当前位置:文档之家› 毕业论文-华电连江风电厂110kV升压变电站接地网优化设计

毕业论文-华电连江风电厂110kV升压变电站接地网优化设计

毕业论文题目华电连江风电厂110kV升压变电站接地网优化设计

专业:电气工程及其自动化

学院:电气工程学院

年级:

学习形式:

学号:

论文作者:

指导教师:

职称:

完成时间:

郑重声明

本人的学位论文是在导师指导下独立撰写并完成的,学位论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,否则,本人愿意承担由此而产生的法律责任和法律后果,特此郑重声明。

学位论文作者(签名):

年月日

摘要

随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。电力系统的接地是对系统和网上电气设备安全可靠运行,及操作维护人员安全都起着重大的作用。接地装置是保证电气设备安全运行和人身安全的主要设备。由于自然条件和施工工艺等原因,变电站的接地装置腐蚀严重,接地电阻不合格,通过实施改造措施,消除隐患,解决接地网不合格问题。随着城市变电站的小型化,其接地网的面积受到了限制,由于电网的不断扩大,系统短路电流越来越大,因而对接地网的设计提出了新的要求.就城市变电站建设中面临的问题进行了分析,针对城市电网特点,对接地网形式、接地体选择及降低中跨步电势的措施提出了建议。还对城市变电站避雷带接地方案,与民用建筑结合的接地以及二次设备接地等问题进行了探讨。同时建设重新测量本地土壤电阻率,以便在接地风设计中合理取值。本文结合在建工程华电连江风电厂110 kV 升压变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。

关键词:变电站;接地网;接地电阻

Abstract

With the continuous increase of power system capacity, the short-circuit current into the ground through the network is more and more, so to ensure the safety of people and equipment, maintenance and reliable operation of the system, not only to emphasize reducing grounding resistance, but also consider the potential distribution of the net surface. Powersystem grounding system is analyzed and the net electrical equipment safe and reliable operation, safe operation and maintenance personnel have a major role to play. The grounding device is the main equipment to ensure the safe operation of electrical equipmentand personal safety。Because of the natural conditions and construction process and other reasons, the seriouscorrosion of substation grounding device, grounding resistance is not qualified, through the implementation of reform measures to eliminate hidden dangers, to solve the problem ofgrounding grids, unqualified. With the miniaturization of substation grounding grid of the city,the area is limited, due to the continuous expansion of power grid, short-circuit current is more and more big, so butt new requirements of grounding grid is proposed. Facing the problems in the construction of city substation is analyzed, according to the city power grid characteristics,put forward the suggestion of the grounding system, form the grounding body selection andmeasures to reduce the step potential。With earthing scheme of city substation lightning protection and grounding of civil buildings,combined and two times the equipment grounding are discussed. At the same time, the construction of re measurement of local soil resistivity, in order to design the reasonable value of ground wind. This combination of grounding grid design in the construction of HuadianLianjiang wind power plant 110 kV step-up substation grounding grid method, explains theunequal spacing layout and its rationality. Keywords: substation; grounding grid; grounding resistance

目录

摘要 ................................................................................................................................ I Abstract .................................................................................................................................. I I 1 绪论 .. (1)

1.1 引言 (1)

1.2 现状分析 (1)

2 接地网优化设计的合理性 (5)

2.1 关于接地短路电流的计算及接地要求 (5)

2.1.1关于接地短路电流的计算 (5)

2.1.2土壤电阻率ρ的取值 (6)

2.1.3 接地电阻值的要求 (6)

2.2 对接地网优化设计的分析 (8)

2.2.1 改善导体的泄漏电流密度分布 (8)

2.2.1 均匀土壤表面的电位分布 (8)

2.2.3节省大量钢材和施工费用 (9)

3 城市变电站接地网的设计 (10)

3.1 三维立体接地网基本原理 (10)

3.2 垂直超深钢镀铜接地棒 (12)

3.2.1 优劣 (12)

3.2.2掌握大地导电率的有关资料 (13)

3.2.3接地网的形式 (14)

3.2.4接地体的选择 (14)

3.2.5 采取降低跨步电势的措施 (14)

4 接地网优化设计的方法 (16)

4.1接地网接地电阻计算及量大电阻的确定 (16)

4.1.1 水平主接地网接地电阻计算 (16)

4.1.2 如何确定变电所允许的最大接地电阻 (17)

4.2 减小接地电阻的方法 (17)

4.2.1 两层接地网 (18)

4.2.2 深井式垂直接地极 (18)

4.2.3扩大接地面积 (18)

4.2.4 使用降阻剂 (19)

4.3工程设计中的几点建议 (19)

4.3.1 土壤电阻率的测量要准确 (19)

4.3.2接地施工应提前进行 (19)

4.3.3优先考虑深井式垂直接地极 (19)

4.3.4接地体的选择 (20)

4.3.5 降低接地电位的其他方法 (20)

5 变电站接地网优化措施 (21)

5.1改进接地网的技术措施 (21)

6 与接地网相关的问题 (24)

6.1接地网在设计过程中注意事项 (24)

