当前位置:文档之家› 光纤传感中的光学原理及效应概要

光纤传感中的光学原理及效应概要

光纤传感中的光学原理及效应概要
光纤传感中的光学原理及效应概要

第1章:光纤传感中的光学原理及效应 1.1光学反射原理

分为镜面反射和漫反射

基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。

1.2光学折射原理

镜面反射和漫反射情况

1.3光学吸收原理

选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律:

Lambert-Beer 定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。

当气体浓度、光程均很小的时候,可以近似为:

1.4光学多普勒效应

θ

cos 11f f 0

2

20

0c

u c

u -=

雷达测速仪

检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 1.5声光效应

超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。

利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。

主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。

1.6磁光效应

具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。

A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数

B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类:

①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面

C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。

1.7电光效应

电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。

+++=20bE aE n n (6-3)

在上式中,

a E 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

应;bE 2

是二次项,由该项引起的折射率变化,称为二次电光效应或克尔(Kerr )效应。

对于大多数晶体,一次电光效应要比二次效应显著,可略去二次项。 但是在具有对称中心的晶体中,不存在一次电光产效应。 电光效应已被广泛用来实现对光波的控制,并做成光调制器、光偏转器和电光滤波器件等。

1.8弹光效应

由机械应力引起的材料折射率变化的现象称为弹光效应(Elasto-Optical Effect )。由于沿应力方向发生折射率变化,原来同性材料也可变成各向异性,即折射率椭球发生变化,而呈现双折射。因此,对弹光物质通光和施加应力时,由于应力和与应力垂直的方向上产生位相差,故可以利用这种效应制作位移、振动和压力等光学传感器。

1.9光声效应

激光光束照射到固体表面或气体和液体中,会与被照射物质相互作用产生一定强度和频率的声波,这就是光声效应。光声效应作为固体物质表面检测和物质成分含量分析的有效手段,已经广泛应用于物理、化学、医学、海洋、环境和材料等研究领域,有着广阔的发展前景。同样,光声效应也可以应用于气体和液体的成分含量的检测。

第2章:光纤传感原理及应用技术

2.1相位调制型光纤传感器技术

相位调制型光纤传感器的基本传感机理是:通过被测能量场的作用,使光纤内传播的光波相位发生变化,再利用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。光纤中光波的相位,一方面由光纤的物理长度、折射率及其分布、波导横向几何尺寸所决定。一般来说,应力、应变、温度等外界物理量能直接改变上述三个波导参数,从而产生相位变化,实现光波的相位调制。另一方面也可以由Sagnac 效应产生。

光相干条件

两列光波叠加在一起能产生干涉现象,但并非任意两列光波相遇都能产生干涉现象。 必要条件:频率相同的两光波在相遇点有相同的振动方向和固定的相位差。 补充条件:A-两光波在相遇点所产生的振动的振幅相差不悬殊。 B-两束光波在相遇点的光程差不能太大。 四种常见的光纤干涉仪

到达探测器的两束光的光场分别为:

()[]s s s s t j E t e ?ω+=exp

()[]L L L L t j E t e ?ω+=exp

总光场为:[][]L L L s s s t j E t j E E ?ω?ω+++=exp exp 总光强为:

()()[]()()[]()()[]

()[]

?ωω?ω?ω?ω?ω?ω?ω?+-++=+++*+++=+++=*

t I I I I t j E t j E t j E t j E t j E t j E I S L L S L S L L L s s s L L L s s s L L L s s s cos 2exp exp exp exp exp exp 2

其中,S L ???-=?

根据相干条件,S L ωω=,则有

[]??++=cos 2L S L S I I I I I

如果不L S I I =

()??+=cos 12S I I

马赫-曾德(Mach -Zehnder )光纤干涉仪

光纤干涉仪与普通的光学干涉仪相比,优点在于: (1)容易准直;

(2)可以通过增加光纤长度来增加光程,以提高干涉仪的灵敏度;

(3)封闭式的光路,不受外界干扰; (4)测量的动态范围大。

萨格纳克(Sagnac )光纤干涉仪

光在运动介质中的速度

上式中, V 是介质运动速度。

若光从A 点进入,分成CW 和CCW 两路光信号,当光纤环静止时,CW 和CCW 信号同时到达A 点,当光纤环按图中方向转动时,两路光信号在B 点相遇。此时

Ω??

? ??-+Ω+=

r n n c t r r t CW

CW 2112π

V n n c v ??

?

???-+=211

Ω??

? ??--Ω-=

r n n c t r r t CCW

CCW 2112π

由上两式得到

2

2n r n c r

t CW Ω-=

π

2

2n r n c r

t CCW Ω+=

π

所以顺时针和逆时针的时间差为

2

2

2222n

r c r r t t t CCW CW Ω-Ω

?=

-=?π 由于2222

n r c Ω>>,所以2

24c r t Ω

≈?π

位相差为:

λππω?c c

r Ω

=Ω≈?S 842

2 对于N 匝光纤,则相位差为

λ

π?c Ω=

?S 8N 第三部分:光纤光栅传感技术

自从加拿大通信研究中心的Hill 等人在1978年首次利用驻波法在掺锗光纤中研制出世界上第一支永久性的实现反向模式间耦合的光纤光栅——光纤布喇格光栅以来,对其研究与应用得到了很大的发展。

