当前位置:文档之家› 基于振弦传感器的桥梁应力监测系统设计

基于振弦传感器的桥梁应力监测系统设计

基于振弦传感器的桥梁应力监测系统设计
基于振弦传感器的桥梁应力监测系统设计

武汉理工大学

硕士学位论文

基于振弦传感器的桥梁应力监测系统设计

姓名:韩涛

申请学位级别:硕士

专业:通信与信息系统

指导教师:廖传书

20090501

(完整word版)振弦式传感器

基于振弦式传感器测频系统的设计 白泽生 (延安大学物理与电子信息学院陕西延安716000) 利用振弦式传感器测量物理量是基于其钢弦振动频率随钢丝张力变化,输出的是频率信号,具有抗干扰能力强,对电缆要求低,有利于传输和远程测量的特点。因此,可获得非常理想的测量效果。 1 振弦式传感器的工作原理 振弦式传感器由定位支座、线圈、振弦及封装组成。振弦式传感器可等效成一个两端固定绷紧的均匀弦,如图1所示。 振弦的振动频率可由以下公式确定:

其中S为振弦的横截面积,ρv为弦的体密度(ρv=ρ/s),△l为振弦受张力后的长度增量,E为振弦的弹性模量,σ为振弦所受的应力。 当振弦式传感器确定以后,其振弦的质量m,工作段(即两固定点之间)的长度L,弦的横截面积S,体密度ρv及弹性模量E随之确定,所以,由于待测物理量的作用使得弦长有所变化,而弦长的变化可改变弦的固有振动频率,由于弦长的增量△l与振弦的最长驻波波长的固有频率存在确定的关系,因此只要能测得弦的振动频率就可以测得待测物理量。 2 测频系统的设计 2.1 基本原理 振弦式传感器工作时由激振电路驱动电磁线圈,当信号的频率和振弦的固有频率相接近时,振弦迅速达到共振状态,振动产生的感应电动势通过检测电路滤波、放大、整形送给单片机,单片机根据接收的信号,通过软件方式反馈给激振电路驱动电磁线圈。通过反馈,弦能在电磁线圈产生的变化磁场驱动下在本振频率点振动。当激振信号撤去后,弦由于惯性作用仍然振动。单片机通过测量感应电动势脉冲周期,即可测得弦的振动频率,最后将所测数据显示出来。测频原理框图如图2所示。

2.2 系统硬件电路设计 根据以上的基本原理和思想,设计的测频系统的整体电路如图3所示。主要由激振电路、检测电路、单片机控制电路和显示电路等几部分组成。工作过程是由单片机产生某一频率的激振信号,经放大后激励振弦振动,拾振线圈中产生的感应电动势经几级放大后送给单片机处理,最后送显示电路显示。

振动传感器种类、原理及发展趋势

振动传感器种类、原理及发展趋势 【摘要】振动传感器是一种能感受机械运动振动的参量(振动速度、频率,加速度等)并转换成可用输出信号的传感器。 在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。 【关键词】种类;原理;发展趋势 【Abstract】:Vibration transducer is atransducer that can feel the vibration of a mechanical movement parameters (frequency of the vibration velocity, acceleration, etc.) and converted into usable output signal of the sensor. At the height of the development of modern industry, modern testing technology to digitization, information management has become an inevitable trend of development, and testing system for the front end is the sensor, it is the soul of an entire test system, is listed as a leading-edge technology around the world, particularly in recent years, the rapid development of IC technology and computer technology, the development of a sensor provides a good and reliable scientific and technology base. Place the sensor development, Crescent IK, and multipurpose digital, is a modern and intelligent sensor development, an important feature. 【Keywords】:type , principle , inevitable trend of development 振动传感器的分类