6.2与城市接地网有关的接地 (26)

6.2.1城市变电站的避雷带 (26)

6.2.2与民用建筑相结合变电站的接地 (26)

6.2.3变电站二次设备的接地 (26)

7 总结 (28)

致谢 (29)

参考文献 (30)

1 绪论

1.1 引言

随着电力工业的发展,变电站一次设备二次保护对接地装置的要求不断提高。接地装置是确保电力设备安全运行及其工作人员人身安全的重要设备。电力系统中对接地装置的要求越来越严格,变电所接地系统直接关系到变电所的正常运行,更涉及到人身与设备的安全。然而由于接地网设计考虑不全面、施工不精细、测试不准确等原因,近年来,发生了多起地网引起的事故,有的不仅烧毁了一次设备,而且还通过二次控制电缆窜入主控室,造成了事故扩大,故接地网对电力系统的安全稳定运行起到非常重要的作用。

大型枢纽变电站,就因开关室接地与主接地网之间的接地电阻不合格,引发接地网局部地电位升高,造成高电压、大电流窜入直流系统、继电保护系统、击穿保护二次电缆、造成主控楼及保护装置、二次电缆、低压配电设备全部烧毁;150MVA主变压器和220kV、110kV部分高压设备烧毁。致使多家大型发电厂被迫停机,造成电力系统解裂大面积停电。现在尤其是35kV、10kV系统接地故障,由于接地网存在缺陷导致变电站接地网局部电位升高,致使避雷器不能正确动作,甚至发生逆闪,引发母线对地放电,开关爆炸,烧毁电气设备,甚至烧断接地装置,造成大面积停电的事故时有发生。然而,因为设计、施工、验收等各个方面的因素,未能有效地解决接地装置的防腐问题。比如,华电连江风电厂110 kV 升压变电站,经过多次普测和开挖检查,发现接地网锈蚀严重,接地电阻逐年升高。规程规定:变电站接地装置接地电阻应不大于0.5欧。而该站接地网接地电阻由建站时的0.46 欧升高至2015年的1.05欧。

1.2 现状分析

为了摸清福州地区地网的腐蚀情况及存在的问题,从2000年起对连江、北郊、

雄县、江阴等运行20 年以上的变电站地网进行了挖掘检查,经检查发现如下问题。(1)接地引下线热容量不够公司大部分变电站设备采用的接地引下线为?12 mm 圆钢,部分设备甚至用?8 mm圆钢,而且个别站同一电压等级设备的接地引下线规格不齐,并有多点焊接。

(2)接地引下线与水平地线截面配合不当北郊220 kV部分接地引下线截面?22 mm圆钢,而接地引下线与地网干线相连的地线截面却为?12mm圆钢;10 kV母线桥接地引下线为?10 mm的圆钢,主网为40×4 mm扁钢。

(3)没按图纸施工,接地引下线连接不合理东北郊变电站地网施工图为对称布置,是与西北角相对应的东北角上一条主干线,开挖检查却找不到。部分设备接地引下线不是直接引到主网,而是经过操作机构再引到主网,或就近与其它设备接地引下线相连,甚至有部分设备接地引下线直接引进电缆沟内扁铁上。

(4)后期工程的接地引下线没有与一期工程主地网相连接容城220 kV变电站二期工程1号变压器中性点没有与主地网相接;1号变压器本体与底座基础相连,但底座基础没有与主网相连,该主变长期运行在本体及中性点没有有效接地的情况下,侥幸在运行期间没有发生接地故障,并及时发现事故隐患。高店117、118、119间隔,南郊2210间隔均为新增间隔,刀闸与开关接地线相连,成独立网,没与主地网连接。

(5)部分接地网(线)腐蚀严重电缆沟接地扁钢比土壤中的腐蚀严重;土壤中的接地引下线比水平敷设的主接地网干线腐蚀严重。如水源电缆沟内扁铁多处锈蚀50%以上,甚至有几处已经锈断。

(6)重要设备未能保证多于一点接地。

接地装置的使用功能,就是实现不同的接地目地和用途。较大型接地网是各种电力设备的公共接地网,它必需满足各种综合使用功能的要求。

从华电连江风电厂110 kV 升压变电站几年来测试结果(表1-1)分析,接地网接地电阻呈逐年升高趋势,其特征是:

工程起始标准低,水平接地埋设,部分地段接地线裸露地面,设备引下线截面较小,地网焊接防腐处理不标准,地质状况不良,自然环境恶劣。

表1-1华电连江风电厂110 kV升压变电站接地电阻测试对照表

日期接地电阻值(欧)测试变化值运行时间(年)

1998年1月0.46 ---------- -------------

2003年1月0.5 增大0.04 5

2008年1月0.915 增大0.415 5

2015年1月 1.05 增大0.135 7

华电连江风电厂110 kV 升压变电站接地网的不良状况接地电阻不合格、地网严重锈蚀等,直接影响设备安全运行和系统的安全可靠性。改造目标不但要解决地网缺陷问题,还要弄清造成地网不合格的原因,从而制定切实可行的解决方案。