1993年,Hill 等人提出了用紫外光垂直照射相位掩模形成的衍射条纹曝光氢载光纤写入光纤布喇格光栅的相位掩模法,使得光纤光栅真正走向实用化和产品化。

1998年,美国东哈特福德联合技术研究中心的Meltz 等人提出了用两束相干的紫外光形成的干涉条纹侧面曝光氢载光纤写入光纤布喇格光栅的横向全息成栅技术,相对于内部写入法,该方法又称为外侧写入法。

光纤光栅的分类

光纤光栅主要可以从光纤光栅的周期、相位和写入方法等几个方面对光纤光栅进行分类。

1.按光纤光栅的周期分类通常把周期小于1 μm 的光纤光栅称为短周期光纤光栅,而把周期为几十至几百微米的光纤光栅称为长周期光纤光栅。前者的反射谱和后者的透射谱分别为如5-1(a )和5-1(b )所示。

2. 按波导结构

(a )均匀光纤光栅

(b )啁啾光纤光栅

(c )高斯变迹光纤光栅 (d )升余弦变迹光纤光栅

(e )相移光纤光栅 (f )超结构光纤光栅

光纤布拉格光栅的反射谱。

折射率分布为:

?

??

?

??

????

??+Λ+=)(2cos )(z z v m n z n eff eff φπδδ 耦合模方程

??????

?--=+=+---++)()(?)()()(?)

(*z a ik z a i dz

z da z ika z a i dz

z da σσ 其中,dz d φ

σδσ

21?-+=,???

? ??-=-=Λ-=B eff B n λλπββπβδ112为失调参数。 σ,k 分别为互耦合和自耦合系数,对于单模式布拉格光栅光纤,有

λδπσ)(2z n m eff =,λδπ)(*z n mv k k eff ==。

利用耦合模方程,可求得布拉格光栅的反射谱,进而求得其它特性,但不幸

的是,只有均匀光栅可求得精确解,对于非均匀光纤光栅,因为耦合模系数与z 有关,不再是常量,得不到精确解,而只能采用一些数学方法来近似求数值解,

尽管如此,均匀光纤光栅对了解非均匀光纤光栅的特性仍然是有很大的帮助。

对于均匀光栅,)(z n eff δ与z 无关,是常数,因此,由耦合模方程和边界条件1)2(=-+L a ,0)2(=-L a ,可求得反射系数,L 是光纤光栅的长度。

反射效率

2

2

222222?)?(cosh )?(sinh k L k L k R σ

σ

σ---=

在0?=σ

时,有最大反射功率,此时 )(tanh 2max kL R = 对应的波长值为:

B eff eff

n n m λδλ???

?

??+=1max

Λ=eff B n 2λ是设计的布拉格波长。

主瓣两零点之间的波长间隔为:

N

L

n eff B

20

=

?λλ

λ 光纤光栅传感原理

Λ=eff B n 2λ

()[]()[][]???

?

???++???

???+-???? ??-Λ=???

??? ?

??????????????

++?

?????+-????

??-Λ=?T a P P P n n T n dT dn a P P P n

n B ξευευλ12111221211122

212212

T

??Λ?Λ=1α热膨胀系数

T

n eff ??=

ξ热光系数

Bragg 波长的变化与温度之间的变化有良好的线性关系,光栅的温度灵敏度为

B B T T K λαξλ?+=??=)(/

一般α=5.5×10-7K -1;ξ=7.00×10-6K -1,如果光纤光栅的Bragg 波长为l550nm ,计

算光纤光栅的温度灵敏度?

光纤光栅的温度灵敏度为0.0117nm/℃,一般取0.01nm/℃ 。

ελλ78.0=?B

B

光纤光栅的应变灵敏度为

下面分析用MZI 作光纤光栅传感解调的灵敏度。

()??+=cos 12S I I ????=d I dI S sin 2

λλ

π

?Ld d ?=

?2

2

λλ

π

?

Ld I dI S ??=2

2sin 2

当2π

?=

?时,最灵敏。此时,S I I 2=。

λλ

π

Ld I dI S

?=2

22

λλ

π

Ld I dI S ?=222 设系统的信噪比为60dB ,则最小可探测器强度变化为

001.0SNR

1

2==S I dI 设mm L 1=?,nm 1550=λ,pm d 01=λ(对应裸光栅温度测量精度1度),

02-8784427e 2.615269632=S

I dI

,可以检测到。若温度测量精度提高到0.1度,则03-8784427e 2.615269632=S

I dI

,仍然可以检测。

如果0=??,则S I I 4=,当pm d 01=λ时,λλπ

?Ld d ?=?2

2,λλπ

?Ld ?+

=?2

20,

此时7727299

1.999658032?=S I I ,所以04-3502789e 1.709811364=S

I dI

。因为信号能量提高了2倍,这样信噪比提高3dB ,因此有最小探测强度变化为:

04-1865475e 7.07106781SNR

1

4==S I dI 。能检测否? 设光纤光栅反射带宽

,则相干长度等于12cm.

非平衡MZI 最大的缺点是因为两个臂长度不相等,所以两个臂受到外部环境因素的影响不相同,从而导致性能不稳定。

慢光效应对M-Z 干涉仪的影响

设信号从端口1输入,从端口4输出。则两个臂的位相差为:

()()[]()[]L n n L n n c

-=-=

?ωλ

πωω

ω?2

所以,

()()()n n c L

d dn n n c L d d g -=???

???+-=?ωωωω?

