当前位置:文档之家› PLC外文翻译

PLC外文翻译

PLC外文翻译
PLC外文翻译

外文翻译

原文:The open system merit of Computer

Numerical Control

The open system merit is the system simple, the cost low, but the shortcoming is the precision is low. The reverse gap, the guide screw pitch error, stop inferiorly can affect the pointing accuracy by mistake. Following several kind of improvements measure may cause the pointing accuracy distinct improvement.

1. reverse gap error compensates The numerical control engine bed processing cutting tool and the work piece relative motion is depends upon the drive impetus gear,the guide screw rotation, thus the impetus work floor and so on moves the part to produce moves realizes. As traditional part gear, guide screw although the manufacture precision is very high, but always unavoidably has the gap. As a result of this kind of gap existence, when movement direction change, starts the section time to be able to cause inevitably actuates the part wasting time, appears the instruction pulse to push the motionless functional element the aspect. This has affected the engine bed processing precision, namely the instruction pulse and actual enters for the step does not tally,has the processing error therefore, the split-ring numerical control system all establishes generally has the reverse gap error compensatory function, with by makes up which wastes time the step reverse gap difference compensates is first actual reverse enters for the error, converts the pulse equivalent number it, compensates the subroutine as the gap the output, when the computer judgment appears when instruction for counter motion, transfers the gap to compensate the subroutine immediately, compensates the pulse after the output to eliminate the reverse gap to carry on again normally inserts makes up the movement.

2. often the value systematic characteristic position error compensates

A kind of storehouse by transfers for the designer. Like this in the components design stage, the designer only must input the characteristic the parameter, the system direct production characteristic example model: We must save the related characteristic class in the database the structure information, the database table collection are use in saving this part of related information. According to the characteristic type definition need, we defined the characteristic class code table, the

characteristic class edition information have outstanding shown the characteristic type; Defined the characteristic class structure outstanding to reach the characteristic class the structure; And relates through the components characteristic disposition table and the components characteristic level information. The characteristic level data sheet collection is this components model database design core, has recorded characteristic example information and so on model design, craft. The characteristic structure table has recorded the characteristic geometry structure; The characteristic size table, the characteristic shape position table of limits, the characteristic surface roughness table has recorded the characteristic project semantics quotation; The size table, the shape position table of limits, the surface roughness table saved all components characteristic data message. In the characteristic level, using characteristic ID, geometry principal linkage and so on essential factor ID, size ID, common difference ID, roughness ID carries on the data retrieval. We apply this components information model database under the factory environment some module CAD in the AM integrative system, has realized CAD and the CAPP characteristic information sharing well. Main use ready-made CAD/the CAM software (Unigra phics 1I) carries on the product design and the NC programming in this system, and through carries on two times of developments gains components to this software the size information; At the same time uses the dialogue window which develops voluntarily, lets design the personnel to input other characteristic information alternately, realizes this software and the system sharing database connection. When assistance technological design, the technological design personnel through the procedure inquiry function, inquires the components information from the sharing database which needs, carries on the interactive technological design. Thus has facilitated the CAPP components information acquisition, enhanced the technological design efficiency. When carries on the NC programming using UG, may from the sharing database gain the craft and the manufacture information which needs, carries on various working procedures the knife axle design and the processing simulation establishes an absolute zero spot on the numerical control engine bed, the actual various coordinate axes syzygy completely position error, makes the curve in order to determined compensates the spot. Attempts l to show is an actual position error curve, (error) carries on this curve y-coordinate take the pulse equivalent as the unit the division, makes the horizontal line, each horizontal line and the curve point of intersection namely compensates the spot for the goal. Chart 1 the center 1 to 6 o'clock place position errors for, needs to

do reduces the pulse to compensate; But needs to carry on 6 to 9 adds the pulse to compensate in the chart the shadow partially for to compensate the area. Compensates the range of points these to become the error The calibration corrections stores the computer, when work table by zero displacement in position, installs sends out the absolute zero point localization signal in the absolute zero point micros witch, later computer as necessary will send out the goal to compensate to compensate the signal, will carry on the position error to the engine bed to compensate. The cosine generator assigns slide guage initiation signal a electricity and by step of transmission.