通过对华电连江风电厂110 kV 升压变电站地网不合格状态测试分析,得知自然环境是地网不合格的主要原因:地壤盐碱含量高;地质为沙石结构;土壤电阻率高。

通地开挖检查,发现靠近大门侧80%为沙石结构;35kV配电区域为沙粒结构;变压器及开关区域为土沙结构。当然还有其它一些原因,比如,施工时水平地网埋设较浅,地网连接没有严格按照规程规定施工等。总之,接地网不合格的主要原因是地质条件差。

随着电力系统的发展,电网短路容量越来越大,对接地的要求也越来越高。长期、可靠、稳定的接地系统,是维持设备稳定运行、保证设备和人员安全的根本保障,而选择品质好的接地材料和可靠的连接是保障接地系统长期安全可靠的重要因素。

长期以来,我国选用镀锌扁钢作为接地材料。这是因为解放初期,我国变电站的规模很小,由于经济和资源的原因,普遍采用钢质材料作为变电站的接地(体)极的材料,这种做法一直沿用到现在。上世纪八十年代末,全国各地相继出现了一些在系统发生接地故障时,因接地网原因,造成变电站高压串入控制室,烧毁控制室和保护盘柜的重大停电事故。根据国家电网公司统计资料,运行10年以上的变电所钢接地网均有不同程度的腐蚀,20年以上的更为严重。根据接地网事故的统计分析,地网腐蚀,接地体在故障时烧断是引发接地网事故的重要因素之一。为防止该类事故的发生,各地除加大接地体及接地引下线的截面外,还制定了相应的运行维护措施,如导通检查和开挖检查,有关院校开展了检测接地体腐蚀程度的分析研究。原国家电力公司“25项反措”对此给予了高度重视,并制订了一系列反措,同时也提出:接地装置腐蚀比较严重的枢纽变电所宜采用铜质材料的接地网。

近年来,城市用电水平不断提高,城区内110千伏甚至220千伏变电站不断增多,由于这些站的占地面积普遍较小,而且地面基本无土壤露出,采用钢接地网的缺陷越来越突出,有关反措几乎无法实施,给变电站的安全运行带来了极大隐患。于是选择合适材料作为变电站的接地体而成为一项新课题。

2 接地网优化设计的合理性

2.1关于接地短路电流的计算及接地要求

2.1.1关于接地短路电流的计算

电力行业标准DL/T 6211997中的计算公式为I = (I max - I n)(1 - K el) 和I = I n(1 - K e2),取其最大值,式中I为接地短路电流,即通过接地网进行散流的电流。

I max为接地短路时的最大接地短路电流,上述公式仅适用于有效接地系统,该值可向运行部门或继电保护部门索取,也可自己计算,一般采用单相接地时,最大运行方式下的最大短路接地电流。

In 为发生最大接地短路时,流往变电所主变压器中性点的短路电流。当所内主变压器中性点不接地时,I n = 0,此是上述可简化为I = I max(1 - K el);当变压器只有1个中性点,发生所内接地时,I n =30%I max,有2个中性点时,I n约等于50% I max,实际值应以继电保护部门计算和实测为准。

K el为短路时,与变电所接地网相连的所有避雷线的分流系数,据专家分析,Kel 应由避雷线的出线回路数确定,出线为1路时,取0.15,2路时取0.28,3路时取0.38,4路时取0.47,5路以上时取0.5~0.58,且应根据出线所跨走廊的分流效果做出相应的增减。

K e2为所外接地时,避雷线向两侧的分流系数,一般取0.18,这仅适于变电所内有变压器中性点接地的所外接地。

取值时,要考虑10年以上的发展规划,需乘以1.2~1.5的发展系数;在散流比较困难的地方,还应乘以散流系数1.25。由上述取值可得出,只有当变电所内有两个中性点接地时,所外接地时的入地短路电流才有可能大于所内短路的入地短路电流。

2.1.2土壤电阻率ρ的取值

土壤电阻率ρ是决定接地网的关键参数,选择变电所所址时,要考虑所在地的土质情况,接地网处的土壤分层情况,不能仅取表层土壤的电阻率ρ,若土壤电阻太大,接地网的接地电阻值满足不了R≤2000/I 的要求。

2.1.3 接地电阻值的要求

根据电力行业标准DL/T 621197规定,接地装置的接地电阻值应满足R≤2000/I,即IR < 2000V。由于现在普遍采用微机保护,其对接地电阻值的要求很高,即R < 1ρ,2000V难以满足要求,故有的采取铺设接地铜排等措施来降低接地电阻值,国外有的已要求IR < 650V。

(1)电气装置的下列部分均应接地:

1)变压器、油开关、35PT、35CT、所用变、刀构架等金属底座和外壳。

2)控制保护用二次线等及外壳等可靠接地。

3)控制设备的金属外壳。

4)避雷针

(2)电气装置的下列部分可不接地:

1)安装在配电屏、控制盘和配电装置上的电气测量仪表、继电器和其它低压电器

等的外壳以及发生绝缘损坏时,在支持物上不会引起危险电压的绝缘子的金

属底座等。

2)安装在已接地金属构架上的设备,如穿墙套管等。

(3)接地装置宜采用钢材,接地装置的导体截面应符合热稳定和机械强度的要求,但应不小于下表(2-1)规格。

表2-1 钢材安装要求表

种类规格及单位地上地下

室内室外交流电流回路直流电流回路园钢直径(mm) 6 8 10 12

扁钢

载面(mm2)

厚度(mm)60

3

100

4

100

4

100

6

角钢厚度(mm)钢管管壁厚度(mm)

2

2.5

2.5

2.5

4

3.5

6

4.5

规范中严格规定电力系统各种接地装置的电阻值,接地网的设计就是以此为目标值。了解接地网电阻构成,在设计中可以在主要影响接地网电阻的环节采取相应的措施,以降低接地网的电阻值。接地网的电阻由以下几个部分构成:

(1)接地引线电阻,是指由接地体至设备接地母线间引线本身的电阻,其阻值与引线的几何尺寸和材质有关。

(2)接地体本身的电阻,其电阻也与接地体的几何尺寸和材质有关。

(3)接地体表面与土壤的接触电阻,其阻值怀土壤的性质、颗粒、含水量及土壤与接地体的接触面积及接触紧密程度有关。

(4)从接地体开始向远处(20米)扩散电流所经过的路径土壤电阻,即散流电阻。决定散流电阻的主要因素是土壤的含水量。

接地电阻虽由四部分构成,但前两项所占接地电阻值的比例甚微,起决定作用的是接触电阻及散流电阻。故从接地网的接地体的量佳埋设深度和不等长接地体技术,两面三个方面来论述降低接触电阻和散流电阻的措施。

(5)垂直接地体的量佳埋置深度,是指能使用权散流电阻尽可能达到的埋置深度。决定垂直接地体的量佳深度,应考虑到三维地网的因素,所谓三维地网,是指垂直接地体的埋置深度与接地网的等值半径处于同一数量级的接地网(即埋置深度与等值半径之比大于1/10)。在可能的范围内埋置深度应尽可能取最大值,但并不是埋置深度L越深越佳。

(6)接地体的通常设计,是用多根垂直接地体打入地中,并以水平接地体并联组成接地体组,由于名单一接地体埋置的间距仅等于单一接地体长度的两倍左右,此时电流流入名单一接地体时,将受到相互的限制而妨碍电流的流散,即等于增加名单一

接地体的电阻,这种影响电流流散的现象,称为屏蔽作用,如图一所示:由于屏蔽作用,接地体的流散电阻,并不等于名单一接地体流散电阻的并联值。

从理论上说,距离接地体20米处为电气上的“地”,故极间距离为40米时,可

以认为其利用系数η为L。在接地网的接地体的布置上,是很难做到两单一接地体

之间距离为40米,为解决在设计中与理论分析中的矛盾,采取不等长接地体的体

系结构,即各垂直接地体的埋置深度各不相等,便可达到良好的效果。不等长接地

体技术,从理论上到实践应用中,都较好的解决了多个单一接地体间的屏蔽作用。2.2 对接地网优化设计的分析

2.2.1 改善导体的泄漏电流密度分布

表(1-1)是面积为190 m×170 m的华电连江风电厂110 kV 升压变电站接地网,在导体根数相同的情况下,分别按10 m 等间距布置和平均10 m不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线见表(2-1)。从表中可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于中部导体③、④、⑤,不等间距布置的接地网的泄漏电流较等间距布置的接地网分别提高了9%,14%和15%。由此可见,不等间距布置能增大中部导体的泄漏电流密度分布,相应降低了边缘导体的泄漏电流密度,使得中部导体能得到更充分的利用。

2.2.2 均匀土壤表面的电位分布

由表(2-1)可知,不等间距布置的接地网能较大地改善表面电位分布,其最大与最小网孔电位的相对差值不超过0.7%,使各网孔电位大致相等,而等间距地网,其最大与最小网孔电位的相对差值在12.2%以上。同时不等间距地网的最大接触电势较等间距地网的最大接触电势降低了60.1%,极大地提高了接地网的安全水平。

计算结果比较布置最大网孔电位Vmax/kV 最小网孔电位Vmin/kV 最大接触电势Vjmax/kV 接地电阻R/Ω δ/% ;等间距 5.709 5.081 0.799 0.523 12.2 ;不等间距5.544 5.506 0.315 0.519 0.7 。

注:1)δ=(Vmax-Vmin)/Vmin;

2)地网面积为190 m×170 m;

3)长方向导体根数n1=18,宽方向导体根数n2=20。

2.2.3节省大量钢材和施工费用

如果按10 m等间距布置的华电连江风电厂110 kV 升压变电站接地网,最大接触电势在边角网孔,其值为0.799 kV,但采用不等间距布置时,保持最大接触电势与该值接近,这时可节省钢材31.2%。