()22λ

πλωω?λ?c n n c L d d d d d d g -=?=? 慢光效应能增大群折射率g n ,因此,慢光效应将极大增加干涉仪的灵敏度。如果采用慢光效应更大的材料,干涉仪的灵敏度将增大更多。

第四部分:光纤气体传感技术

在气体传感中,所气体吸收的郎伯比尔(Lambert-Beer)定律:

I

其中: C :气体浓度;L :气体吸收光程; λ:气体吸收系数。光路损耗系数。 仅用上式很难测准气体的浓度,为什么?。

3

输出

为了低消光源功率波动和系统固有的噪声,要采用谐波检测。在二次谐波法中,设待测信号为:()()t n t ++αωsin A ,问,如何检测有用信号A ?并写出分析过程。

两种方法:

第五部分:分布式光纤传感技术

空间分辨率取决于光脉冲的宽度,设光脉冲宽度为p τ?,则空间分辨率为:

n

c z p 2τδ?=

其中,c 为光速,n 为光纤的有效折射率。

国内外光纤传感器的发展现状

国内外光纤传感器的发展现状 2011-6-29 8:25:44 讯石光通讯咨询网作者:iccsz 摘要:本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。 本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。前者报道了光纤光栅、分布式光纤传感技术以及光纤传感网的发展,这些是目前的研究热点;后者介绍了光层析成像技术、智能材料、光纤陀螺及惯性导航系统、工业工程类传感器(其中包括电力工业用高电压、大电流传感器,利用光纤的弹光效应和FBG器件的应力传感器等)。最后介绍了新型光纤材料与器件、氟化物玻璃光纤,碳涂覆光纤、以及正在研究中的蜂窝型波导光纤、液晶光纤等。 一、引言 随着密集波分复用DWDM技术、掺铒光纤放大器EDFA技术和光时分复用OTDR技术的发展和成熟,光纤通信技术正向着超高速、大容量通信系统的方向发展,并且逐步向全光网络演进。在光通信迅猛发展的带动下,光纤传感器作为传感器家族中年轻的一员,以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,已迅速成长为年成交额超过10亿美金,并预计将于2010年拥有超过50亿美金市场的产业。每年由美国光学工程师学会(OSA)主办的光纤传感国际会议(OFS)及时报道着光纤传感领域的最新进展,并对光纤传感及其相应技术进行有益的研讨。 当前,世界上光纤传感领域的发展可分为两大方向:原理性研究与应用开发。随着光纤技术的日趋成熟,对光纤传感器实用化的开发成为整个领域发展的热点和关键。由于光纤传感技术并未如光纤通信技术那样迅速地获得产业化,许多关键技术仍然停留在实验室样机阶段,距商业化有一定的距离,因此光纤传感技术的原理性研究仍处于相当重要的位置。由于很多光纤传感器的开发是以取代当前已相当成熟,可靠性和成本已得到公认,并已经被广泛采用的传统机电传感系统为目的,所以尽管这些光纤传感器具有如电磁绝缘、高灵敏度、易复用等诸多优势,其市场渗透所面临的困难和挑战是可想而知的。而那些具有前所未有全新功能的光纤传感器则在竞争中占有明显优势,FBG和其它的光栅类传感器就是一个最好的例证。当前的原理性研究热点集中于光纤光栅(FBG和LPG)型传感器和分布式光纤传感系统两大板块。 FBG型光纤传感器自发明之日起,已走过了原理性研究和实验论证的百家争鸣阶段。目前成熟的FBG制作工艺已可形成小批量生产能力,而研究的焦点也转向解决高精度应用,完善解调和复用技术,以及降低成本等几个方向上。另一方面,由于光纤传感器具有将传输与传感媒质合而为一的特性,使得沿布设路径上的光纤可全部成为敏感元件,因此,分布式传感成为光纤传感器与生俱来的优点。 对于光纤传感技术的应用研究主要有以下四大类:光(纤)层析成像技术(OCT,OPT)、智能材料(SMART MATERIALS)、光纤陀螺与惯导系统(IFOG,IMIU )和常规工业工程传感器。另外,由于光纤通信市场需求的带动以及传感技术的特殊要求,新型器件和特种光纤的研究成果也层出不穷。 目前,我国的光纤传感器研究大多数集中于大专院校和科研单位,仍然未完成由实验室向产品化的过渡。其中,比较成熟的技术包括:清华大学光纤传感中心与总后合作研制开发的光纤油罐液位与温度测量系统,已经安装运行数年;北京航空航天大学与总装合作研制的光纤陀螺系统,目前指标为0.2°/hr ;中国计量学院研制的分布式光纤传感系统,已有产品报道;华中理工大学与广东某公司联合研制的强电压、大电流传感系统。此外,在广东、深圳等地,还建立了许多光纤无源器件生产厂

光纤传感中的光学原理及效应

第1章:光纤传感中的光学原理及效应 光学反射原理 分为镜面反射和漫反射 镜面反射和漫反射情况 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 光学折射原理

光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer 定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 光学多普勒效应 θ cos 11f f 02 20 0c u c u -= 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3) 在上式中, aE 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

光纤光栅传感系统的详细介绍

光纤光栅传感系统的详细介绍 本文介绍了光纤光栅传感系统的构成,分析了光纤光栅传感系统所用的3种不同的光源LED,LD和掺铒光源的性能,阐述了光纤光栅传感器的工作原理和各种不同的温度和应力的区分测量方法,描述了滤波法、干涉法、可调窄带光源法等几种常用的信号解调技术,最后,提出适应未来的需要如何对光纤光栅传感系统的光源、光纤光栅传感器和信号解调进行优化。 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。 本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。 1、光纤光栅传感系统光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。 1.1 光源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对

