当前位置:文档之家› 数字信号处理实验指导书

数字信号处理实验指导书

数字信号处理实验指导书
数字信号处理实验指导书

《数字信号处理》实验指导书

王莉

南京工业大学

自动化与电气工程学院

2008-04-17

目录

实验一信号、系统及系统响应 (3)

实验二用双线性变换法设计IIR数字滤波器 (6)

实验三用窗函数法设计FIR数字滤波器 (10)

附录 MATLAB信号处理工具箱函数 (14)

实验一 信号、系统及系统响应

一.实验目的

1. 熟悉时域离散系统的时域特性。

2. 验证时域的卷积定理。

3. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析。

二.实验内容

1. 观察信号()a x n 和系统()h n 的时域和频域特性,并绘出相应的曲线。①单位脉冲序列:()()a x n n δ=;②系统单位脉冲响应序列:()() 2.5(1) 2.5(2)(3)h n n n n n δδδδ=+-+-+-。

2. 利用线性卷积求信号()a x n 通过系统()h n 的响应()a y n ,比较所求响应()a y n 和()h n 的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

3. 卷积定理的验证。将2中的信号换成0()()sin()()anT b b x n x nT Ae nT u n -==Ω,使a=0.4,0Ω=2.0734,A=1,T=1,重复实验2,求出()b y n ,绘出其频率特性()j b Y e ω曲线;利用公式()()()j j j b Y e X e H e ωωω=,并绘出()j Y e ω

的幅频和相频特性曲线,与前面直接对()b y n 进行傅里叶变换所得频率特性曲线进行比较,验证时域卷积定理。 三.实验设备及仪器

1. 计算机。

2. Matlab 软件。

四. 实验线路及原理

离散信号和系统在时域均可用序列来表示。序列图形给人以形象直观的印象,它可加深我们对信号和系统的时域特征的理解。本实验将观察分析几种信号及系统的时域特性。

序列和信号的傅立叶变换是ω的连续函数,而计算机只能计算出有限个离散频率点的函数值。因此在取得频谱函数后,应该在0~2π之间取许多点,计算这些点的频谱函数的值,并取它们的包络,该包络才是需要的频率特性。当然,点数取得多一些,该包络才

能接近真正得频率特性。通常对()j X e ω在[0,2π]上取模()j k X e ω,绘出幅频特性曲

线进行观察分析。

一个时域离散线性非时变系统的输入/输出关系为

()()()()()m y n x n h n x m h n m ∞=-∞=*=

-∑ (1.1)

这里,()y n 为系统的输出序列,()x n 为输入序列。()h n 和()x n 可以是无限长,也可以是有限长。为了计算机绘图方便,主要讨论有限长情况。

上述卷积运算也可以在频域实现

()()()j j j Y e X e H e ωωω= (1.2)

(1.2)式右边的相乘是各频点的频谱值相乘。

五. 实验方法与步骤

1. 编制信号()a x n 和系统()h n 产生程序,并绘出时域特性曲线。

2. 求信号()a x n 和系统()h n 的傅立叶变换,并画出()a x n 和()h n 的幅频特性和相

频特性曲线。

3. 利用卷积函数conv ()求信号()a x n 通过系统()h n 的响应()a y n ,并绘出()

a y n 的时域特性曲线和幅频特性曲线。

4. 求信号0()()sin()()anT b b x n x nT Ae nT u n -==Ω,

a=0.4,0Ω=2.0734,A=1,T=1的时域特性曲线和频域特性曲线。

5. 利用卷积函数conv ()求信号()b x n 通过系统()h n 的响应()b y n ,并求()b y n 的

傅立叶变换,并绘出其幅频特性和相频特性曲线。

6. 利用公式()()()j j j b Y e X e H e ωωω=计算()j Y e ω,并绘出()k j Y e

ω幅频特性和相频特性

曲线。

七. 实验报告内容与要求

1. 简述实验目的、实验原理及实验步骤。

2. 按实验步骤附上实验过程中的信号序列、系统单位脉冲响应及系统响应序列的时

域和幅频特性曲线,并对所得结果进行分析和解释。

3. 总结实验中的主要结论。

4. 简要回答思考题。

八. 思考

1.信号的频率特性即信号的傅立叶变换利用MATLAB 程序如何实现?

2.在卷积定理验证的实验中,如果选用不同的频域采样点数M 值,例如,选M=10和M=20,分别做序列的傅里叶变换,求得()()()k k k

j j j b Y e X e H e ωωω=,k=0,1,…,M-1,所得结果之间有无差异?为什么?