3. feedbacks compensates the open-loop control

This system surveys two parts by the open-loop control and the induction synchromesh direct position to be composed. Here position examination does not serve as the position the feedback, but is compensates the feedback as the position error. Its cardinal principle is: Installs the instruction pulse by the engine bed numerical control which CNC sends out, on the one hand the supplies open system, the control step-by-steps the electrical machinery according to the instruction revolution, and the direct drive platen moves, constitutes the open-loop control; On the other hand this instruction pulse supplies the induction synchromesh the measurement system (namely digitally, cosine generator), as position demand signal a by. The work in the warning way induction synchromesh this time not only is the position sensor, also is the comparator, it by, The cosine generator assigns slide guage initiation signal a electricity and by step of transmission.

4. conclusions

Under the CIMS environment the technology which develops unceasingly based on characteristic components information modeling, how enhances the components order of complexity which the characteristic design can complete; How causes question and so on request which the characteristic design adoption trick recognition, the characteristic semantics transforms also to wait for the people to solve. This article introduced the characteristic technology in the components information modeling application, describes this components data model database realization with emphasis; Establishes the components information database system may satisfy the CIMS system well to the letter.

译文:

数控机床开环控制伺服系统开环系统的优点是系统简单、成本低,但缺点是精度不高。反向间隙、丝杠螺距误差、起停误差等都会影响定位精度。下面几种改进措施可以使定位精度明显改善。

1 反向间隙误差补偿数控机床加工刀具与工件的相对运动是依靠驱动装置带动齿轮、丝杠转动,从而推动工作台面等移动部件产生位移来实现的。作为传统元件的齿轮、丝杠尽管制造精度很高,但总免不了存在间隙。由于这种间隙存在,当运动的方向改变时,开始段时间必然会引起驱动元件的空走,出现指令脉冲推不动执行元件的局面。这就影响了机床的加工精度,即指令脉冲与实际进给步数不相符合,产生加工误差因此,开环数控系统一般都设置有反向间隙误差补偿功能,用以补足空走的步数反向间隙差补偿就是首先实测反向进给的误差,把它折算成脉冲当量数,作为间隙补偿子程序的输出量,当计算机判断出现的指令为反向运动时,随即调用间隙补偿子程序,通过输出补偿脉冲消除反向间隙后再进行正常的插补运行。

2 常值系统性定位误差补偿类库以供设计者调用。这样在零件的设计阶段,设计者只需输入特征的参数,系统直接生成特征的实例模型:在数据库中我们必须存储相关的特征类的结构信息,数据库表集就是用于存储这一部分的相关信息。根据特征类型定义的需要,我们定义了特征类编码表、特征类版本信息表表示特征类型;定义了特征类构造表表达特征类的结构;并通过零件特征配置表与零件的特征层信息联系起来。特征层数据表集是本零件模型数据库设计的核心,记录了特征实例模型的设计、工艺等信息。特征构造表记录了特征的几何结构;特征尺寸表、特征形位公差表、特征表面粗糙度表记录了特征的工程语义引用;尺寸表、形位公差表、表面粗糙度表存储了所有零件特征的数据信息。在特征层,利用特征ID、几何要素ID、尺寸ID、公差ID、粗糙度ID 等主键进行数据检索。我们将该零件信息模型的数据库应用于工厂环境下某型组件的CAD AM 集成系统中,较好地实现了CAD 与CAPP 的特征信息共享。在该系统中主要使用现成的CAD/CAM 软件(Unigraphics 1I)进行产品设计和NC 编程,并通过对该软件进行二次开发获取零件的尺寸信息;同时利用自行开发的对话窗体,让设计人员交互输入其它特征信息,实现该软件与系统的共享数据库的连接。在辅助工艺设计时,工艺设计人员通过程序的查询功能,从共享数据库中查询所需的零件信息,进行交互工艺设计。从而方便了CAPP 的零件信息获取,提高了工艺设计的效率。在利用UG 进行NC 编程时,可以从共享数据库中获取所需的工艺及制造信息,进行各工序的刀轨设计与加工仿真在数控机床上建立一个绝对零点,实测出各坐标轴相对点的全部定位误差,做出曲线以便确定补偿点。图l 所示是一个实测的定位误差曲线,把这个曲线的纵坐标(误差)以脉冲当量为单位进行分割,作出横线,每个横线与曲线的交点即为目标补偿点。把这些补偿点列成误差.修正表存入计算机,当工作台由零点位置移动时,安装在绝对原点处的微动开关发出绝对原点定位信号,以后计算机将随时发出目标补偿点的补偿信号,对机床进行定位误差补偿。