3 城市变电站接地网的设计

近年来上海电网容量急剧扩大,系统短路故障电流越来越大,为确保系统短路快速散失,保证人身安全和电气设备的安全远行,生产运行等部门对降低变电站接地网的接地电阻值提出了更高、更严格的要求。随着变电站进入市区和住宅小区,大量GIS设备的应用,使得变电站的布置紧凑、占地面积更小。过去变电站的接地网的设计一般以水平接地网为主。由接地电阻值估算公式:(附1)可知其接地电阻值大小与土壤电阻率成正比而与水平接地网边缘闭合面积的大小成反比,也就是说当土壤电阻率为一定值时,降低接地电阻值需将接地网的面积做得很大。如今越来越多的变电站建于高楼林立,寸土寸金,地域较狭窄的市区,若仍按以往水平接地网为主思路的来设计接地网,则变电站接地网的接地电阻值往往达不到要求。由于受变电站征地、地形等各方面原因的限制,接地网向水千方向扩张的可能性很小,人们将注意的焦点集中到向纵深方向发展,为此三维立体接地网技术应运而生。

3.1 三维立体接地网基本原理

在水平接地网基础上把多根经过计算人地深度、位置和根数的垂直超深度钢镀铜接地棒打入地下深处,并与水平接地网连接起来,在地下的深层形成的半球散流接地网称为三维立体接地网。其主要特点是通过垂直超深度钢镀铜接地棒来降低整个地网的接地电阻值。

可见接地电阻值随垂直超深度钢镀铜接地棒长度的增加和土壤电阻率的减小而减小。在实际三维立体接地网中,垂直超深度钢镀铜接地棒较长,它能穿透到地中深层,受地中矿物质、地下水等因素影响,有些地方还会出现低土壤电阻率,使接地电阻大大降低。我们曾在惠南变电站三维立体接地网施工现场收集了3组25·m的垂直超深度钢镀铜接地棒(共有24组)实测的工频接地电阻值分别为0.36Ω,0.29Ω,0.30Ω,可喜的是实测值远远低于计算值1.63Ω,就充分说明了这点。

当单根垂直超深度钢镀铜接地棒的接地电阻不能满足要求时,可以通过垂直超深

度钢镀铜接地棒并联,组成三维立体接地网。因此其等值接地电阻值也将随BS-F型垂直超深度钢镀铜接地棒的接地电阻的降低而降低。

以往福州地区变电站的接地网是以水平接地网为主的,福州地区的土壤电阻率较低,一般取30~50Ωm,若以接地电阻估算公式:(附1)来判别福州地区变电站接地网的接地电阻值,基本上能100%地满足旧标准R≤0.5Ω的要求。1998年1月1日起实施的DL/T621—1997《交流电气装置的接地》新规程要求接地装置的接地电阻值应符合R≤2000/IΩ,重申了故障时接地网的电位升高不超过2000V的规定。按福州电网若干技术原则规定220kV短路电流取50kA,110kV短路电流取25kA,土壤电阻率取30Ω·m时,则220kV变电站接地网的接地电阻标准值应为R≤2000/I=2000/50 x103=0.04Ω,110kV变电站接地网的接地电阻标准值应为R≤2000/I=2000/25×103=0.08Ω,由此可见新标准对不同电压等级的变电站地网的接地电阻值的要求远比旧标准中R≤0.5Ω的笼统提法要严谨。

为使福州地区变电站接地网的接地电阻值满足观行标准R≤2000/IΩ的要求。在总结多年设计经验的基础上,2014年我们对福州地区的220kV、南门、红山、浦建4个变电站的接地系统应用三维立体接地网技术进行优化设计。我们在传统的水平接地网基础上,采用垂直超深度钢镀铜接地棒,应用它超深降阻的原理,将其作为水平接地网的垂直接地极,并与传统设计中的水平接地网相连组成一个三维立体接地网来达到降低整个变电站接地装置的接地电阻值。通过计算垂直超深度钢镀铜接地棒的入地深度并运用合理的布点位置及根数,首次使这4个220kV变电站接地网的接地电阻计算值达到R≤0.04Ω,发生接地故障时,接地装置的标准电位为Ug=2000V,完全符合上海电网若干技术原则规定及电力行业标准(DL/T621—1997)《交流电气装置的接地》的要求。上述4个变电站的复合接地网中的垂直超深度钢镀铜接地棒的长度在25~30m,土壤电阻率为30Ω·m,按传统水平接地网设计和按三维立体接地网优化设计后的这4个站接地电阻值的计算数据。

3.2 垂直超深钢镀铜接地棒

上述4个变电站的接地网的接地电阻值不论从计算结果还是从施工现场情况分析及对已完工的220kV南门站接地网接地电阻值的实测为0.036Ω的结果来看,都达到了三维立体接地网设计的预期效果。采用垂直超深度钢镀铜接地棒传统的水平接地网相联组成的三维立体接地网,确实起到了降低接地网的接地电阻值并使其满足R≤2000/IΩ标准要求。解决了以往设计中变电站接地网接地电阻值受变电站占地面积大小制约的问题,同时又避免了若变电站接地网的接地电阻值不满足R≤2000/IΩ的标准要求时将会出现的一系列问题。