实验二用双线性变换法设计IIR数字滤波器一.实验目的

1.熟悉用双线性变换法设计IIR数字滤波器的原理与方法。

2.掌握数字滤波器的计算机仿真方法。

3.通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。

二.实验内容

1.用双线性变换法设计一个巴特沃斯低通IIR数字滤波器。设计指标参数为:在通带内频率低于0.2π时,最大衰减小于1dB;在阻带内[0.3π,π]频率区间上,最大衰减大于15dB。

2.以0.02π为采样间隔,打印出数字滤波器在频率区间[0,π]上的幅频响应特性曲线。

3.用所设计的滤波器对实际心电图信号采样序列x(n)进行仿真滤波处理,并分别打印出滤波前后的心电图信号波形图,观察总结滤波作用与效果。人体心电图信号在测量过程中往往受到工业高频干扰,所以必须经过低通滤波处理后,才能作为判断心脏功能的有用信息。下面给出一实际心电图信号采样序列样本x(n),其中存在高频干扰。在实验中,以x(n)作为输入序列,滤除其中的干扰成分。

{x(n)} ={-4, -2, 0, -4, -6, -4, -2, -4, -6, -6,

-4, -4, -6, -6, -2, 6, 12, 8, 0, -16,

-38, -60, -84, -90, -66, -32, -4, -2, -4, 8,

12, 12, 10, 6, 6, 6, 4, 0, 0, 0,

0, 0, -2, -4, 0, 0, 0, -2, -2, 0,

0, -2, -2, -2, -2, 0}

三.实验设备及仪器

1.计算机。

2.Matlab软件。

四. 实验线路及原理

IIR 数字滤波器设计方法有两类,经常用到的一类设计方法是借助于模拟滤波器的设计方法进行的,其设计流程图如图2.1所示。

图2.1 从模拟滤波器设计数字滤波器流程图 IIR 数字滤波器经常用到的方法有:脉冲相应不变法和双线性变换法。本实验采用双线性变换法设计IIR 数字滤波器。双线性变换法能够彻底消除频率混叠失真。其设计思想是算法逼近(脉冲相应不变法是波形逼近), 用差分近似微分,用相邻两个采样的平均值近似微分方程中的瞬时值()a x t 和()a y t ,用模拟滤波器的微分方程变成差分方程,经Z 变换得到H(z)。按这种思想导出的双线性映射公式为:

11211()()|

a z s T z H z H s ---=+= (2.1)

T 为采样间隔。ω与Ω的关系为: 2tan 2

T ωΩ= (2.2) 五. 实验方法与步骤

1. 复习有关巴特沃斯模拟滤波器设计和用双线性变换法设计IIR 数字滤波器的内

容,用双线性变换法设计数字滤波器系统函数H(z)。《数字信号处理》(第二版)(丁玉美 高西全编著)中例6.4.2已求出满足本实验要求的数字滤波器系统函数:

16

1212120.0007378(1)()(1 1.2680.705)(1 1.01060.3583)(10.9040.215)

z H z z z z z z z -------+=-+-+-+ 3

1()k K H z ==∏ (2.3)

式中 1212(12)(),1,2,31k k k A z z H z k B z C z

----++==-- (2.4) A=0.09036

B1=1.2686, C1=-0.7051

B2=1.0106, C2=-0.3583

B3=0.9044, C3=-0.2155

根据设计指标,调用MA TLAB 信号处理工具箱函数buttord 和butter ,billinear ,也可以得到H(z)。

由(2.3)式和(2.4)式可见,滤波器H(z)由三个二阶滤波器H 1(z),H 2(z)和H 3(z)级联组成,如图2.2所示。

图2.2 滤波器H(z)的组成

2. 编写滤波器仿真程序,计算H(z)对心电图信号采样序列x(n)的响应序列y(n)。设y k (n)为第k 级二阶滤波器H k (z)的输出序列,y k-1(n)为输入序列,如图2.2所示。由(2.4)式可得到差分方程:

111()()2(1)(2)(1)(2)k k k k k k k k y n Ay n Ay n Ay n B y n C y n ---=+-+-+-+- (2.5) 当k =1时,1()()k y n x n -=。所以H(z)对x (n)的总响应序列y (n)可以用顺序迭代算法得到。即依次对k =1,2,3,求解差分方程(2.5),最后得到3()()y n y n =。可以直接调用MATLAB filter 函数实现仿真。

3. 在通用计算机上运行仿真滤波程序,并调用通用绘图程序,完成实验内容(2)和(3)。

七. 实验报告内容与要求

1. 简述实验目的、实验原理及实验步骤。

2. 由所打印的|H(e j ω

)|特性曲线及设计过程简述双线性变换法的特点。 3. 对比滤波前后的心电图信号波形,说明数字滤波器的滤波过程与滤波作用。

4. 对比所设计的巴特沃斯模拟滤波器和数字滤波器的幅频特性。

5. 简要回答思考题。

y (n )

八. 思考

1.用双线性变换法设计数字滤波器过程中,变换公式

1

1

21

1

z

s

T z

-

-

-

=

+

中T的取值,对设

计结果有无影响?为什么?