3 反馈补偿开环控制该系统由开环控制和感应同步器直接位置测量两个部分组成。这里的位置检测不用作位置的反馈,而是作为位置误差的补偿反馈。其基本的原理是:由机床数控装置CNC 发出的指令脉冲,一方面供给开环系统,控制步进电机按指令运转,并直接驱动机床工作台移动,构成开环控制;

另一方面该指令脉冲又供给感应同步器的测量系统(即数字式正、余弦发生器),作为位置给定信号。工作在鉴幅方式的感应同步器此时既是位置检测器,又是比较器,它把由正、余弦发生器给定的滑尺激磁信号传送给步进电机。

4 结论CIMS 环境下基于特征的零件信息建模还是一门不断发展的技术,怎样提高特征设计所能完成的零件复杂度;如何使特征设计适应特征识别、特征语义转换的要求等问题还有待人们去解决。本文介绍了特征技术在零件信息建模中的应用,重点描述该零件数据模型的数据库实现;所建立的零件信息数据库系统可以较好地满足CIMS 系统对信。

PLC外文翻译

外文翻译 原文:The open system merit of Computer Numerical Control The open system merit is the system simple, the cost low, but the shortcoming is the precision is low. The reverse gap, the guide screw pitch error, stop inferiorly can affect the pointing accuracy by mistake. Following several kind of improvements measure may cause the pointing accuracy distinct improvement. 1. reverse gap error compensates The numerical control engine bed processing cutting tool and the work piece relative motion is depends upon the drive impetus gear,the guide screw rotation, thus the impetus work floor and so on moves the part to produce moves realizes. As traditional part gear, guide screw although the manufacture precision is very high, but always unavoidably has the gap. As a result of this kind of gap existence, when movement direction change, starts the section time to be able to cause inevitably actuates the part wasting time, appears the instruction pulse to push the motionless functional element the aspect. This has affected the engine bed processing precision, namely the instruction pulse and actual enters for the step does not tally,has the processing error therefore, the split-ring numerical control system all establishes generally has the reverse gap error compensatory function, with by makes up which wastes time the step reverse gap difference compensates is first actual reverse enters for the error, converts the pulse equivalent number it, compensates the subroutine as the gap the output, when the computer judgment appears when instruction for counter motion, transfers the gap to compensate the subroutine immediately, compensates the pulse after the output to eliminate the reverse gap to carry on again normally inserts makes up the movement. 2. often the value systematic characteristic position error compensates A kind of storehouse by transfers for the designer. Like this in the components design stage, the designer only must input the characteristic the parameter, the system direct production characteristic example model: We must save the related characteristic class in the database the structure information, the database table collection are use in saving this part of related information. According to the characteristic type definition need, we defined the characteristic class code table, the

PLC外文文献翻译

Programmable logic controller A programmable logic controller (PLC) or programmable controller is a digital computer used for automation of electromechanical processes, such as control of machinery on factory assembly lines, amusement rides, or lighting fixtures. PLCs are used in many industries and machines. Unlike general-purpose computers, the PLC is designed for multiple inputs and output arrangements, extended temperature ranges, immunity to electrical noise, and resistance to vibration and impact. Programs to control machine operation are typically stored in battery-backed or non-volatile memory. A PLC is an example of a real time system since output results must be produced in response to input conditions within a bounded time, otherwise unintended operation will result. 1.History The PLC was invented in response to the needs of the American automotive manufacturing industry. Programmable logic controllers were initially adopted by the automotive industry where software revision replaced the re-wiring of hard-wired control panels when production models changed. Before the PLC, control, sequencing, and safety interlock logic for manufacturing automobiles was accomplished using hundreds or thousands of relays, cam timers, and drum sequencers and dedicated closed-loop controllers. The process for updating such facilities for the yearly model change-over was very time consuming and expensive, as electricians needed to individually rewire each and every relay. In 1968 GM Hydramatic (the automatic transmission division of General Motors) issued a request for proposal for an electronic replacement for hard-wired relay systems. The winning proposal came from Bedford Associates of Bedford, Massachusetts. The first PLC, designated the 084 because it was Bedford Associates' eighty-fourth project, was the result. Bedford Associates started a new company dedicated to developing, manufacturing, selling, and servicing this new product: Modicon, which stood for MOdular DIgital CONtroller. One of the people who worked on that project was Dick Morley, who is considered to be the "father" of the PLC. The Modicon brand was sold in 1977 to Gould Electronics, and later acquired by German Company AEG and then by French Schneider Electric, the current owner. One of the very first 084 models built is now on display at Modicon's headquarters in North Andover, Massachusetts. It was presented to Modicon by GM, when the unit was retired after nearly twenty years of uninterrupted service. Modicon used the 84