振弦式传感器测频方法的研究

振弦式传感器具有结构简单、精度高、长期稳定性好,其输出为数字信号,便于与微机接口,有较强的抗干扰能力,便于长距离传输等优点,因此,在大坝、桥梁、地铁、煤矿、基坑等工程安全监测中广泛的应用。影响振弦式传感器测量精确度的因素主要有两方面。一是测量区间的选择(即激励响应信号的稳定区间),二是频率测量方法。文章主要从这两个方面进行理论分析,确定出有效的振弦式传感器的测量方法。 1激励响应信号的稳定区间的研究 振弦式传感器激励响应信号是由一定频率高压正弦信号激励传感器,使传感器谐振产生的信号。激 励响应信号是按指数衰减的阻尼振动信号[1]。 物体在运动过程中,总是或多或少地受到阻碍其运动的力的作用,例如空气阻力和摩擦力等,从而使振动的振幅和能量逐渐衰减,这种振动称为阻尼振动。阻尼振动的公式如下: x=A(t)cos(ωt+φ 0)A(t)=A e-βt(1) β是表征系统阻尼大小的常量,叫做阻尼系数[2]。 A 0和φ 为任意常数,由振动的初始条件决定,A 为 初始幅度,φ 为初始相位。ω=ω20-β2 姨,ω0为初始 相位。振弦式传感器激励响应信号的波形(阻尼振动 的图形)如图1所示。 由于激励响应信号为减幅振荡,减幅振荡信号 其信噪比是随着幅度减小逐渐减小的。虽然T0时间 段幅度最高,但是由于激励响应信号初期的频率成 分不纯,信号不稳定,故不选取此段时间测量。T2时 间段由于信号振幅低于门槛电压,其噪声干扰严重, 刘玉珍杨炬亮 (辽宁工程技术大学电子与信息工程学院葫芦岛125105) 摘要振弦式传感器是一种使用相当广泛的称重测力传感器。称重测力传感器主要分为应变力传感器,石英谱振器,振弦式传感器等几大类。就其工作原理而言,振弦式传感器是目前在称重测力应用方面最为先进的一种测力传感器。文章主要从理论上对振弦式传感器的激励响应信号进行分析,确定出稳定可靠的激励响应信号区间,并在该区间内分析计数法和多周期测量法的误差,比较得出多周期测量法测量频率精度高,稳定性好,抗干扰能力好。 关键词振弦式传感器计数法多周期测量法频 率 图1阻尼振动

振弦式传感器的应用和发展研究

题目 摘要 关键词 abstract kye words 1引言 振弦式传感器是以拉紧的金属弦作为敏感元件的谐振式传感器。其输出的是频率信号,不需要A/D 或D/A 转换,抗干扰能力强,能够远距离传输。其稳定性、重复性较好,结构简单,寿命长,灵敏度高,因此被广泛应用于大坝、桥梁、公路等对力、位移和裂缝的检测。国际上生产振弦式传感器的著名厂家有美国基康公司,法国TELEMAL 等,他们生产的振弦式传感器在精度、寿命和稳定性方面都有良好的表现。如今,振弦式传感器已经成为了应力、应变测量的先进传感器之一。 2振弦式传感器的工作原理 金属丝在一定的拉力下具有一定的自振频率。随着应力的变化,其自振频率也跟着变化。而其自振频率跟应力具有某种数学关系。所以,通过测量金属弦的固有频率就可以换算得到外界参数的变化。 图1是振弦式传感器的等效物理模型。金属弦的自振频率的得到公式如下: f = (1) 式中,f 为金属弦的自振频率;l 为金属弦的长度;ρ为金属弦的线密度;T 为金属弦所受张力。 而 v T s s E l l σρρσ?=???=????=?? (2) 式中,σ为金属弦所受应力;s 为金属弦横截面积;v ρ为金属弦的体密度;E 为金属弦的弹性模量;l ?为金属弦受张力后的长度增量。 将式(2)带入式(1),得 f = (3)