3.2.1优劣

垂直超深钢镀铜接地棒是三维立体接地网降阻和快速向大地深处泄流的关键,其产品的优劣直接影响到变电站接地网的质量。上海地区变电站三维立体接地网采用的均为上海邦盛防电避雷技术有限公司从欧洲地区引进的BS—F型垂直超深钢镀铜接地棒,是由纯度为99.9%的电解铜分子覆盖到低碳钢芯上制成的,钢镀层厚度为0.250mm以上,具有很强的耐腐蚀性,将其弯曲180°后不会出现裂缝和剥落。棒芯是用特制的硬质钢材料,具有高达600N/mm2抗拉强度,所以借助特殊冲击钻能将接地棒垂直联接打入地下35m处,在地下使用寿命可达30年以上,可与变电站设计的使用寿命相同步。

在水平基础上把多根垂直超深度钢镀铜接地棒打入地下并与水平接地网连接起来就形成三维立体接地网。三维立体接地网能将入地电流迅速引入土壤深层流散,因而能有效地降低接地网的电阻。其降阻的作用绝不能单纯看作是多根垂直超深度钢镀铜接地棒接地电阻的简单并联,它与垂直超深度钢镀铜接地棒接地的深度及布点的位置和根数有着密切联系,若设计不当,其降阻的效果并不明显,这是由于增设的垂直超深度钢镀铜接地棒的降阻的作用被水平接地网和垂直超深度钢镀铜接地棒相互屏蔽抵消的缘故。

在水平接地网的边角和外围的地方装设垂直超深度钢镀铜接地棒可最大限度降低接地电阻,而且装设的垂直超深度钢镀铜接地棒在水平接地网外围上应尽可能均匀分布以拉开距离,使垂直超深度钢镀铜接地棒间互相屏蔽的作用尽可能减少。

装设的垂直超深度钢镀铜接地棒的根数越多,其利用率就会下降;装设的根数太少,又达不到降阻要求。同时还要根据具体情况考虑其深度问题。只有适当地选取装设垂直超深度钢镀铜接地棒的根数和深度才能使其经济合理。均匀土壤中的三维立体接地网应尽量采取根数少长度增加的垂直超深度钢镀铜接地棒的敷设方式,这样降低接地电阻的效果最好。垂直超深度钢镀铜接地棒费用的经济性。

从220kV惠桥、南门、红山、浦建变电站的三维立体接地网来看用于单纯钢镀铜接地棒材料的费用分别约为11~15万元。我们认为:(1)费用对变电站地初期投资有所增加,但增加幅度不大。(2)优化后的复合三维立体接地网无需维护使用寿命长,因此全寿命投资实际上要比传统的水平接地网低,具有较强的经济性。(3)建立一个合格的、满足观行标准DL/T621—1997《交流电气装置的接地》R≤2000/IΩ要求的接地网,对保证变电站的安全运行,乃至对整个电网来说产生地作用是不可估量的。

(1)能大幅度将接地电阻减少,泄能力增强,且不受接地网面积的限制;

(2)接地电阻值稳定,由于采用了垂直超深度钢镀铜接地棒后不会因季节变化、水分蒸发、土壤干燥、冰冻而影响接地电阻的变化;

(3)安全可靠,能有效地改善地表电位分布,降低接触和跨步电压,满足人体安全的要求;

(4)BS-F型垂直超深度钢镀铜接地棒具有很强的耐腐蚀性,在地下使用寿命可达30年以上。

3.2.2掌握大地导电率的有关资料

接地电阻与大地导电率密切上关,掌握大地导电率的第一手资料,对接地网的设计关系重大。如福州地区,根据土壤和水的电阻率参考值表,一般取ρ=30Ω?m计算接地电阻。

在一些城市35KV变电站建设中,接地电阻实测值与计算值相差较多,除了采取一定降低电阻措施各测量时的环境因数外,变电站土壤电阻率偏大可能也是原因。同时,由于城市中各种金属管线比较多,这对降低电阻率也起作用。由于上述测量年代已久,如有可能,有关单位应组织重新对土壤电阻率进行测量,以便接地网设计中合理取值。

3.2.3接地网的形式

城市变电站大多采用屋内配电装置形式,整个变电站位于一二幢建筑内,接地网包围建筑成为一个闭合接地网,变电站座于网格上。一般的郊外变电站,收于占地较大,接地网网格是让开建筑物,如控制综合楼等,而城市变电站应充分利用建筑本体下的面积。采用这种形式,在工艺上要防止由于建筑下沉而压断接地网。城市变电站建筑开挖较深,一般有地下水,对降低接地电阻非常有利,当然接地全引入建筑时必需注意防渗水。

3.2.4接地体的选择

城市变站接地网的接地体,宜采用铜接地体,虽然铜材的价格高于扁钢,但铜的抗腐蚀性要优于钢,特别是当接地网面积较小时,希望有水及金属等导电性较好介质时,抗腐蚀是一个重要问题。采用铜接地体虽一次投资较大,但从长远看还经济合理的。