光纤传感技术

光纤传感器的应用与发展趋势 学生:王超 学号:1049721103105 专业:物理电子学 光在传输过程中,光纤易受到外界环境的影响,如温度、压力等,从而导致传输光的强度、相位、频率、偏振态等光波量发生变化,通过监测这些量的变化可以获得相应的物理量,这就是光纤传感技术。该技术是随着光纤及通信技术的发展而逐步发展起来的一门崭新技术。密集波分复用D W D M 技术、掺铒光纤放大器EDFA 技术和光时分复用OTDR 技术的不断发展成熟,使得光纤传感技术以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,获得了飞速的发展,各种光纤传感器系统层出不穷。 光纤传感器系统的原理 由于光纤不仅作为光波的传播介质,而且光波在光纤中传播时,光波的特征参量( 振幅、相位、偏振、波长等) 会因外界因素(温度、压力、应变、电场、位移等)间接或直接的发生变化,从而可将光纤用作传感元件探测物理量。根据光纤在传感器中的作用,光纤传感器可分为功能型、非功能型、拾光型三大类。 1、功能型光纤传感器中光纤不仅作为导光介质也是敏感元件,光在光纤内受到被测量物理量的调制。它的特点是结构紧凑、灵敏度高,但它须用特殊光纤和先进的检测技术,因此成本高。光纤陀螺即是典型的功能型光纤传感器。 2、非功能型光纤传感器中光纤仅起导光作用,光照到非光纤型敏感元件上受被测量物理量调制。因其无需特殊光纤及特殊技术,易实现、成本低,但灵敏度也相应较低,常用于灵敏度要求不太高的场合。目前的光纤传感器大多是该类型的。 3、拾光型光纤传感器中光纤作为探头,接收由被测对象辐射的光或被其反射、 散射的光。如光纤激光多普勒速度计、辐射式光纤温度传感器等。 光纤传感器的特点 由光纤传感器的原理我们可以很容易理解它有如下几个特点: (1 )光纤具有宽波长范围、低衰减的特性,光源、检测器和光学元件的选择余地大,可以适用于不同的应用场合。

智能材料

智能材料 智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。一般说来,智能材料有七大功能,即传感功能、反馈功能、信息识别与积累功能、响应功能、自诊断能力、自修复能力和自适应能力。 定义 智能材料目前还没有统一的定义。不过,现有的智能材料的多种定义仍然是大同小异。大体来说, 智能材料料就是指具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的智能特征的材料。具体来说,智能材料需具备以下内涵:(1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电,光,热,应力,应变,化学,核辐射等; (2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏,及时和恰当; (5)当外部刺激消除后,能够迅速恢复到原始状态。 智能材料又可以称为敏感材料,其英文翻译也有若干种,常用的有Intelligent material,Intelligent material and structure,Smart material,Smart material and structure,Adaptive material and structure等.。 分类 作为一种新型材料,一般认为,智能材料由传感器或敏感元件等与传统材料结合而成。这种材料可以自我发现故障,自我修复,并根据实际情况作出优化反应,发挥控制功能。智能材料可分为两大类: (1)嵌入式智能材料,又称智能材料结构或智能材料系统。在基体材料中,嵌入具有传感、动作和处理功能的三种原始材料。传感元件采集和检测外界环境给予的信息,控制处理器指挥和激励驱动元件,执行相应的动作。 (2)有些材料微观结构本身就具有智能功能,能够随着环境和时间的变化改变自己的性能,如自滤玻璃、受辐射时性能自衰减的Inp半导体等。 这只是一种比较笼统的分类方法,由于智能材料还在不断的研究和开发之中,因此相继又出现了许多具有智能结构的新型的智能材料。如,英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导

光纤式传感器

光纤式传感器 传感技术与计算机技术、通讯技术被称为信息产业三大支柱技术, 是组成现代信息化技术的基础。世界各大强国均将传感器技术视为国家科技发展战略中的重要组成部分, 作为国家重点发展的领域之一。光纤传感器主要有传感型和传光型两大类, 两类传感器在传感原理上均可分为光强调制、相位调制、偏振态调制及波长调制不同形式, 由此构成不同的传感器。迄今业已证实, 被光纤传感器敏感的物理量有 70多种, 与传统的传感器相比, 光纤传感器有灵敏度高、重量轻和体积小、多用途、对介质影响小、抗电磁干扰和耐腐蚀且本质安全、易于组网等特点, 使其近年来在航天航空、国防、能源电力、医疗和环保、石油化工、食品加工、土木工程等领域的应用得到了迅速发展。表 1 为光纤传感器对参数测定的原理及主要方式。 一、光纤传感器的基本原理及组成 光纤传感器由光源、敏感元件、光探测器、信号处理器系统以及光纤等组成。光纤传感器的基本原理是将来自光源的光经过光纤送入调制器,使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长频率、相位偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光探测器,经解调器解调后,获得被测参数。 1.1强度调制光纤传感器 强度调制光纤传感器的基本原理是:待测物理量引起光纤中传输光的光强变化,通过检测光强的变化实现对待测量的测量。待测量作用于光纤敏感元件,使通过光纤的光强发生变化。设输入光强为恒量Iin,输出光强为Iout,即待测量对光纤中的光强度产生调制。可

