)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的

中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (Ⅰ)证明:AP ⊥BC ;

(Ⅱ)已知8BC =,4PO =,3AO =,2OD =.求二面角B AP C --的大小.

9,(2011全国理)(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD. (Ⅰ)证明:PA ⊥BD ;

(Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。

10,20.(本题满分15分)

如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2 (Ⅰ)证明:AP ⊥BC ;

(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM

的长;若不存在,请说明理由。

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 (1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0 例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面 ABCD , 的中点, PA =AB =1, BC =2. (1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC. [证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立 空 A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 , uuur uuur uuur 1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0), uuur ∥AB ,即 EF ∥AB. 又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB. uuur uuur uuur uuur (2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC. 又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC , 直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4) 1 uuur 1 uuur F 0 , 1, 2 ,EF = -2, 0, 0 ,PB = (1,0, uuur uuur E , F 分别是 PC , PD 间直角坐标系如图所示,则 DC =(1,0,0), AB =(1,0,0). uuur 1uuur uuur (1)因为 EF =- 2AB ,所以 EF

(三)立体几何与空间向量

(三)立体几何与空间向量 1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P A⊥平面ABCD,P A=AB,M是PC上一点,且BM⊥PC. (1)求证:PC⊥平面MBD; (2)求直线PB与平面MBD所成角的正弦值. (1)证明连接AC,由P A⊥平面ABCD, BD?平面ABCD,得BD⊥P A, 又BD⊥AC,P A∩AC=A, P A,AC?平面P AC, ∴BD⊥平面P AC,又PC?平面P AC,∴PC⊥BD. 又PC⊥BM,BD∩BM=B, BD,BM?平面MBD, ∴PC⊥平面MBD. (2)解方法一由(1)知PC⊥平面MBD, 即∠PBM是直线PB与平面MBD所成的角. 不妨设P A=1,则BC=1,PC=3,PB= 2. ∴PC2=PB2+BC2,∴PB⊥BC,又BM⊥PC, ∴sin∠PBM=cos∠BPC=PB PC=2 3 = 6 3, 故直线PB与平面MBD所成角的正弦值为 6 3. 方法二以A为原点,AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系A-xyz(如图所示),

不妨设P A =AB =1, 则P (0,0,1),B (1,0,0),C (1,1,0). 由(1)知平面MBD 的一个法向量为PC → =(1,1,-1), 而PB → =(1,0,-1). ∴cos 〈PB →,PC → 〉=(1,0,-1)·(1,1,-1)2×3=63, 故直线PB 与平面MBD 所成角的正弦值为 63 . 2.如图,已知△DEF 与△ABC 分别是边长为1与2的正三角形,AC ∥DF ,四边形BCDE 为直角梯形,且DE ∥BC ,BC ⊥CD ,点G 为△ABC 的重心,N 为AB 的中点,AG ⊥平面BCDE ,M 为线段AF 上靠近点F 的三等分点. (1)求证:GM ∥平面DFN ; (2)若二面角M -BC -D 的余弦值为 7 4 ,试求异面直线MN 与CD 所成角的余弦值. (1)证明 延长AG 交BC 于点O ,连接ON ,OF . 因为点G 为△ABC 的重心, 所以AG AO =2 3,且O 为BC 的中点. 又由题意知,AM →=23AF → , 所以AG AO =AM AF =23, 所以GM ∥OF . 因为点N 为AB 的中点,

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

高中数学必背公式——立体几何与空间向量(供参考)

高中数学必背公式——立体几何与空间向量 知识点复习: 1. 空间几何体的三视图“长对正、高平齐、宽相等”的规律。 2. 在计算空间几何体体积时注意割补法的应用。 3. 空间平行与垂直关系的关系的证明要注意转化: 线线平行 线面平行 面面平行,线线垂直 线面垂直 面面垂直。 4.求角:(1)异面直线所成的角: 可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>= 1212122 222 2 2 1 1 1 222 |||||| a b a b x y z x y z ?= ?++?++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)。 (2)直线与平面所成的角: 在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin |||| AB m AB m β?= (m 为平面α的法向量). (3)二面角: 方法一:常见的方法有三垂线定理法和垂面法; 方法二:向量法:二面角l αβ--的平面角cos |||| m n arc m n θ?=或cos ||||m n arc m n π?- (m ,n 为平面α,β 的法向量). 5. 求空间距离: (1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:|| || AB n d n ?= (n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: || || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。 题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体,