由上式可看出,当传感器确定之后,弦长l 、弹性模量E 、弦的体密度v ρ都为常量。外力的变化引起弦长度的增量l ?与弦的自振频率存在着确定的关系式。 3振弦式传感器的发展历史与现状 1919年,谢弗和麦哈克公司联合研制了世界上首款振弦式传感器。虽然这款传感器能够用来测量应变。但是由于其自身的缺点,如测量范围窄、灵敏度低等,而未能大规模应用于工程实践中。而后由于技术的发展,不仅提高了其范围与灵敏度,测量与传输距离也大幅提高。使得振弦式传感器不仅用于应变的测量,还可以用来测量液位、位移、扭矩等。虽然此时振弦式传感器的各项性能已经满足工程测量的需求,但却未能广泛应用。主要原因就是采集振弦传感器信号的设备还未面世。 20世纪30年代,前苏联成功研究开发出了采集振弦式传感器信号的监测设备。振弦式传感器在工程测量中大规模应用也正是源于监测设备的成功开发。振弦式传感器由于可以长期测量液位、压力、渗流和位移等物理量,而成为大坝等水利设施上一种非常重要的传感器。 20世纪70年代后,随着电子技术、测试技术、计算机技术和半导体集成电路技术的飞速发展,振弦式传感器的研究也获得了长足的进步。现代生产的振弦式传感器由于体积小、重量轻、结构紧凑、分辨率高、精度高、便于数据传输、处理和存储而成为工程监测中一种较为先进的传感器。 国外对振弦式传感器的研究起步较早,国际著名的振弦式传感器制造公司有美国基康公司(GEKON)、德国MAILHAK 公司、法国TELEMAL 公司、加拿大ROCTEST 公司及英国SCHLUBERGER 等公司。这些公司研究早,发展快,生产的传感器性能好、数字化及智能化。 国内振弦式传感器的研究开始于19世纪60年代。虽然起步较晚,但是也取得了不俗的成就。 国内比较著名的振弦式传感器公司有:山东科技大学洛赛尔传感器技术有限公司、南京格能仪器科技有限公司等。 20世纪70年代开始,山东科技大学邓铁六教授等人便投身于对振弦式传感器、智能仪器和 监测系统的研究,于后来提出了() ()2200F A F F B F F =-+-的精确数学模型,提高了传感器的准确性和重复性。并与90年代研制出了单线圈振弦式传感器。此传感器的振弦传感技术由振弦传感器、激发电路、高准确度快速测频电路、单片机、微机等组成测量系统组成,是一项综合技术,具有广阔的发展前景。2010年,邓铁六等教授又发明了一种高准确度振弦式压力传感器。1984年南京水利科学研究所研制出了可以监测32个点的振弦传感器巡回检测装置。1996年崔玉亮教授等人对振弦式传感器测量精度的公式进行了修正。2013年水利部珠江水利委员会蒙永务研究了振弦式传感器频率测量的问题,针对其输出信号弱,易受干扰提出了基于锁相环的新型测频电路。 经过几十年的发展,振弦式传感器以经成为了一种技术含量高,使用广泛的传感器。振弦式传感器的研究工作也仍然在进行中。 4振弦式传感器的应用研究 4.1在大坝安全监测中的应用 4.2 4.3

振动传感器

振动传感器 振动传感器分为压电式,磁电式,微型振动传感器。 常用振动传感器有以下几种: 1.压电片谐振式:使用压电片接收振动信号,压电片的谐振频率较高,为了降低谐振频率,使用加大压电片振动体的质量来实现,并使用弹簧球代替附加物,降低两谐振频率,增强了振动效果。其优点是灵敏度较高,结构简单。但是需要信号放大后送到TTL电路或者单片机电路中,不过使用一个三极管单级放大即可 2.机械振动式:传统的振动检测方式,受到振动以后,弹簧球在较长的时间内进行减幅振动,这种振动便于被检测电路检测到。振动输出开关信号,输出阻抗与配合输出的电阻阻值所决定,根据检测电路的输入阻抗,可以做成高阻抗输出方式。 3.微型振动传感器:将机械式振动传感器微型化,将振动体碳化并进行密封处理,其工作性能更可靠。输出开关信号直接与TTL电路和或者单片机输入电路相连接,电路结构简单。输出阻抗高,静态工作电流小。 振动传感器按其功能可有以下几种分类方法: 按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式; 按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 以上分类法中的传感器是相容的。