基于PLC相关的毕业设计外文翻译(可编辑修改word版)

毕业论文(设计)外文翻译 题目:可编程逻辑控制器技术 系部名称:信息工程系专业班级: 学生姓名:学号: 指导教师:教师职称: 2014 年3 月XX 日

译文 可编程逻辑控制器技术 引言 PLC(可编程逻辑控制器)实际是一个工业控制系统(近来我们看到更多的是用处理器来取代微控制器),在软件和硬件都配备的条件下,适合应用于工业环境。PLC 的发明是相当必要的,它代替了传统的依靠由继电接触器电路来控制电机。PLC 的工作原理是根据它的输入信号和工作状态来确定输出。用户通常是通过软件或编程输入一个程序,来输出所需要的结果。 如图 8-1 所示,PLC 是由典型的黑色构件组成。特别需要注意的是它的输入和输出, 因为在这些模块上,工业环境会给 CPU 一个输入线,所以很有必要将 CPU 模块隔离以保护其免遭有害的影响。程序单元通常是用计算机来编写程序(一般是梯形图)。 1.1CPU 的中央处理单元 中央处理单元(CPU)是一个 PLC 的主控制器。一般 CPU 本身是一个微控制器。通常这些都是 8 位微控制器,如 8051 ,现在的这些是 16 位和 32 位微控制器。潜规则是,你会发现用在 PLC 控制器上的微控制器多数是由日本生产的日立和富士通,欧洲的西门子控制器,和美国的摩托罗拉微控制器。CPU 也负责通讯,与 PLC 控制器的其它部分相互联系,如程序执行,内存操作,监督输入和设置输出。PLC 控制器拥有复杂的程序用于内存检查,以确保 PLC 内存不被损坏(内存检查是为了安全原因而作出的)。一般来说,CPU 单元多数用来检查 PLC 控制器本身,所以有可能出现的错误很早就会被发现。你可以简单地看任何 PLC 控制器,查看错误信号在发光二极管上的种种指示形式。 1.2内存 系统内存(今天主要是在 FLASH 技术上实现)用于一台 PLC 的过程控制系统。除了 这个操作系统它还包含用户程序将梯形图翻译成二进制的形式。 FLASH 存储器的内容仅在 用户程序改变下可以改变。PLC 控制器较早被用来代替闪存,EPROM 存储器代替了那些只能依靠紫外线灯等擦除内存并依靠程序员来编程的 FLASH 存储器。在 FLASH 技术的作用下这个过程被大大的缩短了。重组程序内存通过程序中的串行通讯用于应用程序开发。使用内存被划分成多个具有特殊功能的模块。存储器某些部分用来存储输入状态和输出状态。一个 输入信号的实际状态是用 1 或0 存储在一个特定的存储位。每一个输入信号和输出信号在内存里都有一个位与之相对应。内存的其他部分用来存储用户程序中使用的变量以及变量的内容。例如,定时器的值和计数器的值都将被存储在这部分内存里。 1.3PLC 控制器的编程 PLC 控制器可以通过计算机(常用的方式)进行编程,还可以通过手动编程器(控制台)编程。这实际上意味着如果你有需要的编程软件那么每个 PLC 控制器都可以通过计算机进行编程。今天的传输计算机是非常适合在工厂对 PLC 控制器进行编程的。这对工业有着非常重要的意义。一旦系统被刷新,重新读取正确的程序到 PLC 就很重要。还可以定期检查 PLC 中的程序是否改变了。这有助于避免在工厂车间发生危险状况(部分汽车制造商建立了通信网络,定期检查项目中的 PLC 控制器,以确保执行的程序是正确的)。