实验三 用窗函数法设计FIR 数字滤波器

一.实验目的

1. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。

2. 熟悉线性相位FIR 数字滤波器特性。

3. 了解各种窗函数对滤波特性的影响。

二.实验内容

1. 用矩形窗设计一线性相位低通FIR 数字滤波器,截至频率4c rad π

ω=。窗口长

度N=15,33。要求在两种窗口长度情况下,分别求出()h n ,打印出相应的幅频特性和相频特性曲线,观察过渡带带宽。总结窗口长度N 对滤波特性的影响。设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数

()j d H e ω,即

,()0,12j c j d c e H e N ωαωωωωωπα-?≤?=?<≤??-=

其中

[]11()()22sin ()()

c c j j n j a j n

d d c h n H

e e d e e d n a n a πωωωωωπωωωππ

ωπ---==-=-?? 2. N=33,4c rad π

ω=,用四种窗函数(矩型窗、汉宁窗、哈明窗和布莱克曼窗)

设计线性相位低通滤波器。绘制相应的幅频特性曲线,观察过渡带带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。

三.实验设备及仪器

1. 计算机。

2. Matlab 软件。

四. 实验线路及原理

如果所希望的滤波器的理想频率响应函数为()j d H e ω,则其对应的单位脉冲响应为

1

()()2j j n d d h n H e e d πωωπωπ-=? (3.1)

窗函数设计法的基本原理是用有限长单位脉冲响应序列()h n 逼近()d h n 。由于()d h n 往往是无限长序列,且是非因果的,所以用窗函数()w n 将()d h n 截断,并进行加权处理,得到:

()()()d h n h n w n = (3.2)

()h n 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数()j H e ω为

1

0()()N j j n n H e h n e ω

ω--==∑ (3.3) 式中,N 为所选窗函数()w n 的长度。

用窗函数设计的滤波器性能取决于窗函数()w n 的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见表3.1。

表3.1 六种窗函数的基本参数

这样选定窗函数类型和长度N 后,求出单位脉冲响应()()()d h n h n w n =,并按照式(3.3)求出()j H e ω。()j H e ω是否满足要求,要进行验算。如果()j H e ω不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。

如果要求线性相位特性,则h (n )还必须满足:

=±--

h n h N n

()(1)

根据上式中的正、负号和长度N的奇偶性又将线性相位FIR滤波器分成四类。要根据所设计的滤波特性正确选择其中一类。例如,要设计线性相位低通特性,可选择

h n h N n

=--一类,而不能选()(1)

=---一类。

()(1)

h n h N n

五. 实验方法与步骤

1.复习用窗函数法设计FIR数字滤波器一节内容,阅读本实验原理,掌握设计步骤。

2.编写能产生理想滤波器时域特性的函数。

3.用Matlab的函数实现矩型窗、汉宁窗、哈明窗和布莱克曼窗的窗函数。

4.编写主程序。主程序框图如图3.1所示,仅供参考。其中幅度特性要求用dB表示。

5.也可以采用其他方式完成该实验,例如采用fir1函数。

图3.1 用窗函数法设计滤波器主程序框图

可以用fft()函数来求h(n)的频率特性,画图时用20lg ()j H e ω打印幅度特性。第k 点对应的频率2k k N

πω=

。为使曲线包络更接近()j H e ω的幅度特性曲线,DFT 变换区间要选大些。 七. 实验报告内容与要求

1. 简述实验目的、实验原理及实验步骤。

2. 按照实验步骤及要求,比较各种情况下的滤波性能,说明窗口长度N 和窗函数类

型对滤波特性的影响。

3. 总结用窗函数法设计FIR 滤波器的主要特点。

4. 简要回答思考题。

八. 思考

1. 如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计

线性相位低通滤波器? 写出设计步骤。

2. 什么是吉布斯效应?为什么会产生吉布斯效应?