1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器

振弦式传感器的工作原理及其特点

振弦式传感器的工作原理及其特点 1. 概述 振弦式传感器是目前国内外普遍重视和广泛应用的一种非电量电测的传感器。由于振弦传感器直接输出振弦的自振频率信号,因此,具有抗干扰能力强、受电参数影响小、零点飘移小、受温度影响小、性能稳定可靠、耐震动、寿命长等特点。与工程、科研中普遍应用的电阻应变计相比,有着突出的优越性: (1)振弦传感器有着独特的机械结构形式并以振弦频率的变化量来表征受力的大小,因此具有长期零点稳定的性能,这是电阻应变计所无法比拟的。在长期、静态测试传感器的选择中,振弦传感器已成为取代电阻应变计、而广泛应用于工程、科研的长期原观的测试手段。(2)随着电子、微机技术的发展,从实现测试微机化、智能化的先进测试要求来看,由于振弦传感器能直接以频率信号输出,因此,较电阻应变计模拟量输出能更为简单方便地进行数据采集、传输、处理和存储,实现高精度的自动测试。 为此,振弦传感器得到了迅速的发展和应用。在国外,德国的MAlHAK、法国的TELEMAL、美国的SINCO和FOXBORO、英国的SCHLUBERGER及挪威等多家公司,都有振弦传感器的系列产品。国内从60年代起,先后研制开发了适合各种测试目的的多种振弦传感器的系列产品,如振弦式压力计、土压力计、空隙水压力计、应变计、测力(应力)计、钢筋计、扭力计、位移计、反力计、吊重负荷计、倾斜计等等。它们广泛应用于港口工程、土木建筑、道路桥梁、矿山冶金、机械船舶、水库大坝、地基基础等测试,已成为工程、科研中一种不可缺少的测试手段,显示出了其广阔应用和发展的前景。 2. 工作原理 振弦式传感器由受力弹性形变外壳(或膜片)、钢弦、紧固夹头、激振和接收线圈等组成。钢弦自振频率与张紧力的大小有关,在振弦几何尺寸确定之后,振弦振动频率的变化量,即可表征受力的大小。 现以双线圈连续等幅振动的激振方式,来表述振弦式传感器的工作原理。如图l所示,工作时开启电源,线圈带电激励钢弦振动,钢弦振动后在磁场中切割磁力线,所产生的感应电势由接收线圈送入放大器放大输出,同时将输出信号的一部分反馈到激励线圈,保持钢弦的振动,这样不断地反馈循环,加上电路的稳幅措施,使钢弦达到电路所保持的等幅、连续的振动,然后输出的与钢弦张力有关的频率信号。 振弦这种等幅连续振动的工作状态,符合柔软无阻尼微振动的条件,振弦的振动频率可由下式确定; 式中,f 0 ——初始频率; L——钢弦的有效长度i p一-钢弦材料密度; σ o ——钢弦上的初始应力。 由于钢弦的质量m、长度L、截面积S、弹性模量E可视为常数,因此,钢弦的应力与输出频率f 0 建立了相应的关系。当外力F未施加时,则钢弦按初始应力作稳幅振动,输出初频f 0 ;当施加外力(即被测力——应力或压力)时,则形变壳体(或膜片)发生相应的拉伸或压缩,使钢弦的应力增加或减少,这时初频也随之增加或减少。因此,只要测得振弦频率值f,即可得到相应被测的力——应力或压力值等。

振动传感器的种类及选择方法

涡流传感器输出与振动位移成正比。传感器与被测物体不接触,可以测量转动部件的振动,并可进一步用于测量旋转机械振动分析中的两个关键参数:转速和相位。振动测量的频率范围较宽,能同时作静态和动态测量,适用于绝大多数旋转机械。传感器输出结果与被测物体材料有关,材料本身会影响传感器线性范围和灵敏度,必须重新标定。为了获得可靠的数据,对传感器的安装要求较严。 速度传感器输出与振动速度成正比,信号可以直接提供给分析系统。传感器安装简单,临时测量可以采用手扶方式或通过磁座与被测物体固定,长期监测可以通过螺钉与被测物体固定。速度传感器体积、质量偏大,低频特性较差,测量10Hz以下振动时,幅值和相位有误差,需要补偿。测量发电机和励磁机振动时,速度传感器可能会受到电磁干扰的影响。此时,速度传感器的输出信号会变得很不稳定,忽大忽小,没有规律。 加速度传感器输出与振动加速度成正比。体积小、质量轻是加速度传感器的突出特点,特别适用于细小和质量较轻部件的振动测试。加速度传感器结构紧凑,不易损坏。涡流、速度和加速度传感器在旋转机械振动测试中都得到了广泛应用。通常是用涡流传感器测量转轴振动,用速度或加速度传感器测量轴承座振动。另外,由位移、速度和加速度之间的关系可知,为了突出反映故障信号中高频分量或脉冲量的变化,可以选用加速度传感器,而为了突出反映故障信号中低频分且的变化,可以选用涡流传感器。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/0c1749231.html,/