空间向量与立体几何知识点归纳总结52783

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1 )向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++。

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

立体几何与空间向量

中档大题规范练2 立体几何与空间向量 1.如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点. (1)求证:PO ⊥平面ABCD ; (2)求B 点到平面PCD 的距离; (3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为 63?若存在,求出PQ QD 的值;若不存在,请说明理由. (1)证明 因为P A =PD =2,O 为AD 的中点, 所以PO ⊥AD ,因为侧面P AD ⊥底面ABCD , 所以PO ⊥平面ABCD . (2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1). PB →=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),CP →=(-1,0,1),PD →=(0,1,- 1). 则????? u · CP →=-x +z =0,u · PD →=y -z =0,取z =1,得u =(1,1,1), B 点到平面PDC 的距离d =|BP →·u ||u |=33 . (3)解 假设存在,则设PQ →=λPD → (0<λ<1), 因为PD →=(0,1,-1),所以Q (0,λ,1-λ), 设平面CAQ 的法向量为m =(a ,b ,c ),

则????? m ·AC →=0,m ·AQ →=0,即????? a + b =0, (λ+1)b +(1-λ)c =0, 所以取m =(1-λ,λ-1,λ+1), 平面CAD 的法向量n =(0,0,1), 因为二面角Q —AC —D 的余弦值为 63 , 所以|m·n||m||n |=63 , 所以3λ2-10λ+3=0, 所以λ=13或λ=3(舍去),所以PQ QD =12 . 2.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE . (1)证明:平面DFC ⊥平面D 1EC ; (2)求二面角A —DF —C 的大小. (1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系, 则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2). ∵E 为AB 的中点, ∴E 点坐标为(1,1,0), ∵D 1F =2FE , ∴D 1F →=23D 1E →=23 (1,1,-2) =(23,23,-43 ), DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43 )

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式 cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求 两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的范围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距

立体几何与空间向量

10 第七部分 立体几何与空间向量 一、知识梳理 (一)基本知识梳理:见《步步高》文科P123—124 ;理科P135—137 . (二)要点梳理: 1。平面的基本性质是高考中立体几何的重点容.要掌握平面的基本性质,特别注意:不共线的三点确定一个平面.考察点和平面的位置关系时,要注意讨论点在平面的同侧还是两侧,会根据不同的情况作出相应的图形. [例]已知线段AB 长为3,A 、B 两点到平面α的距离分别为1与2,则AB 所在直线与平面α所成角的大小为_____; 解析:要注意到点A 、B 是平面α同侧还是在平面α的两侧的情况.当A 、B 在平面α的同侧时,AB 所在直线与平面α所成角大小为31arcsin ;当A 、B 在平面α的两侧时,AB 所在直线与平面α所成角为 2 π. 2。线面关系中三类平行的共同点是“无公共点”;三类垂直的共同点是“成角90°”.线面平行、面面平行,最终化归为线线平行;线面垂直、面面垂直,最终化归为线线垂直. [例]已知平面βα,,直线b a ,.有下列命题:(1) βαβα////a a ?????;(2)αββα//a a ?? ?? ⊥⊥ (3)βαβα////??????⊥⊥b a b a ;(4)βαβα////??? ? ?? ??b a b a .其中正确的命题序号是______. 解析:立体几何中的符号语言所描述的问题是高考命题中的重点,基本上每年的高考在选择或填空题中都会有涉及,要充分理解符号语言所体现的几何意义.(1)体现的是两平面平行的一个性质:若两平面平行,则一个平面的任一直线与另一平面平行.(2)要注意的是直线a 可能在平面α.(3)注意到直线与平面之间的关系:若两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直.且垂直于同一直线的两个平面平行.(4)根据两平面平行的判定知,一个平面两相交直线与另一个平面平行,两平面才平行.由此知:正确的命题是(1)与(3). 3。直线与平面所成角的围是]2, 0[π ;两异面直线所成角的围是]2 ,0(π .一般情况下,求二面角往往是指定 的二面角,若是求两平面所成二面角只要求出它们的锐角(直角)情况即可. [例]设A 、B 、C 、D 分别表示下列角的取值围:(1)A 是直线倾斜角的取值围;(2)B 是锐角;(3)C 是直线与平面所成角的取值围;(4)D 是两异面直线所成角的取值围.用“?”把集合A 、B 、C 、D 连接起来得到___. (答案:A C D B ???) 4。立体几何中的计算主要是角、距离、体积、面积的计算.两异面直线所成角、直线与平面所成角的计算是重点.求两异面直线所成角可以利用平移的方法将角转化到三角形中去求解,也可以利用空间向量的方法,特别要注意的是两异面直线所成角的围.当求出的余弦值为a 时,其所成角的大小应为||arccos a . [例]正方体ABCD -A 1B 1C 1D 1中,E 是AB 中点,则异面直线DE 与BD 1所成角的大小为_____. (答案:515 arccos ) 特别需要注意的是:两向量所成的角是两向量方向所成的角,它与两向量所在的异面直线所成角的概念是 不一样的.本题中的向量1BD 与所成的角大小是两异面直线DE 与BD 1所成角的补角. 5。直线与平面所成角的求解过程中,要抓住直线在平面上的射影,转化到直角三角形中去求解.点到平面的距离的求解可以利用垂线法,也可以利用三棱锥的体积转化. C A 1 B 1 C 1 E