附录MATLAB信号处理工具箱函数

MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面友好的操作环境。随着其自身版本的不断提高,MATLAB的功能越来越强大,应用范围也越来越广,如广泛应用于数字信号处理、数字图像处理、仿真、自动控制、小波分析、神经网络等领域。与C语言或FORTRON 语言作科学数值计算的程序设计相比较,利用MA TLAB可节省大量的编程时间。MATLAB 有着功能强大、丰富的函数工具箱,这是整个MATLAB语言得以如此快速发展的重要因素之一。这些函数工具箱大致可以分为两类:功能型工具箱提供了对内核的支持,它主要用来扩充MATLAB的符号计算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,属于MA TLAB自身系统,可以用于多种学科。而领域型工具箱是专业性很强的学科研发性工具箱,应用于不同的学科。MATLAB信号处理工具箱包含了许多信号处理函数,这些函数的格式和说明很容易通过help命令查到。调用这些函数很容易验证数字信号处理习题答案,使数字滤波器分析与设计的程序非常简单。为了便于使用,下面简要介绍MA TLAB的启动、编程和运行程序的过程,最后给出实验中可能用到的工具箱函数。

a)启动MATLAB系统及编程

在Windows桌面上双击MATLAB,启动MA TLAB系统,Windows工作平台上自动弹出一个窗口,其标题为MATLAB Command Window,称其为MATLAB命令窗口。该窗口是用户与MA TLAB解释器进行通信的工作环境,所有的MA TLAB函数、命令及程序都要在该命令窗口下运行。

在命令窗口中,用户可以发出MA TLAB命令。每条命令输入并按回车键后,MA TLAB 系统便解释并执行之,显示命令执行结果。应当注意,在命令窗口输入命令只适合一些简单的运算程序,不便于编辑修改较复杂的程序。M文件为这种编辑运行程序过程提供了方便。下面简单介绍在MATLAB命令窗口状态下M文件的编辑和运行。

1)新建M文件

在MA TLAB命令窗口状态,选File-New-Mfile,MATLAB系统弹出文件编辑窗口。

2)运行与修改M文件

MATLAB采用的是命令模式,用户每输入一条命令,回车后MA TLAB就解释并执行这条命令,再根据要求显示运算结果。此外,MA TLAB也可以执行某个文件中的MATLAB 语句序列。这两种模式一起构成了MATLAB的解释环境。

当一个M文件编辑存盘后,在MATLAB命令窗口输入M文件名并回车,则MATLAB 系统就会逐行解释并执行该M文件中的命令序列。

应当注意,如果已经编辑好的M文件不在MA TLAB系统搜索路径中,用户应当用path命令在MATLAB的搜索路径中添加新的搜索路径。例如,M文件存在C:\MYFILES 路径,下面的命令:

path(‘C:MYFILES’,path);

将搜索路径改为先搜索C:\MYFILES,再在当前的搜索路径目录中搜索。

b)实验用MA TLAB函数简介

1)abs

功能:求绝对值(模值)

格式:y=abs(x)

说明:y=abs(x)用于计算实数x的绝对值。当x为复数时得到x的模(幅度值)。当x 为矢量时,计算其每个元素的模,返回模向量y。

2)angle

功能:求相角。

格式:Ph=angle(x)

说明:Ph=angle(x)用于计算复矢量x的相角(rad)。Ph值介于-π和+π之间。

3)conv

功能:计算离散卷积、多项式相乘。

格式:yn=conv(hn, xn)

说明:yn=conv(hn, xn)用于计算序列hn和xn的卷积,卷积的结果序列为yn。

例如,程序:

hn=[1, 1, 1, 1];xn=[1, 1, 1, 1];yn=conv(hn, xn);

运行结果为:

yn=[1 2 3 4 5 3 2 1]

如果N和M分别表示hn和xn的长度,则yn的长度为N+M-1。

4)filter

功能:利用IIR滤波器或者FIR滤波器对数据进行滤波。

[y, zf]=filter(b, a, x)

y=filter(b, a, x, zi)

说明:y=filter(b, a, x)利用给定系数矢量a 和b 对x 中的数据进行滤波,结果放入y 矢量中,y 的长度取max(N, M)。

y=filter(b, a, x, zi)可在zi 中指定x 的初始状态。

[y, zf]=filter(b, a, x)除了得到矢量y 外,还得到x 的最终状态矢量zf 。

5)freqz

功能:计算数字滤波器H(z)的频率响应。

格式:[h, w]=freqz(b, a, n)

[h, f]=freqz(b, a, n, Fs)

h=freqz(b, a, w)

h=freqz(b, a, f, Fs)

freqz(b, a)

说明:freqz 用于计算数字滤波器H(z)的频率响应

j H(e )ω。矢量a 和b 分别为数字滤波器系统函数H(z)的分子和分母多项式系数。

1(1)0111(1)11()()()1M M M M N N N N b b z b z b z B z H z A z a z a z a z ----------++?++==++?++

[h, w]=freqz(b, a, n)计算出数字滤波器n 个频率点上的频率响应,存放在h 矢量中,n 个频率存放在矢量w 中。Freqz 函数自动将这n 个频点均匀设置在频率范围[0,2π]上。缺省whole 时,n 个频点均匀设置在频率范围[0,π]上。缺省w 和M 时,freqz 自动选取512个频率点计算。