电涡流位移传感器原理与应用-(38003)

电涡流位移(振动)传感器原理与应用电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一、电涡流传感器的基本原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流

《传感器原理与应用》综合练习答案(期末考试)

《传感器原理与应用》综合练习 一、填空题 1.热电偶中热电势的大小仅与金属的性质、接触点温度有关,而与热电极尺寸、形状及温度分布无关。 2.按热电偶本身结构划分,有普通热电偶、铠装热电偶、微型热电偶。3.热电偶冷端电桥补偿电路中,当冷端温度变化时,由不平衡电桥提供一个电位差随冷端温度变化的附加电势,使热电偶回路的输出不随冷端温度的变化而改变,达到自动补偿的目的。 4.硒光电池的光谱峰值与人类相近,它的入射光波长与人类正常视觉的也相近,因而应用较广。 5.硅光电池的光电特性中,光照度与其短路电流呈线性关系。 6.压电式传感器的工作原理是基于某些介质材料的压电效应。 7.压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成。电畴具有自己极化方向。经过极化过的压电陶瓷才具有压电效应。 8.压电陶瓷的压电常数比石英晶体大得多。但石英晶体具有很多优点,尤其是其它压电材料无法比的。 9.压电式传感器具有体积小、结构简单等优点,但不能测量频率小的被测量。特别不能测量静态量。 10.霍尔效应是导体中的载流子在磁场中受洛伦茨力作用发生位移的结果。 11.霍尔元件是N型半导体制成扁平长方体,扁平边缘的两对侧面各引出一对电极。一对叫激励电极用于引入激励电流;另一对叫霍尔电极,用于引出霍尔电势。 12.减小霍尔元件温度误差的措施有:(1)利用输入回路的串联电阻减小由输入电阻随温度变化;引起的误差。(2)激励电极采用恒流源,减小由于灵敏度随温度变化引起的误差。 13.霍尔式传感器基本上包括两部分:一部分是弹性元件,将感受的非电量转换成磁物理量的变化;另一部分是霍尔元件和测量电路。 14.磁电式传感器是利用霍尔效应原理将磁参量转换成感应电动势信号输出。 15.变磁通磁电式传感器,通常将齿轮的齿(槽)作为磁路的一部分。当齿轮转动时,引起磁路中,线圈感应电动势输出。 16.热敏电阻正是利用半导体的数目随着温度变化而变化的特性制成的热敏感元件。 17.热敏电阻与金属热电阻的差别在于,它是利用半导体的电阻随温度变化阻值变化的特点制成的一种热敏元件。 18.热敏电阻的阻值与温度之间的关系称为热敏电阻的。它是热敏电阻测温的基础。 19.热敏电阻的基本类型有:负温度系数缓变型、正温度系数剧变型、临界温度型。 20.正温度系数剧变型和临界温度型热敏电阻不能用于温度范围的温度控制,而在某一温度范围内的温度控制中却是十分优良的。 21.正温度系数剧变型和临界温度型热敏电阻属于型,适用于温度监测和温度控制。

振动传感器的类型

根据不同的分类标准,有不同的分类,一般来说,有三种分类标准。按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式;按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。下面简单介绍几种振动传感器。 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。 压电式加速度传感器的机械接收部分是惯性式加速度机械接收原理,机电部分利用的是压电晶体的正压电效应。其原理是某些晶体(如人工极化陶瓷、压电石英晶体等,不同的压电材料具有不同的压电系数,一般都可以在压电材料性能表中查到。)在一定方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生,这种从机械能(力,变形)到电能(电荷,电场)的变换称为正压电效应。而从电能(电场,电压)到机械能(变形,力)的变换称为逆压电效应。 电阻式应变式传感器是将被测的机械振动量转换成传感元件电阻的变化量。实现这种机电转换的传感元件有多种形式,其中最常见的是电阻应变式的传感器。电阻应变片的工作原理为:应变片粘贴在某试件上时,试件受力变形,应变片原长变化,从而应变片阻值变化,实验证明,在试件的弹性变化范围内,应变片电阻的相对变化和其长度的相对变化成正比。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游