采用铜接地体做接地网,用铜绞线要优于铜排。首先,由于铜绞线比铜排不更好的柔韧性,可克服由于建筑沉降压断接地网的情况,如铜绞线在建筑边缘留一定余量,就不易被压断。其次,铜排的长度有一定限制,一个接地网需要许多铜排气焊连成,受施工工艺和场地条件限制,工作难度较大,质量也较保证。铜绞线的长度强以很长,敷设方便,但在连接时,无法进行气焊,以前大多采用压接或螺栓连接,连接可靠性较低,现在新型放热焊接工艺已非常成熟,对铜绞线的连接非常方便,可靠性也高,虽然放热焊接工艺接头价格非常高,但铜绞线接头较少,总体费用啬不多。而铜排如采用放热焊接工艺,接头数量多,总体费用增加较多。

接地网的引入干线的连接需引起足够重视。要防止这样的情况:原接地网接地电阻很小,由于接地干线连接的接触电阻的影响,到设备时接地电阻已较大。城市变电站室内的接地体可采用扁钢或铜排,只要满足热稳定条件,扁钢或铜排与接地支线连接方便,铜铰线连接较困难。

3.2.5 采取降低跨步电势的措施

由于系统短路容量的增大,如220kV系统达50kA,虽然想了许多方法降低电阻,但仍可能产生较高的跨步电势,必须采取措施。在站内,接地体一般埋在混凝土内,

220KV变电站设计毕业论文(学术参考)

引言 随着经济的腾飞,电力系统的发展和负荷的增长,电力网容量的增大,电压等级和综合自动化水平也不断提高,科学技术突飞猛进,新技术、新电力设备日新月异,该地原有变电所设备陈旧,占地较大,自动化程度不高,为满足该地区经济的持续发展和人民生活的需要,电网正在进行大规模的改造,对变电所的设计提出了更高、更新的要求。建设新的变电所,采用先进的设备,使其与世界先进变电所接轨,这对提高电力网的供电可靠性,降低线路损耗,改善电能质量,增加电力企业的经济效益有很大的现实意义。 1、绪论 由于经济社会和现代科学技术的发展,电力网容量的增大,电压等级的提高,综合自动化水平的需求,使变电所设计问题变得越来越复杂。除了常规变电所之外,还出现了微机变电所、综合自动化变电所和无人值班变电所等。目前,随着我国城乡电网建设与改革工作的开展,对变电所设计也提出了更高、更新的要求。 1.1 我国变电所发展现状 变电技术的发展与电网的发展和设备的制造水平密切相关。近年来,为了满足经济快速增长对电力的需求,我国电力工业也在高速发展,电网规模不断扩大。目前我国建成的500kV变电所有近200座,220kV变电所有几千座;500kV电网已成为主要的输电网络,大经济区之间实现了联网,最终将实现全国联网。电气设备的制造水平也在不断提高,产品的性能和质量都有了较大的改进。除空气绝缘的高压电气设备外,GIS、组合化、智能化、数字化的高压配电装置也有了新的发展;计算机监控微机保护已经在电力系统中全面推广采用;代表现代输变电技术最高水平的750kV直流输电,500kV交流可控串联补偿也已经投入商业运行。我国电网供电的可靠性近年来也有了较大的提高,在发达国家连续发生严重的电网事故的同时,我国电网的运行比较稳定,保证了经济的高速发展。 1.2 变电所未来发展需要解决的问题

110kV变电站设计开题报告

110kv变电站110kv线路保护及主系统设计 1课题来源 本课题为某110kv中心变电站110kv线路保护记主系统设计课题。该变电站是最末一个梯级电站,装机容量600万千瓦,年发电量301亿千瓦时,用地总面积为8070.1374公顷。向家坝水电站110kV中心变电站为向家坝水电站提供施工供电电源和电站建成以后作为厂用电备用电源的一座变电站。设计容量为3 50MVA,电压等级为110/35/10kV, 110kV进出线有5条,中压35kV侧有10 回出线,低压10kV侧有20 回出线. 2 设计的目的和意义 110kV变电所是电力配送的重要环节,也是电网建设的关键环节。变电所设计质量的好坏,直接关系到电力系统的安全、稳定、灵活和经济运行。它是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所主要环节,电气主接线连接直接影响运行的可靠性、灵活性。它的拟定直接关系着全厂电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式的确定。 随着变电所综合自动化技术的不断发展与进步,变电站综合自动化系统取代或更新传统的变电所二次系统,继而实现“无人值班”变电所已成为电力系统新的发展方向和趋势。 3 国内外的现状和发展趋势 目前,我国小城市和西部地区经济的不断发展对电能资源的要求也越来越高,西部主要是高原地带,在高海拔的条件下,农村现有的变电技术远达不到经济的快速发展,这也在一定程度上影响了西部地区和中小城市变电技术的推广和应用技术的深化。因此,一方面需要创造条件有针对性地提高对小城市以及农村的变电站的建设,加强专业知识的培训来提高变电技术;另一方面,可以通过媒介积极开展技术交流,通过实践去体验、探索。 当今世界各方面因素正冲击着全球电力工业,在国外变电所技术有十分剧烈的竞争,而世界范围内的变电所都采用了新技术; 其次,不同的环境要求给所有的电力供应商增加了额外的责任,使电力自动化设备尤其是高压大功率变电站的市场开发空间大大拓展。另外高压变电所的最终用户对变电站的自动控制、节能、