[h, f ]=freqz(b, a, n, Fs)用于对j H(e )ω在[o,Fs/2]上等间隔采样n 点,采样点频率及相应频率响应值分别记录在f 和h 中,由用户指定Fs (单位为Hz )值。

h=freqz(b, a, w)用于对j H(e )ω在[0,2π]上进行采样,采样频率点由矢量w 指定。

h=freqz(b, a, f, Fs)用于对对j H(e )ω在[0,Fs]上进行采样,采样频率点由矢量f 指定。

freqz(b, a)用于在当前图形窗口中绘制出幅频和相频特性曲线。

6)impz

功能:计算数字滤波器的单位脉冲响应。

[h, t]=impz(b, a, N)

[h, t]=impz(b, a, n, Fs)

impz(b, a)

说明:[h, t]=impz(b, a)计算出单位脉冲响应序列向量h ,并返回时间列向量t 。自动选择h 的样点数。调用参数b 和a 分别为数字滤波器系统函数H(z)的分子和分母多项式系数矢量。

[h, t]=impz(b, a, N)计算出单位脉冲响应N 个样值。 如果N 是一个整数向量,则仅计算出这些整数点的单位脉冲响应样值。

impz(b, a)则完成相应的计算功能,并自动调用stem(n, hn)绘图。其他调用格式用help 命令查看。

例如,系统的差分方程11()0.9(1)()y n y n x n =-+对应的系统函数为

11

()10.9H z z -=-

计算出单位脉冲响应50个样值,并给出绘图的程序如下:

B=1;A=[1,-0.9];impz(B, A, 50);

7)fft

功能:一维快速傅立叶变换。

格式:y=fft(x)

y=fft(x, n)

说明:y=fft(x) 利用FFT 算法计算矢量x 的离散傅立叶变换,当x 为矩阵时,y 为矩阵x 的每一列FFT 。y=fft(x, n)采用n 点FFT 。当x 长度小于n 时,fft 函数自动在x 尾部补零,以构成n 点数据;当x 的长度大于n 时,fft 截取x 前面的n 点数据进行FFT 。

数字信号处理实验二报告

实验二 IIR数字滤波器设计及软件实现 1.实验目的 (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。 (3)掌握IIR数字滤波器的MATLAB实现方法。 (3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 2.实验原理 设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。 本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。 3. 实验内容及步骤 (1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 图1 三路调幅信号st的时域波形和幅频特性曲线 (2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为

数字信号处理实验报告

实验一MATLAB语言的基本使用方法 实验类别:基础性实验 实验目的: (1)了解MATLAB程序设计语言的基本方法,熟悉MATLAB软件运行环境。 (2)掌握创建、保存、打开m文件的方法,掌握设置文件路径的方法。 (3)掌握变量、函数等有关概念,具备初步的将一般数学问题转化为对应计算机模型并进行处理的能力。 (4)掌握二维平面图形的绘制方法,能够使用这些方法进行常用的数据可视化处理。 实验内容和步骤: 1、打开MATLAB,熟悉MATLAB环境。 2、在命令窗口中分别产生3*3全零矩阵,单位矩阵,全1矩阵。 3、学习m文件的建立、保存、打开、运行方法。 4、设有一模拟信号f(t)=1.5sin60πt,取?t=0.001,n=0,1,2,…,N-1进行抽样,得到 序列f(n),编写一个m文件sy1_1.m,分别用stem,plot,subplot等命令绘制32 点序列f(n)(N=32)的图形,给图形加入标注,图注,图例。 5、学习如何利用MATLAB帮助信息。 实验结果及分析: 1)全零矩阵 >> A=zeros(3,3) A = 0 0 0 0 0 0 0 0 0 2)单位矩阵 >> B=eye(3) B = 1 0 0 0 1 0 0 0 1 3)全1矩阵 >> C=ones(3) C = 1 1 1 1 1 1 1 1 1 4)sy1_1.m N=32; n=0:N-1; dt=0.001; t=n*dt; y=1.5*sin(60*pi*t); subplot(2,1,1), plot(t,y); xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('正弦函数'); title('二维图形'); subplot(2,1,2), stem(t,y) xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('序列函数'); title('条状图形'); 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 二维图形 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 条状图形

数字信号处理基础实验指导书

《数字信号处理》实验指导书 光电工程学院二○○九年十月

实验一离散时间信号分析 一、实验目的 1.掌握各种常用的序列,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的相加、相乘、移位、反转等基本运算及计算机实现与作用。 4.掌握线性卷积软件实现的方法。 5.掌握计算机的使用方法和常用系统软件及应用软件的使用。 6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列来表示,其中代表序列的第n个数字,n代表时间的序列,n的取值范围为的整数,n取其它值没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号进行等间隔采样,采样间隔为T,得到一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反转、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将和的变量换成,变成和,再将以纵轴为对称轴反褶成。 (2)移位:将移位,得。当为正数时,右移位;当为负数时,左