(完整word版)声音传感器的原理

声音传感器 1简介 声音传感器又可称之为声敏传感器,它是一种在气体液体或固体中传播的机械振动转换成电信号的器件或装置。它采用接触或非接触的方式检测信号。声敏传感器的种类很多,按测量原理可分为压电、电致伸缩效应、电磁感应、静电效应和磁致伸缩等等。本次作业我想就电容式声敏传感器中的一种也就是电容式驻极体话筒做个简单的介绍。 2组成 该传感器是内置一个对声音敏感的电容式驻极体话筒。驻极体话筒主要由两部分组成——声电转换部分和阻抗部分。声电转换的关键元件是驻极体振动膜。它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。然后再经过高压电场驻极后,两面分别驻有异性电荷。膜片的蒸金面向外,与金属外壳相连通。膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。这样,蒸金膜与金属极板之间就形成一个电容。当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。驻极体膜片与金属极板之间的电容量比较小。因而它的输出阻抗值很高,约几十兆欧以上。这样高的阻抗是不能直接与音频放大器相匹配的。所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。场效应管的特点是输入阻抗极高、噪声系数低。普通场效应管有源极(S)、栅极(G)和漏极(D)三个极。这里使用的是在内部源极和栅极间再复合一只二极管

的专用场效应管。接二极管的目的是在场效应管受强信号冲击时起保护作用。场效应管的栅极接金属极板。这样,驻极体话筒的输出线便有两根。即源极S,一般用蓝色塑线,漏极D,一般用红色塑料线和连接金属外壳的编织屏蔽线。 3原理 该传感器内置一个对声音敏感的电容式驻极体话筒。声波使话筒内的驻极体薄膜振动,导致电容的变化,而产生与之对应变化的微小电压。这一电压随后被转化成0-5V的电压,经过A/D转换被数据采集器接受,并传送给计算机。 4型号及其技术指标 BR-ZS1声音传感器是一款工业标准输出(4~20mA)的积分噪声监测仪,符合GB3785、GB/T17181等噪声监测标准,BR-ZS1声音传感器针对噪声测试需求而设计,支持现场噪声分贝值实时显示,兼容用户的监控系统,对噪声进行定点全天侯监测,可设置报警极限对环境噪声超标报警,该监测仪精度高、通用性强、性价比高成为其显著的特点。

振动信号检测系统设计1

信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 学号:11260224 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。

总体设计方案介绍: 本系统由发射电路和接收电路组成。发射电路主要由加速度传感器构成。接收电路由单片机最小系统和外部串口以及显示部分模块三部分组成。。 硬件电路设计: (1)使用MMA8452加速度传感器和STC89C52单片机来实现。 一.设计目的:了解加速度传感器的工作机理,以及单片机的各种性能; 二.设计器材:电源、proteus7.7软件、89C52,MMA8452加速度传感器,导线若干。 三.设计方案介:该系统目的是便于对一些物理量进行监视、控制。本设计以加速度传感器显示出加速度信号即振动信号,再通过单片机将信号从串口接入电脑显示出来,即完成振动信号的检测功能。 (2)振动传感器的分类 1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。 相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r 。式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。 从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动

振动传感器的原理总结

《振动传感器的原理总结》 05308111 张航 振动传感器包含拾振、测量放大线路和显示记录三个环节。电测法测量系统示意图,如图 下图所示。 1. 拾振环节。把被测的机械振动量转换为机械的、光学的或电的信号,完成这项转换 工作的器件叫传感器。 2. 测量线路。测量线路的种类甚多,它们都是针对各种传感器的变换原理而设计的。 比如,专配压电式传感器的测量线路有电压放大器、电荷放大器等;此外,还有积分线路、微分线路、滤波线路、归一化装置等等。 3. 信号分析及显示、记录环节:从测量线路输出的电压信号,可按测量的要求输入给 信号分析仪或输送给显示仪器(如电子电压表、示波器、相位计等)、记录设备(如光线示 波器、磁带记录仪、X—Y 记录仪等)等。也可在必要时记录在磁带上,然后再输入到信号分析仪进行各种分析处理,从而得到最终结果。 下面将分别介绍各常用传感器的工作原理 1.惯性式传感器 惯性式传感器是利用弹簧质量系统的强迫振动特性来进行振动测量的。 这种传感器直接固定在被测振动体上,不需要相对固定点。测量所得结果直接以固定于地球上的惯性系坐标为参考坐标, 是一种绝对式拾振仪器。 结构示意图 这类传感器是在一个刚性的外壳里安装一个单自由度有阻尼的弹簧质量系统。 根据质量块相对于外壳的运动x来判断外壳体的振动y。 力学原理与频响特性 惯性式传感器利用弹簧质量系统的强迫振动特性进行振动测量。 这种传感器直接固定在被测振动体上,不需要相对固定点。 测量所得结果直接以固定于地球上的惯性系坐标为参考坐标, 是一种绝对式拾振仪器。