直接连接光探测器变成电信号(即调制的强度包括电信号)。 1.2相位调制光纤传感器 相位调制光纤传感器的基本原理是:通过被测能量场的作用,使光纤内传输的光波相位发生变化,再用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。所有能够影响光纤长度、折射率和内部应力的被测量都会引起相位变化,如应力应变温度和磁场等外界物理量。但是,目前的各类光探测器都不能探测敏感光的相位变化,必须采用干涉测量技术,才能实现对外界物理量的检测。与其他调制方式相比,相位调制技术由于采用干涉技术而具有很高的检测灵敏度。常用的干涉仪有四种:迈克尔逊、马赫-琴特、法布里-珀罗和萨格耐克。它们的共同点是:光源发出的光都要分成两束或更多束的光,沿不同的路径传播后,分离的光束又重新汇合,产生干涉现象。

分布式光纤传感技术

光纤光栅传感器是一种常用的光学传感器件,分布式光纤光栅就属于准分布式光纤传感器件中的一种。选题方向合理。请尽快确定课题完成方式,明确研究内容,尽快开展课题调研论证工作。75 分布式光纤光栅传感技术 光纤传感技术是一种以光纤为媒介,光为载体,感知和传输外界信号(被测量)的新型传感技术,是伴随着光导纤维及光纤通信技术发展而逐步形成的。在光通信系统中,光纤被用作远距离传输光波信号的媒质,在这类应用中,光纤传输的光信号受外界因素的影响越小越好,但是,在实际的光传输过程中,光纤容易受到外界环境因素的影响,如温度、压力、应变等外界条件的变化将引起光纤中传输光波的特征参数如频率、相位、光强、偏振态等的变化,通过测量这些参数的变化,就可以得到外界作用于光纤的物理量,这就是光纤传感技术。光纤传感技术的基本原理是:将光源的光入射进光纤,当光在光纤中传输的过程中受到外界物理量影响,使得被测参数与光纤内传输的光相互作用,进行调制,从而使其光学性质如光的频率、波长(颜色)、强度、相位、偏振态等发生变化成为被调制的信号光,然后将这一调制的信号光送入光探测器中进行解调,经信号处理后就可获得被测参数。 光纤传感器与传统传感器相比具有许多明显优势: 1)体积小、重量轻,几何形状具有多方面的适应性,可以做成任意形状的传感器和传感器阵列。 2)抗电磁干扰能力强、耐高温、耐腐蚀,在易燃、易爆环境下安全可靠。 3)光纤传感器件多是无源器件,对被测对象影响较小。 4)便于复用,便于成网。它既可以作为信息的传递媒介,又可以作为信号测量的传感装置。 5)光纤传感器传输频带宽,动态范围大,测量距离长。 光纤传感器的种类很多,按照其工作方式可分为:点式、准分布式和分布式三类。其中,准分布式光纤传感器是使用传感网络系统进行测量的,其光纤不作为传感元件,只作为传输元件,其敏感元件为多个点式的传感器,它们采用串联或各种网络结构形式连接起来,利用波分复用、时分复用或频分复用等技术形成分布式网络系统,进而可以较精确地分时或同时得到被测量信息的空间分布,也可同时得到某一点或某些空间点上不同被测量的分布信息。 光纤光栅传感器除了具有一般光纤传感器耐高温、耐腐蚀等优点之外,还具有波长编码,抗干扰能力强等特性。另外,它较易于在一根光纤中连续写入多个光栅,以制成分布式光纤光栅传感,制得的光栅阵列轻巧柔软,可与渡分复用或时分复用技术等相结合,且十分适于作为分布式传感兀件贴于结构表面或埋人到材料和结构的内部,以实现对结构应变、温度以及压力等的多点监测,这对于目

光纤传感中的光学原理及效应概论

第1 章:光纤传感中的光学原理及效应 1.1光学反射原理 分为镜面反射和漫反射 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 1.2光学折射原理 镜面反射和漫反射情况

1.3光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 1.4光学多普勒效应 θ cos 1 1 f f 2 2 c u c u - = 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 1.5声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 1.6磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 1.7电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3) 在上式中, a E 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

光纤光栅传感系统的现状及发展趋势

光纤光栅传感系统的现状及发展趋势 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。 本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。 1 光纤光栅传感系统 光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。 1.1 光源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对波长编码,光源必须有较宽的带宽和较强的输出功率与稳定性,以满足分布式传感系统中多点多参量测量的需要。光纤光栅传感系统常用的光源的有LED,LD和掺杂不同浓度、不同种类的稀土离子的光源。LED光源有较宽的带宽,可达到几十个纳米,有较高的可靠性,但光源的输出功率较低,且很难与单模光纤耦合。LD光源具有单色性好、相干性强、功率高的特点。但LD光谱的稳定性差(4×10-4/℃)。因此,这2种光源自身的缺点制约了它们在光传感中的应用。掺杂不同种类、不同浓度的稀土离子的光源研究最广泛的是掺铒光源。现在C波段掺铒光源已经研制成功并使用,随着光通信中对通信容量和速度的要

光纤传感技术在智能电网安全综合监测中的应用讲解

光纤传感技术 在智能电网安全综合监测中的应用 山东微感光电子有限公司

目录 1.研究背景 (1) 2.研究目的与意义 (2) 3.研究内容 (3) 4.研究目标及技术路线 (5) 5.研究方案 (6) 5.1.光纤传感技术 (6) 5.1.1光纤光栅传感技术 (6) 5.1.2光纤分布式温度检测技术 (11) 5.1.3光纤气体检测技术 (12) 5.2 光纤传感技术在电力安全监测中的应用 (14) 5.2.1 光纤电缆沟综合监测 (14) 5.2.2 光纤高压开关柜温度监测 (19)