移位。 (3)相乘:将和的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得。 三、主要实验仪器及材料 微型计算机、Matlab软件6.5或更高版本。 四、实验内容 1.知识准备 认真复习以上基础理论,理解本实验所用到的实验原理。 2.离散时间信号(序列)的产生 利用MATLAB或C语言编程产生和绘制下列有限长序列: (1)单位脉冲序列 (2)单位阶跃序列 (3)矩形序列 (4)正弦型序列 (5)任意序列 3.序列的运算 利用MATLAB编程完成上述两序列的移位、反转、加法、乘法等运算,并绘制运算后序列的波形。 4.卷积运算 利用MATLAB编制一个计算两个序列线性卷积的通用程序,计算上述两序列,并绘制卷积后序列的波形。 5.上机调试并打印或记录实验结果。 6.完成实验报告。 五、实验报告要求 1. 简述实验原理及目的。 2. 给出上述序列的实验结果。 3. 列出计算卷积的公式,画出程序框图,并列出实验程序清单 (可略)(包括必要的程序说明)。 4. 记录调试运行情况及所遇问题的解决方法。 5. 给出实验结果,并对结果做出分析。 6. 简要回答思考题。 1 如何产生方波信号序列和锯齿波信号序列? 2 实验中所产生的正弦序列的频率是多少?是否是周期序列?

数字信号处理实验(吴镇扬)答案-2

(1) 观察高斯序列的时域和幅频特性,固定信号)(n x a 中参数p=8,改变q 的 值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p 分别等于8、13、14,观察参数p 变化对信号序列的时域和幅频特性的影响,注意p 等于多少时会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。 ()() ?????≤≤=-其他0150,2n e n x q p n a 解:程序见附录程序一: P=8,q 变化时: t/T x a (n ) k X a (k ) t/T x a (n ) p=8 q=4 k X a (k ) p=8 q=4 t/T x a (n ) p=8 q=8 k X a (k ) p=8 q=8 幅频特性 时域特性

t/T x a (n ) p=8 q=8 k X a (k ) p=8 q=8 t/T x a (n ) 5 10 15 k X a (k ) p=13 q=8 t/T x a (n ) p=14 q=8 5 10 15 k X a (k ) p=14 q=8 时域特性幅频特性 分析: 由高斯序列表达式知n=p 为期对称轴; 当p 取固定值时,时域图都关于n=8对称截取长度为周期的整数倍,没有发生明显的泄漏现象;但存在混叠,当q 由2增加至8过程中,时域图形变化越来越平缓,中间包络越来越大,可能函数周期开始增加,频率降低,渐渐小于fs/2,混叠减弱; 当q 值固定不变,p 变化时,时域对称中轴右移,截取的时域长度渐渐地不再是周期的整数倍,开始无法代表一个周期,泄漏现象也来越明显,因而图形越来越偏离真实值, p=14时的泄漏现象最为明显,混叠可能也随之出现;

数字信号处理实验程序2.

2.1 clc close all; n=0:15; p=8;q=2; x=exp(-(n-p.^2/q; figure(1; subplot(3,1,1; stem(n,x; title('exp(-(n-p^2/q,p=8,q=2'; xk1=fft(x,16; q=4; x=exp(-(n-p.^2/q; subplot(3,1,2; xk2=fft(x,16; stem(n,x; title('exp(-(n-p^2/q,p=8,q=4'; q=8; x=exp(-(n-p.^2/q;

xk3=fft(x,16; subplot(3,1,3; stem(n,x; title('exp(-(n-p^2/q,p=8,q=8';%时域特性figure(2; subplot(3,1,1; stem(n,abs(xk1; title('exp(-(n-p^2/q,p=8,q=2'; subplot(3,1,2; stem(n,abs(xk2; title('exp(-(n-p^2/q,p=8,q=4'; subplot(3,1,3; stem(n,abs(xk3; title('exp(-(n-p^2/q,p=8,q=8';%频域特性%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%% p=8;q=8; figure(3; subplot(3,1,1; stem(n,x; title('exp(-(n-p^2/q,p=8,q=8';

xk1=fft(x,16; p=13; x=exp(-(n-p.^2/q; subplot(3,1,2; xk2=fft(x,16; stem(n,x; title('exp(-(n-p^2/q,p=13,q=8'; p=14; x=exp(-(n-p.^2/q; xk3=fft(x,16; subplot(3,1,3; stem(n,x; title('exp(-(n-p^2/q,p=14,q=8';%时域特性figure(4; subplot(3,1,1; stem(n,abs(xk1; title('exp(-(n-p^2/q,p=8,q=8'; subplot(3,1,2; stem(n,abs(xk2; title('exp(-(n-p^2/q,p=13,q=8'; subplot(3,1,3;