质量块的运动方程 表明质量块相对于仪器外壳的位移x 与振动体的绝对位移y 之间存在一定的关系。可以根据x 推算出y 假定振动体作简谐振动 代入运动方程得 令 上式的解可分为两部分 一部分是齐次方程的解,代表传感器的自由振动。 由于系统存在阻尼,自由振动经过一定时间后就衰减掉了 第二部分为非线性方程的特解,代表强迫振动,它实际上是传感器外壳所引起的传感器系统的响应。 这一部分解可表示为 惯性式位移传感器的频响特性 幅频特性: 相频特性: ()0=+++x c kx y x m t sin m ωY =y t sin m 2ωωY =++m kx x c x m m k =Ω2t sin x m 2ωωY =++x m k x m c m c n =2t sin 2m 22ωωY =Ω++x x n x () αω-X =t sin m x

振动传感器原理与应用

振动传感器原理与应用 在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC 技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。 一、工程振动测试方法 在工程振动测试领域中,测试手段与方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。 1、机械式测量方法 将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。但在现场测试时较为简单方便。 2、光学式测量方法 将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。如读数显微镜和激光测振仪等。 3、电测方法 将工程振动的参量转换成电信号,经电子线路放大后显示和记录。电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。这是目前应用得最广泛的测量方法。 上述三种测量方法的物理性质虽然各不相同,但是,组成的测量系统基本相同,它们都包含拾振、测量放大线路和显示记录三个环节。 1、拾振环节。把被测的机械振动量转换为机械的、光学的或电的信号,完成这项转换工作的器件叫传感器。 2、测量线路。测量线路的种类甚多,它们都是针对各种传感器的变换原理而设计的。比如,专配压电式传感器的测量线路有电压放大器、电荷放大器等;此外,还有积分线路、微分线路、滤波线路、归一化装置等等。 3、信号分析及显示、记录环节。从测量线路输出的电压信号,可按测量的要求输入给信号分析仪或输送给显示仪器(如电子电压表、示波器、相位计等)、记录设备(如光线示波器、磁带记录仪、X—Y 记录

测振传感器

论文题目:测振传感器 学生姓名: xx 系别: xx 专业:机械设计制造及其自动化指导老师: xx 2012 年 5 月 4 日

目录 一、工程振动测试方法 3 1、机械式测量方法 3 2、光学式测量方法 3 3、电测方法 4 二、振动传感器种类 4 三、传感器的机械接收原理 4 1、相对式机械接收原理 5 2、惯性式机械接收原理 5 四、常用的几种振动传感器: 5 1、相对式电动传感器 5 2、电涡流式传感器 6 3、电感式传感器 6 4、电容式传感器 6 5、惯性式电动传感器 6 6、压电式加速度传感器 7 7、压电式力传感器 7 8、阻抗头 7 9、电阻应变式传感器 8 五、应用 8 六、生产厂家 8