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

高中数学讲义微专题64 空间向量解立体几何(含综合题习题)

微专题64 利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面 ,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥ (3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?==

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

空间向量与立体几何知识总结(全国高考必备!)

y k i A(x,y,z) O j x z 辅导科目:数学 授课教师: 全国章 年级: 高二 上课时间: 教材版本:人教版 总课时: 已上课时: 课时 学生签名: 课 题 名 称 教 学 目 标 重点、难点、考点 教学步骤及内容 空间向量与立体几何 一、空间直角坐标系的建立及点的坐标表示 空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k (单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a 在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设b a ,是空间两个非零向量,我们把数量>

空间向量与立体几何教材分析

《空间向量与立体几何》教材分析 一、内容安排 本章是选修2-1的第3章,包括空间向量的基本概念和运算,以及用空间向量解决直线、平面位置关系的问题等内容。通过本章的学习,要使学生体会向量方法在研究几何图形中的作用,并进一步培养学生的空间想象力。 空间向量为处理立体几何问题提供了新的视角,它是解决空间中图形的位置关系和度量问题的非常有效的工具。本章以平面向量的学习为基础,通过类比的方法,引导学生经历向量及其运算由平面向空间推广的过程,然后通过典型例题引导学生学习用向量方法处理空间几何问题的基本思想方法。 二、主要特点 1. 强调类比、推广、特殊化、化归等思想方法。充分利用空间向量与平面向量之间的内在联系,通过类比,引导学生自己将平面向量中的概念、运算以及处理问题的方法推广到空间,既使相关内容相互沟通,又使学生学习类比、推广、特殊化、化归等思想方法,促使他们体会数学探索活动的基本规律,提高他们对向量的整体认识水平。空间向量的引进、运算、正交分解、坐标表示、用空间向量表示空间中的几何元素等,都是通过与平面向量的类比完成的。在空间向量运算中,还注意了与数的运算的对比。另外,通过适当的例子,对解决空间几何问题的三种方法,即向量方法、解析法、综合法进行了比较,引导学生对各自的优势以及面临问题时应当如何做出选择进行认识。 2. 突出用空间向量解决立体几何问题的基本思想。根据问题的特点,以适当的方式把问题中涉及的点、线、面等元素用空间向量表示出来,建立起空间图形与空间向量的联系;然后通过空间向量的运算,研究相应元素之间的关系(距离和夹角等问题);最后对运算结果的几何意义作出解释,从而解决立体图形的问题。 3. 用恰时恰点的问题引导学生的数学思维。使用了大量的“探究”、“思考”等,引导学生对相应的数学内容进行深入研讨。例如,在对空间向量的各种运算与相应的平面向量运算的异同的比较与证明、空间向量的正交分解定理的推导及向空间向量基本定理的推广、如何对各种几何元素及其关系进行恰当的向量表示和坐标表示、如何根据具体问题的需要选择恰当的方法等,都用“探究”、“思考”等方式提出问题,帮助学生形成积极主动的学习态度,转变学生的学习方式。 三、背景分析

相关主题
文本预览
相关文档 最新文档