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理实验(吴镇扬)答案-4

实验四 有限长单位脉冲响应滤波器设计 朱方方 0806020433 通信四班 (1) 设计一个线性相位FIR 高通滤波器,通带边界频率为0.6π,阻带边界频率为0.4π,阻 带衰减不小于40dB 。要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。 解: (1) 求数字边界频率: 0.6 , .c r ωπωπ== (2) 求理想滤波器的边界频率: 0.5n ωπ= (3) 求理想单位脉冲响应: []d s i n ()s i n [()] () ()1n n n n n n h n n παωαα παωα π?-- -≠??-=? ? -=?? (4) 选择窗函数。阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤 波器的过渡带宽为0.6π-0.4π=0.2π,因此 6.21 0.231 , 152 N N N ππα-=?=== (5) 求FIR 滤波器的单位脉冲响应h(n): []31d sin (15)sin[0.5(15)] 1cos ()15()()()15(15)1 15 n n n R n n h n w n h n n n ππππ?---????-? ?≠? ???==-???? ? ?=? 程序: clear; N=31; n=0:N-1; hd=(sin(pi*(n-15))-sin(0.5*pi*(n-15)))./(pi *(n-15)); hd(16)=0.5; win=hanning(N); h=win'.*hd; figure; stem(n,h); xlabel('n'); ylabel('h(n)'); grid; title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3 plot(w/pi,H); axis([0 1 -100 10]); xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 高通滤波器,hanning 窗,N=31');

数字信号处理实验及参考程序

数字信号处理实验实验一离散时间信号与系统及MA TLAB实现 1.单位冲激信号: n = -5:5; x = (n==0); subplot(122); stem(n, x); 2.单位阶跃信号: x=zeros(1,11); n0=0; n1=-5; n2=5; n = n1:n2; x(:,n+6) = ((n-n0)>=0); stem(n,x); 3.正弦序列: n = 0:1/3200:1/100; x=3*sin(200*pi*n+1.2); stem(n,x); 4.指数序列 n = 0:1/2:10; x1= 3*(0.7.^n); x2=3*exp((0.7+j*314)*n); subplot(221); stem(n,x1); subplot(222); stem(n,x2); 5.信号延迟 n=0:20; Y1=sin(100*n); Y2=sin(100*(n-3)); subplot(221); stem(n,Y1); subplot(222); stem(n,Y2);

6.信号相加 X1=[2 0.5 0.9 1 0 0 0 0]; X2=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7]; X=X1+X2; stem(X); 7.信号翻转 X1=[2 0.5 0.9 1]; n=1:4; X2=X1(5-n); subplot(221); stem(n,X1); subplot(222); stem(n,X2); 8.用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 9.用MA TLAB计算差分方程 当输入序列为时的输出结果。 N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n'); ylabel('幅度') 10.冲激响应impz N=64; a=[0.8 -0.44 0.36 0.22];

数字信号处理实验作业

实验5 抽样定理 一、实验目的: 1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。 2、进一步加深对时域、频域抽样定理的基本原理的理解。 3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。 二、实验原理: 1、时域抽样与信号的重建 (1)对连续信号进行采样 例5-1 已知一个连续时间信号sin sin(),1Hz 3 ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。 程序清单如下: %分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 程序运行结果如图5-1所示:

原连续信号和抽样信号 图5-1 (2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。 例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。 程序清单如下: dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm; t=-2:dt:2;N=length(t); f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2;N=length(n); f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); wm=2*pi*fs;k=0:N-1; w=k*wm/N;F=f*exp(-j*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end 程序运行结果如图5-2所示。 由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

数字信处理上机实验答案全

数字信处理上机实验答 案全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第十章 上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一系统响应及系统稳定性。 实验二时域采样与频域采样。 实验三用FFT对信号作频谱分析。 实验四 IIR数字滤波器设计及软件实现。 实验五 FIR数字滤波器设计与软件实现 实验六应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。系统的稳态输出是指当∞ n时,系统的输出。如果系统稳定,信号加入 → 系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤

数字信号处理第二章上机作业

第二章上机作业 1、ljdt(A,B)函数定义 function ljdt(A,B) p=roots(A); q=roots(B); p=p'; q=q'; x=max(abs([p q 1])); x=x+0.1; y=x; clf hold on axis([-x x -y y]) w=0:pi/300:2*pi; t=exp(i*w); plot(t) axis('square') plot([-x x],[0 0]) plot([0 0],[-y y]) text(0.1,x,'jIm[z]') text(y,1/10,'Re[z]') plot(real(p),imag(p),'x') plot(ral(q),imag(q),'o') title('pole-zero diagram for discrete system') hold off 例2.26 a=[3 -1 0 0 0 1]; b=[1 1]; ljdt(a,b) p=roots(a) q=roots(b) pa=abs(p) 程序运行结果如下: P= 0.7255+0.4633i 0.7255+0.4633i -0.1861+0.7541i -0.1861-0.7541i -0.7455 q=