1.研究背景 随着电力系统互联的不断发展,现代电网规模日益扩大,逐渐形成了全国统一、甚至跨国的大型联合系统。随着电力网络互联程度的不断提高,系统越来越庞大,运行方式越来越复杂,保证系统安全可靠运行的难度也越来越大,使整个电网的安全稳定问题越来越突出。在现代大电网中,各区域、各部分互相联系、密切相关,在运行过程中互相影响。如果电网结构不完善,缺少必要的安全监测措施,一个局部的小扰动或异常运行也可能引起全系统的连锁反应,甚至造成大面积的系统瓦解。大规模的电力系统对现有的电网安全状态综合监测提出了新的挑战。电力系统是现代社会中最重要、最庞大的工程系统之一。电能供应的中断,不仅直接影响到国防与工农业生产、交通,造成人民生活紊乱,在某些情况下甚至酿成及其严重的社会性灾难。随着我国电力系统向高效环保可持续发展的目标发展,电力系统的安全高效运行更加重要。电力设备和电力线路的运行状态监测是保证电力系统安全高效运行的重要手段。但是,在具有强电磁干扰、高压的恶劣环境下,电子传感器具有很大局限性。因此,急需对电网运行状态进行实时在线综合检测的有效手段。 光纤传感技术是20世纪70年代末兴起的一种先进的多学科交叉技术。光纤传感器所具有的诸多独特优点,使得光纤传感器在电力系统安全监测中发挥了巨大作用。

光纤光栅传感技术的发展及应用

光纤光栅传感技术的发展及应用 单嵩 北京工业大学应用数理学院 000612班 指导教师:王丽 摘要本文综述了当前国内外对光纤光栅传感器的研究历史和现状,论述了光纤光栅传感器的工作原理,介绍了传感器在响应压力方面的研究,并讨论了光纤光栅传感器所面临的问题。 关键词光纤,光栅,传感器 一、引言 光纤通信技术在过去二十年里有了惊人的发展,它的出现,使得全球电信网络上的传输需求以指数速率增长。而新一代光纤技术——光纤光栅将在光纤技术以及众多相关领域中引起一场新的技术革命。1978年加拿大渥太华通信研究中心的K.O.HILL等人在研究光纤非线性光学性质时偶尔地制成了最初的光纤光栅并发现掺锗石英光纤紫外光敏特性。所谓光敏性是指光纤材料在一定波长的强光照射下,其折射率会发生永久变化。而折射率沿光纤按一定规律变化就可形成各种光纤光栅。1989年G.Meltz等人首次利用244nm的紫外光采用全息干涉的方法制作了侧面写入的光纤光栅,使得制作各种波长的光纤光栅成为可能。光纤光栅作为一种全光器件,其主要优点是低损耗、易于与其他光纤耦合、偏振不敏感,温度系数低、容易封装。根据光纤周期的不同,光纤光栅可以被分为短周期光纤光栅(FBG)和长周期光纤光栅(LPFG)。短周期光栅又称为Bragg光栅,它的周期尺寸可以与工作波长相比拟,一般约为0.5μm 。Bragg光栅可以有很多种应用,从滤波器、光分插复用器到色散补偿器。长周期光栅又称为传输光栅,它的周期要比工作波长大得多,从几百微米直到几个豪米。长周期光纤光栅的工作原理与Bragg光栅有所不同。在光纤Bragg光栅中,对于适当的波长,纤芯中前向传播模式的能量会被耦合进入后向传播模式中。而在长周期光栅中,纤芯中前向传播模式的能量将会被耦合到包层中前向传播的其它模式中。这些包层中的模式都是极高损耗的,随着它们沿光纤的传播,其能量迅速衰减。目前长周期光栅主要被用作滤波器及在掺铒光纤放大器中补偿不平坦的增益谱。 目前,围绕光纤光栅技术的研究主要分为二个方向: 一是光纤光栅致光机理和写入成栅技术的研究;二是关于光纤光栅应用技术的研究,由于光纤光栅本质上是一个带阻滤波器,因此在光纤通信和光纤传感方面应用广泛。光纤传感是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的,以光波为载体,光纤为媒质,感知和传输外界被测量信号的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的优点。光波不产生电磁干扰,也不怕电磁干扰,易被各种光探测器接受,可方便地进行光电或电光转换。光纤工作频带宽,动态范围大,是一种优良的低损耗传输线和优良的敏感元件。因此,光纤传感技术一问世就受到极大重视,成为传感技术的先导,在某些重要领域,如惯性导航、军用告警、智能材料结构、测试与控制、机器人及信息处理等方面得到了广泛的应用。 二、光纤光栅传感技术原理 1、光纤Bragg 光栅的应变响应机理