plc外文翻译

1 Bit Logic In structi ons 1.1 Overview of Bit Logic In structi ons 1.1.1 Description Bit logic in structi ons work with two digits, 1 and 0. These two digits form the base of a nu mber system called the binary system. The two digits 1 and 0 are called binary digits or bits. In the world of con tacts and coils, a 1 in dicates activated or en ergized, and a 0 in dicates not activated or not en ergized. The bit logic in struct ions in terpret sig nal states of 1 and 0 and comb ine them accord ing to Boolea n logic. These comb in ati ons produce a result of 1 or 0 that is called the “result of logic operati on ” (RLO). The logic operations that are triggered by the bit logic instructions perform a variety of fun cti ons. There are bit logic in structio ns to perform the followi ng fun cti ons: ---| |--- Normally Ope n Co ntact (Address) ---| / |--- Normally Closed Con tact (Address) ---(SAVE) Save RLO into BR Memory XOR Bit Exclusive OR ---()Output Coil ---(# )--- Midli ne Output ---|NOT|--- In vert Power Flow The followi ng in structio ns react to an RLO of 1: ---(S ) Set Coil ---(R ) Reset Coil SR Set-Reset Flip Flop RS Reset-Set Flip Flop Other in structi ons react to a positive or n egative edge tran siti on to perform the followi ng functions: ---(N)--- Negative RLO Edge Detectio n ---(P)--- Positive RLO Edge Detectio n NEG Address Negative Edge Detectio n POS Address Positive Edge Detectio n

plc外文翻译

1 Bit Logic Instructions 1.1 Overview of Bit Logic Instructions 1.1.1 Description Bit logic instructions work with two digits, 1 and 0. These two digits form the base of a number system called the binary system. The two digits 1 and 0 are called binary digits or bits. In the world of contacts and coils, a 1 indicates activated or energized, and a 0 indicates not activated or not energized. The bit logic instructions interpret signal states of 1 and 0 and combine them according to Boolean logic. These combinations produce a result of 1 or 0 that is called the “result of logic operation” (RLO). The logic operations that are triggered by the bit logic instructions perform a variety of functions. There are bit logic instructions to perform the following functions: ---| |--- Normally Open Contact (Address) ---| / |--- Normally Closed Contact (Address) ---(SAVE) Save RLO into BR Memory XOR Bit Exclusive OR ---( ) Output Coil ---( # )--- Midline Output ---|NOT|--- Invert Power Flow The following instructions react to an RLO of 1: ---( S ) Set Coil ---( R ) Reset Coil SR Set-Reset Flip Flop RS Reset-Set Flip Flop Other instructions react to a positive or negative edge transition to perform the following functions: ---(N)--- Negative RLO Edge Detection ---(P)--- Positive RLO Edge Detection NEG Address Negative Edge Detection POS Address Positive Edge Detection

PLC控制系统外文翻译

附录 Abstract: Programmable controller in the field of industrial control applications, and PLC in the application process, to ensure normal operation should be noted that a series of questions, and give some reasonable suggestions. Key words: PLC Industrial Control Interference Wiring Ground Proposal Description Over the years, programmable logic controller (hereinafter referred to as PLC) from its production to the present, to achieve a connection to the storage logical leap of logic; its function from weak to strong, to achieve a logic control to digital control of progress; its applications from small to large, simple controls to achieve a single device to qualified motion control, process control and distributed control across the various tasks. PLC today in dealing with analog, digital computing, human-machine interface and the network have been a substantial increase in the capacity to become the mainstream of the field of control of industrial control equipment, in all walks of life playing an increasingly important role. ⅡPLC application areas Currently, PLC has been widely used in domestic and foreign steel, petroleum, chemical, power, building materials, machinery manufacturing, automobile, textile, transportation, environmental and cultural entertainment and other industries, the use of mainly divided into the following categories: 1. Binary logic control Replace traditional relay circuit, logic control, sequential control, can be used to control a single device can also be used for multi-cluster control and automation lines. Such as injection molding machine, printing machine, stapler machine, lathe, grinding machines, packaging lines, plating lines and so on. 2. Industrial Process Control In the industrial production process, there are some, such as temperature, pressure, flow, level and speed, the amount of continuous change (ie, analog), PLC using the appropriate A / D and D / A converter module, and a variety of control algorithm program to handle analog, complete closed-loop control. PID closed loop control system adjustment is generally used as a conditioning method was more. Process control in metallurgy, chemical industry, heat treatment, boiler control and so forth have a very wide range of applications 3. Motion Control PLC can be used in a circular motion or linear motion control. Generally use a dedicated motion control module, for example a stepper motor or servo motor driven single-axis or multi-axis position control module, used in a variety of machinery, machine tools, robots, elevators and other occasions. 4. Data Processing PLC with mathematics (including matrix operations, functions, operation, logic operation), data transfer, data conversion, sorting, look-up table, bit manipulation functions, you can complete the data collection, analysis and processing.Data