-1 pa= 0.8608 0.8608 0.7768 0.7768 0.7455 例2.27 b=[0 1 2 1];a=[1 -0.5 -0.005 0.3]; subplot 311 zplane(b,a);xlabel('实部');ylabel('虚部'); num=[0 1 2 1];den=[1 -0.5 -0.005 0.3]; h=impz(num,den); subplot 312

数字信号处理基础实验报告_

本科生实验报告 实验课程数字信号处理基础 学院名称地球物理学院 专业名称地球物理学 学生姓名 学生学号 指导教师王山山 实验地点5417 实验成绩 二〇一四年十一月二〇一四年十二月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm, 左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一生成离散信号并计算其振幅谱 并将信号进行奇偶分解 一、实验原理 单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。用Excel软件绘图显示计算结果。并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。用Excel 软件绘图显示计算结果。 二、实验程序代码 (1)离散抽样 double a,t; a=2*f*f*log(m); int i; for(i=0;i

数字信号处理上机实验代码

文件名:tstem.m(实验一、二需要) 程序: f unction tstem(xn,yn) %时域序列绘图函数 %xn:被绘图的信号数据序列,yn:绘图信号的纵坐标名称(字符串)n=0:length(xn)-1; stem(n,xn,'.'); xlabel('n');ylabel('yn'); axis([0,n(end),min(xn),1.2*max(xn)]); 文件名:tplot.m(实验一、四需要) 程序: function tplot(xn,T,yn) %时域序列连续曲线绘图函数 %xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串) %T为采样间隔 n=0;length(xn)-1;t=n*T; plot(t,xn); xlabel('t/s');ylabel(yn); axis([0,t(end),min(xn),1.2*max(xn)]); 文件名:myplot.m(实验一、四需要)

%(1)myplot;计算时域离散系统损耗函数并绘制曲线图。function myplot(B,A) %B为系统函数分子多项式系数向量 %A为系统函数分母多项式系数向量 [H,W]=freqz(B,A,1000) m=abs(H); plot(W/pi,20*log10(m/max(m)));grid on; xlabel('\omega/\pi');ylabel('幅度(dB)') axis([0,1,-80,5]);title('损耗函数曲线'); 文件名:mstem.m(实验一、三需要) 程序: function mstem(Xk) %mstem(Xk)绘制频域采样序列向量Xk的幅频特性图 M=length(Xk); k=0:M-1;wk=2*k/M;%产生M点DFT对应的采样点频率(关于pi归一化值) stem(wk,abs(Xk),'.');box on;%绘制M点DFT的幅频特性图xlabel('w/\pi');ylabel('幅度'); axis([0,2,0,1.2*max(abs(Xk))]); 文件名:mpplot.m(实验一需要)

数字信号处理基础实验报告 (2)

成都理工大学 《信号处理基础》实验 开设时间:2013—2014学年第2学期

题目1:信号的产生和显示 一、实验目的: 认识基本信号 通过使用MATLAB 设计简单程序, 掌握对MATLAB 的基本使用方法 二、实验原理: 找出下列表达式的信号与:正弦信号、最小相位信号、最大相位信号、零相位信号的对应关系。 1、sin60t 2、e-60t sin60t 3、(1- e-60t)sin60t 4、e60t sin60t 三、实验内容: 产生上述信号的信号并显示 (1)t=[-pi/30:0.001:pi/30]; f=sin(60*t); plot(t,f) 产生图形如下:

(2)t=[0:0.001:pi/30]; f=exp(-60*t).*sin(60*t); plot(t,f) 产生图形如下:

(3)t=[-5*pi/30:0.001:5*pi/30]; f=(1-exp(-60*t)).*sin(60*t); plot(t,f) 产生图形如下: (4) t=[-pi/30:0.001:pi/30]; f=exp(6*t).*sin(60*t); plot(t,f) 产生如下波形:

四、实验结果与讨论: 讨论上述信号的特点 从第一个波形图可以看出,它的波形与正弦函数sin(t)的相像,只是相位上有改变,是一个正弦信号。最大相位信号的能量集中在后面,最小相位能量集中在前面,所以第二个是一个最小相位,第四个是一个最大相位信号。第三个由于波形在t>0时没有,所以是一个零相位信号。 题目2:频谱分析与显示 一、实验目的 初步认识频谱分析

相关主题
文本预览
相关文档 最新文档