运用光纤传感中震动原理在通信维护中的运用

光纤传感中震动原理在通信中的运用 (LTR 1550系列光缆普查仪在通信中的优势) 作者:王志刚LTR 从1966年英籍华人高锟博士提出光纤通信到现在,光纤光缆在通信领域得到飞速发展,起到了不可替代的作用,并且在近几年将会完成全光网络的发展。我国从1977年“光纤之父”赵梓森院士在武汉邮科院生产出第一个光纤到1982年我国第一条光纤实用化工程武汉八二工程的完工,开始了光纤通信轰轰烈烈的大建设,同时光纤的施工和维护的技术也不断成熟。 纵观我国光纤光缆工程的建设大家会发现,施工单位能很熟练的完成一个光缆工程的施工,但很难找到在室外自己需要的拿条光缆。特别是现在慢慢向全光网络发展,同一个人、手井里面会出现同一个厂家、同一个型号和同样芯数的光缆会有好几十条。因为我国市政和绿化部门的审批很难和很慢批下来,所以造成了同一条通信管道中有移动、联通、电信、广电等等不同通信运营商的同一个厂家、同一个型号和同样芯数的光缆。并且很多光缆在施工过程中光缆表面的字体很多都被拖模糊了。这样给后期的维护和割接工作带来了非常大的麻烦。通过光纤震动感应的原理来识别光缆不断打破了传统切断、弯曲和冷冻破坏性识别的误区并且在识别距离上得到大大的提升,最长可以做到80km。 光纤传感技术伴随光纤通信技术的发展而兴起,以光波为载体,光纤为媒质,感知和传输外界被测量信号的新型传感技术。所谓感知,

是指外界信号按照其变化规律使光纤中传输的光波的物理特征参量,如强度、波长、频率、相位和偏振态等发生变化,测量光参量的变化即感知外界信号的变化。所谓传输,是指光纤将受到外界信号调制的光波传输到光探测器进行检测,将外界信号从光波中提取出来并按需要进行数据处理。 技术壁垒依然存在 既能感知,又能传输是光纤传感技术的最大特点,在光纤传感领域拥有很高造诣的南京大学工程管理学院张旭苹教授指出光纤传感技术是物联网的重要技术之一。张旭苹教授通俗简明地介绍了光纤传感技术的基本工作原理:当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。系统软件会对声波进行分析处理,从而获取有价值的信息。 光纤传感技术能够实现大范围测量场中分布信息的提取,因而可解决目前测量领域的众多难题,如:分布式温度传感器可用于大、中型变压器、发电机组和油井的温度分布测量,大型仓库、油库、高层建筑、矿井和隧道的火灾防护及报警系统等领域;分布式应力传感器可用于桥梁、堤坝等设施的安全检测,航空、航天飞行器等大型设备老化程度的检测,智能材料制备等领域。

光纤光栅传感技术发展综述

Optoelectronics 光电子, 2018, 8(3), 98-105 Published Online September 2018 in Hans. https://www.doczj.com/doc/002322198.html,/journal/oe https://https://www.doczj.com/doc/002322198.html,/10.12677/oe.2018.83014 Development in Fiber Bragg Grating Sensing Technology Shanchao Jiang School of Electrical Engineering, Yancheng Institute of Technology, Yancheng Jiangsu Received: Aug. 21st, 2018; accepted: Sep. 6th, 2018; published: Sep. 13th, 2018 Abstract In order to promote the development of fiber Bragg grating (FBG) sensing technology, this paper introduces the development of fiber Bragg grating in its spectrum analysis, sensor parameters (such as strain, displacement, pressure, flow rate, anchor bolt, inclination, etc.) detection, multip-lexing technology and other aspects in detail. This provides basic support for further diversifica-tion and practicability of FBG sensing technology. Keywords FBG, Spectrum Analysis, Detection Sensor, Multiplexing Technology 光纤光栅传感技术发展综述 蒋善超 盐城工学院电气工程学院,江苏盐城 收稿日期:2018年8月21日;录用日期:2018年9月6日;发布日期:2018年9月13日 摘要 为促进光纤光栅传感技术的发展,本文较为详细的介绍了光纤光栅在其光谱分析、传感器参数(如应变、位移、压力、流速、锚索锚杆、倾斜等)检测、复用技术等方面的发展现状,为推动光纤光栅传感技术进一步的多样化、实用化提供基础支持。 关键词 光纤光栅,光谱分析,检测元件,复用技术