精品中英文外文翻译--PLC和微处理器-定

Introductions of PLC and MCU A PLC is a device that was invented to replace the necessary sequential relay circuits for machine control. The PLC works by looking at its inputs and depending upon their state, turning on/off its outputs .The user enters a program, usually via software or programmer that gives the desired results. PLC are used in many “real world” applications. If there is industry present, chances are good that there is a PLC present. If you are involved in machining, packaging, material handling, automated assembly or countless other industries, you are probably already using them. If you are not, you are wasting money and time. Almost any application that needs some type of electrical control has need for PLC. For example, let’s assume that when a switch turns on we want to turn a solenoid on for 5 seconds and then turn it off regardless of how long the switch is on for. We can do this with a simple external timer. What if the process also needed to count how many times the switch individually turned on? We need a lot of external counters. As you can see, the bigger the process the more of a need we have for a PLC. We can simply program the PLC to count its inputs and turn the solenoids on for the specified time. We will take a look at what i s considered to be the “top 20” PLC instructions. It can be safely estimated that with a firm understanding of there instructions one can solve more than 80% of the applications in existence. That‘s right, more than 80%! Of course we’ll learn more than jus t these instructions to help you solve almost ALL your potential PLC applications. The PLC mainly consists of a CPU, memory areas, and appropriate circuits to receive input/output data, as shown in Fig. 19.1 We can actually consider the PLC to be a box full of hundreds or thousands of separate relays, counters, timer and date storage locations. Do these counters, timers, etc. really exist? No, they don’t “physically” exist but rather they are simulated and can be considered software counters, timers, etc. These internal relays are simulated through bit locations in registers. What does each part do? INPUT RELAYS-(contacts) These are connected to the outside world. They physically exist and receive signals from switches, sensors, etc... Typically they are not relays but rather they are transistors.

PLC中英文资料外文翻译-(1)

可编程控制器技术讨论与未来发展 摘自《可编程控制器技术讨论与未来发展》 数字媒体系 08165110 多衡随着时代的发展,当今的技术也日趋完善、竞争愈演愈烈;单靠人工的操作已不能满足于目前的制造业前景,也无法保证更高质量的要求和高新技术企业的形象. 人们在生产实践中看到,自动化给人们带来了极大的便利和产品质量上的保证,同时也减轻了人员的劳动强度,减少了人员上的编制.在许多复杂的生产过程中难以实现的目标控制、整体优化、最佳决策等,熟练的操作工、技术人员或专家、管理者却能够容易判断和操作,可以获得满意的效果.人工智能的研究目标正是利用计算机来实现、模拟这些智能行为,通过人脑与计算机协调工作,以人机结合的模式,为解决十分复杂的问题寻找最佳的途径我们在各种场合看到了继电器连接的控制,那已经是时代的过去,如今的继电器只能作为低端的基层控制模块或者简单的设备中使用到;而PLC的出现也成为了划时代的主题,通过极其稳定的硬件穿插灵活的软件控制,使得自动化走向了新的高潮。 PLC的最大特点在于:电气工程师已不再电气的硬件上花费太多的心计,只要将按钮开关或感应器的输入点连接到PLC的输入点上就能解决问题,通过输出点连接接触器或继电器来控制大功率的启动设备,而小功率的输出设备直接连接就可以。 PLC的内部包含了具有中央处理器的CPU,并带有外部I/O口扩展的I/O接口地址和存储器三大块组成,CPU的核心是由一个或者多个累加器组成,它们具有逻辑的数学运算能力,并能读取程序存储器的内容通过计算后去驱动相应的存储器和I/O接口;I/O口将内部累加器和外部的输入和输出系统连接起来,并将相关的数据存入程序存储器或者数据存储器中;存储器可以将I/O口输入的数据存入存储器中,并在工作时调转到累加器和I/O接口上,存储器分程序存储器ROM和数据存储器RAM,ROM可以将数据永久的存入存储器中,而RAM只能作为CPU计算时临时计算使用的缓冲空间。 PLC的抗干扰是极其优秀的,我们根本不用去关心它的使用寿命和工作场合的恶劣,这些所有的问题已不再成为我们失败的主题,而留给我们的是关心如何来利用PLC的内部资源为我们加强设备的控制能力,使我们的设备更加的柔性。 PLC的语言并不是我们所想象的汇编语言或C语言来进行编程,而是采用原有的继电器控制的梯形图,使得电气工程师在编写程序时很容易就理解了PLC的语言,而且很多的非电气专业人士也对PLC很快认识并深入。