测量振动的传感器是属于非电量传感器,它有两个作用,其一是敏感作用,对被测对象某种物理量(如位移、速度、加速度或力)敏感,并完成对该被测量信号的拾取;其二是变换作用,将被测非电量变换成电量输出将这些描述机械振动量的物理量转换成电量(电流、电压、电荷)或电参数(电阻、电容、电感)的变化,然后输至“二次”仪表进行放大及记录、显示或分析。 按照被测物理量来分类测振传感器,可分为位移传感器、速度传感器及加速度传感器等。若按其在工作时与被测对象是否接触可分为接触式与非接触式传感器。若按信号转换形式来分类,也可将测振传感器分为结构型和物性型。前者在测振过程中内部结构参数变化导致有信号输出,如涡流传感器将金属位置的变化引起阻抗的变化导致输出,后者则结构参数不变而是在测振过程中传感元件的物理性质的变化导致信号输出。例如压电式加速度传感器的晶体或陶瓷元件在测振过程中由于受力产生压电效应而有电荷输出。 振动传感器类型很多,往往一种被测量可以应用多种类型的传感器来检测,而同一种传感器也可以测量多种物理量。 一、工程振动测试方法 在工程振动测试领域中,测试手段和方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。 1、机械式测量方法 将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。但在现场测试时较为简单方便。 2、光学式测量方法 将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。如读数显微镜和激光测振仪等。

振动传感器原理总结

振动传感器原理总结 一,振动传感器的力学原理 惯性式传感器是利用弹簧质量系统的强迫振动特性来进行振动测量的。这种传感器被直接固定在被测振动体上,不需要相对固定点。测量所得结果直接以固结于地球上的惯性参考系坐标为参考坐标,因此,它是一种绝对式拾振仪器。 下图是这类传感器的结构原理图。在一个刚性的外壳里面,安装一个单自由度的有阻尼的弹簧质量系统。根据质量块相对于外壳的运动来判断被测振动体的振动。 设振动体的位移是y=y(t),并假定由它引起仪器质量块相对于仪器外壳的位移为x(t)(以其静平衡位置为0点),则质量块绝对位移 z=x+y.进行受力分析可得 设振动体作简谐振动 y=Ym*sinwt 代入得到两部分的解。一部分是齐次方程的解,代表拾振器系统的自由振动。由于阻尼,慢慢衰减掉了。第二部分为特解,代表强迫振动。 可以表示为 其中 代表了仪器外壳的振幅Xm 与振动体的振幅Ym 之间的关系。 代表了信号x 与信号y 之间的相位差。 由 横坐标,以 m Y X ωωm 为纵坐标,可 以()Ωω为 以画出关系图,即为仪器的位移幅频特性曲线。 也可以将关系画图表示,得到传感器的位移相频特性曲线。 y m kx x c x m -=++()αω-X =t sin m x ()()2 12arctan Ω -Ω=ωω ζα()()()2 2 22 m 21Ω+?? ????Ω-ΩY = X ωζωω m ()()( ) 2 222 m 21Ω+?? ????Ω-Ω= Y X ωζωωωωm ()()2 12arctan Ω -Ω=ωω ζα() ()()2 2 22 m 21Ω+?? ????Ω-ΩY = X ωζωω m

超声波距离传感器技术原理与应用

超声波距离传感器技术原理与应用 2007-4-24 10:16:00 兆洲科技供稿收藏 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括: (1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 (2)工作温度。由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。 (3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 结构与工作原理 当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。另一方面,当振动压电陶瓷时,则会产生一个电荷。利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。基于以上作用,便可以将压电陶瓷用作超声波传感器。 如超声波传感器,一个复合式振动器被灵活地固定在底座上。该复合式振动器是谐振器以及,由一个金属片和一个压电陶瓷片组成的双压电晶片元件振动器的一个结合体。谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。 室外用途的超声波传感器必须具有良好的密封性,以便防止露水、雨水和灰尘的侵入。压电陶瓷被固定在金属盒体的顶部内侧。底座固定在盒体的开口端,并且使用树脂进行覆盖。(参见图4)对应用于工业机器人的超声波传感器而言,要求其精确度要达到1mm,并且具有较强的超声波辐射。 利用常规双压电晶片元件振动器的弯曲振动,在频率高于70kHz的情况下,是不可能达到此目的的。所以,在高频率探测中,必须使用垂直厚度振动模式的压电陶瓷。在这种情况下,压电陶瓷的声阻抗与空气的匹配就变得十分重要。压电陶瓷的声阻抗为2.6×107kg/m2s,而空气的声阻抗为4.3×102kg/m2s。5个幂的差异会导致在压电陶瓷振动辐射表面上的大量损失。一种

相关主题
文本预览
相关文档 最新文档