光纤传感器的基本原理及在医学上的应用

2008年9月中国医学物理学杂志Sep .,2008 第25卷第5期 ChineseJournalofMedicalPhysics Vol.25.No.5 光纤传感器的基本原理及在医学上的应用 孙素梅1,陈洪耀2,3,尹国盛2(1.漯河医学高等专科学校,河南漯河462000;2.河南大学物理与电子学院,河南开封 475004;3.中国科学院安徽光学精密机械研究所,安徽合肥230031) 摘要:目的:本文的目的简要介绍光纤传感器的基本原理和简单分类,重点阐述传光型光纤传感器在医学的压力、流速、pH值等五方面的应用。方法:光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、解调器而获得被测物理量。光纤传感器按其传感原理可分为两大类:一类是传光型传感器,另一类是传感型传感器。结果:目前在医学上应用的主要是传光型光纤传感器。光纤传感器主要优点:小巧、绝缘、不受射频和微波干扰、测量精度高。医疗上的图象传输是传输型光纤传感器应用中很有特色的一部分。只需将许多光纤组成光纤束,就可以做成能有效地使图象空间量子化的传感器。自从光导纤维引入到内窥镜以后,扩大了内窥镜的应用范围。光导纤维柔软、自由度大、传输图象失真小、直径细等优点使得各种内窥镜检查人体的各个部位几乎都是可行的,且操作中不会引起病人的痛苦与不适。其中光纤血管镜已应用于人类的心导管检查中。在进行激光血管成形术时,血管镜可提供很多重要的信息,用以引导激光辐射的方向,选择激光的能量和持续时间,并可了解在成形术后的治疗效果。光纤内窥镜不仅用于诊断,也正进入治疗领域中,例如用于做息肉切除手术等。微波加温治疗技术是当前治疗癌症的有效途径,但微波加温治疗癌症技术的温度难以控制,而光纤温度传感器恰可以对微波加温治疗癌症的有效温度进行监测,从而使温度不致于过高杀死人体的正常细胞,也不会过低达不到治疗目的,使癌细胞进一步扩散。光纤温度传感器在癌症治疗方面的研究和开发正日益兴起。结论:光纤传感器作为一种优势明显的新型传感器在医学领域得到应用,为治疗疾病提供了一种崭新的方法。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将会进一步推动医学的飞速发展。 关键词:光纤传感器;测量;医学;应用中图分类号:R312 文献标识码:A 文章编号:1005-202X (2008)05-0846-05 The Basic Principle and Applications on Medical of Fiber Optic Sensors SUNSu-mei1,CHENHong-yao2,3,YINGuo-sheng2 (1.LuoheMedicalCollege,LuoheHe'nan462000,China;2.ChinaPhysicsandElectronicsCollege,He'nanUniversity,KaifengHe'nan475004,China;3.TheAn'huiInstituteofOpticsandPrecisionMechanics,TheChineseAcademyofSciences,HefeiAnhui230031,China) Abstract:Objective:Thisarticlesimplyintroducedthebasicprincipleoffiberopticsensoranditsapplicationespeciallyonmedicalinbloodpressure,thespeedofflow,thepHvalueetc.Method:Thefiberopticsensorbasicprincipleisthelightwhichsendsoutthephotosourcesendsinafterthefiberopticthemodulationarea,inthemodulationarea,theoutsidewasmeasuredtheparameterwithentersthemodulationareathelighttoaffectmutually,causesthelighttheintensity,thefrequency,thephase,thepolarizationtooccurchangesintothesignallightwhichmodulates,againpassesthroughthefiberoptictosendinthelightdetector,thedemodulatorobtainsismeasuredthephysicalquantity.Thefiberopticsensormaydivideintotwokindsaccordingtoitssensingprinciple:onekindisthelight-passingsensor;theotheristhesensingsensor.Result:Atpresent,themainapplicationinthemedicineisthelight-passingfiberopticsensor.Themainadvantagesoffiberoptic sensorare:exquisite,insulation,notinfluencedbytheradiofrequencyandthemicrowave.Themeasuringaccuracyish igh.Theimagetransmissioninmedicalisthespecialpartof theapplicationonthetransmissionmodesfiberopticsensor.Onlytieaplentyoffiberoptictocompositionfiberoptics,wecouldmakethesensorwhichcancausetheimagespace 收稿日期:2008-03-10 作者简介:孙素梅(1954-),女,漯河医学高等专科学校物理教研室 副教授。Tel :0395-296452713939575106;E -mail : sunsumei2007@https://www.doczj.com/doc/002322198.html, 。 846--

光纤传感器中的光学原理和效应

光纤传感器中的光学原理和效应 1. 光学反射原理: A . 镜面反射:???≠==i i I 反反θθ,,0,I r B . 漫反射:])/(2)(exp[2)(20 2 '020I I I σθθσπθ--?=,这是一个高斯分布其中,σ为光强分布的方差;θ为反射场中光线与表面法线的夹角;‘0θ为遵循镜面反射定律的光束 反射方向。 C . 应用:基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 2.光学折射原理 2sin *n21sin *n1θθ= 应用:液体浓度,成分,折射率测量 3. 光学吸收原理 l e ?-?=α0I I (朗伯定律,J.H. Lambdet,1760) 0I 和I 分别是在初始位置和l 处时的光强,吸收系数α一般与材料的密度、浓度,光波波长有关。 一般吸收:介质对各种波长的光都能几乎均匀吸收,吸收系数α与波长无关。 选择吸收:对特定波长的光吸收特别显著。 应用:半导体吸收法测量温度,光谱吸收测量成分或浓度。 4、光学多普勒效应 θcos 11f f 02200c u c u -=

5、声光效应:当超声波在介质中传播时,引起介质的弹性应变做时间上和空间上的周期变化,并导致介质的折射率发生相应的变化,当光束通过有超声波的介质后会产生衍射的现象。 应用:声光调制器 6、磁光效应:具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 7、电光效应:在电场作用下,可以使某些各向同性的透明介质变为各向异性,从而使光产生人为双折射的现象,包括:克尔(Kerr)效应(二阶电光效应,强,半波电压高) 和泡克尔斯(Pockels)效应(一阶电光效应,弱,半波电压小),后者应用广泛,可以调制光束相位,进而调制光束的频率,振幅,偏振态及传播方向。 应用:由于光电效应,发生双折射的两束光波之间的相位差与外施电压成正比。(OVT 基于电光泡克尔斯效应的光纤电压传感器)。a 、横向调制式和纵向调制式,b 、透射式反射式结构,c 、分压式和无分压式结构,d 、分立式和组合式结构,e 、单光路式和双光路结构,f 、单晶体式和双晶体式结构。 8、弹光效应: 由于机械应力引起的材料折射率变化的现象称为弹光效应(Elasto-Optical-Effect ), 利用弹光材料在外界应力的作用下对入射光呈现双折射而引入的相位差,可以测量压力的大小,进而得到与压力相应的位移量。 Sagnac 效应:同一光源同一光路,两束相向传播的光之间的光程差或相位差与其光学系统相对于惯性空间旋转的角速度成正比。 λπθC S N 8Ω= ?(N 匝,Ω角速度) 9、光声效应:激光

相关主题
文本预览
相关文档 最新文档