PLC中英文资料外文翻译

可编程控制器 技术讨论与未来发展 学生姓名: ****** 所在院系: ****** 所学专业: ****** 导师姓名: ****** 完成时间:******

外文资料 PLCtechnique discussion and future development With the development of the times, today's technology is maturing, competition intensified。 rely on manual operation does not satisfy the current industry outlook, there is no guarantee of higher quality requirements and high-tech corporate image. People saw in the production practice, automation to bring great convenience and product quality assurance, but also reduce the labor intensity, reducing the staff on the establishment in many complex production process is difficult to achieve target control, the overall optimization, optimal decision-making, skilled operatives, technicians or specialists, managers can easily determine and operate it, you can get satisfactory results. artificial intelligence research is the use of computers to achieve the target, the analog These intelligent behavior, through coordination of the human brain and a computer to combine human models for solving very complex problem of finding the best way. PLC's most important feature is: electrical engineer electrical hardware no longer spend too much scheming, as long as the button switch or sensor input connected to the PLC input point will solve the problem by connecting the output point contacts or relay to control the power of the boot device, and small power output devices can be connected directly. Contained within the PLC having a central processor of the CPU, and with an external I / O port expansion I / O interface and the memory addresses of three major components, CPU core is formed by one or more accumulators, which have the logical math capabilities, and can read the contents of the program memory to drive through the calculation of the corresponding memory and I / O interface。 I / O port to the internal accumulator and external input and output systems together, and the relevant data stored in the program memory or data memory。 memory can be I / O port input data stored in memory and transferred to the accumulator at work, and I / O interfaces, memory sub-ROM program memory and data memory RAM, ROM data can be permanently stored in memory, CPU and RAM only as a temporary calculated using the calculation buffer space. PLC immunity is extremely good, we do not have to care about the life and work of its harsh occasions, all of these issues are no longer the subject of our failure, and left us is concerned with how to take advantage of the PLC's internal resources to

PLC中英文资料外文翻译

附录 外文资料 PLC technique discussion and future development Along with the development of the ages, the technique that is nowadays is also gradually perfect, the competition plays more more strong; the operation that list depends the artificial has already can't satisfied with the current manufacturing industry foreground, also can't guarantee the request of the higher quantity and high new the image of the technique business enterprise. The people see in produce practice, automate brought the tremendous convenience and the product quantities for people up of assurance, also eased the personnel's labor strength, reduce the establishment on the personnel. The target control of the hard realization in many complicated production lines, whole and excellent turn, the best decision etc., well-trained operation work, technical personnel or expert, governor but can judge and operate easily, can acquire the satisfied result. The research target of the artificial intelligence makes use of the calculator exactly to carry out, imitate these intelligences behavior, moderating the work through person's brain and calculators, with the mode that person's machine combine, for resolve the very complicated problem to look for the best path We come in sight of the control that links after the electric appliances in various situation, that is already the that time generation past, now of after use in the mold a perhaps simple equipments of grass-roots control that the electric appliances can do for the low level only;And the PLC emergence also became the epoch-making topic, adding the vivid software control through a very and stable hardware, making the automation head for the new high tide. The PLC biggest characteristics lie in: The electrical engineering teacher already no longer electric hardware up too many calculationses of cost, as long as order the importation that the button switch or the importation of the sensors order to link the PLC up can solve problem, pass to output to order the conjunction contact machine or control the start equipments of the big power after the electric appliances, but the

相关主题
文本预览
相关文档 最新文档