变电所设计毕业论文

前言 在这次设计的选题上我是根据自己现在所实习的岗位来确定的,题目是《110KV降压变电站的部分设计》,而且我认为这次选题也是很好的结合了我在学校所学的工厂供电这门课程,让实践和理论知识相结合。 学习了工厂供电,为了更好的掌握这门功课,切实保证工厂生产的正常工作需要,我们进行了这次设计.要完成这次设计就必须了解工厂供电的基本知识.包括供电系统的一般原则,内容和程序.须要进行负荷计算,无功补偿以及继电保护。 首先介绍工厂供电设计的基本知识,包括供电设计的内容和程序,供电设计依据的主要技术基础,供电设计常用的电气图形符号和文字符号.接着依次讲述负荷计算和无功补偿,变配电所主接线方案的设计,短路计算及一次设备选择,继电保护及二次回路的选择,变配电所的布置与结构设计,供配电线路的设计计算,防雷保护和接地装置的设计。本次设计最重要的设计原则和方法,我们认为,就是在设计中一定要遵循国家的最新标准和设计规范.因此设计中着力介绍与工厂供电设计有关的最新标准和设计规范的规定和要求.限于我们的水平,加之时间非常的紧促,因此设计书中可能有错漏和不妥之处,是很难避免的,请老师批评指正。 毕业设计(论文)任务书 题目110kV降压变电站电气一次部分设计 一、毕业设计(论文)内容 本所位于某市区。向市区工业、生活等用户供电,属新建变电所。 电压等级: 110kV:近期2回,远景发展2回; 10kV:近期12回,远景发展2回。 电力系统接线简图、负荷资料及所址条件见附件。 二、毕业设计(论文)应达到的主要指标 1、变电所总体分析; 2、负荷分析计算与主变压器选择; 3、电气主接线设计; 4、短路电流计算及电气设备选择; 5、配电装置及电气总平面布置设计。 三、设计(论文)成品要求 1.毕业设计说明书(论文)1份; 2.图纸:1套(电气主接线)。

110KV变电站毕业设计论文

110KV变电站电气部分设计 摘要 本说明书以110kV地区变电站设计为例,论述了电力系统工程中变电站部分电气设计(一次部分)的全过程。通过对变电站的主接线设计,站用电接线设计,短路电流计算,电气设备动、热稳定校验,主要电气设备型号及参数的确定,运行方式分析,防雷及过电压保护装置的设计,电气总平面及配电装置断面设计和无功补偿方案设计,较为详细地完成了电力系统中变电站设计。 限于毕业设计的具体要求和设计时间的限制,本毕业设计只对变电站电气一次部分做了较为详细的理论设计,而对其电气二次部分并没有涉及,这有待于在今后的学习和工作中进行研究。 关键词:变电站短路电流动稳定热稳定

ABSTRACT The statement about the 110kv transformer area substation design, discussed some electrical transformer substation design (one part) in power systems engineering of the entire process. Through the main transformer stations wiring design, stations wiring design stations, short circuit current calculations, check electrical equipment moving and thermal stability, set the main electrical equipment models and the parameters, the operating mode, design over-voltage protection and mine devices , design general electric graphic and distribution devices flood, and without power compensation. Completed substation design in power system,lastly. Limited to the specific design requirements and design time of constraints, the design only is a part of the electrical transformer stations, and its second part did not involve, which research it in future study and work. KEY WORDS: Substation, Short circuit currents , Moving stability,Thermal stability

ZY市郊110KV变电站设计 毕业设计(论文)

绪论 毕业设计是专业学习的一个重要组成部分,做毕业设计的目的是通过设计实践,综合所学知识,贯彻学习我国电力工业有关的方针政策,培养理论联系实际,独立分析解决问题的能力。 在本次设计中,首先温习了相关内容和有关学习资料,熟悉了设计中各个项目的要求和方法步骤,然后再进入实际设计阶段,力争做到有根据,有过程,有论证,简洁明快,条理清晰。. 电力系统是由发电机,变压器,输电线路,用电设备(负荷)组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机),变换(变压器,整流器,逆变器),输送和分配(电力传输线,配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。 供电的中断将使生产停顿,生活混乱,甚至危及人身和设备安全,形成十分严重的后果。停电给国民经济造成的损失远远超过电力系统本身的损失。因此,电力系统运行首先要满足可靠,持续供电的要求。 我国目前电力工业的发展方针是:1.在发展能源工业的基本方针指导下发展电力工业。2.电力工业发展速度必须与国民经济发展速度相适应。3.发挥水电优势,加快水电建设。4.建设大型矿口电厂,搞好煤,电,运平衡。5.在煤,水能源缺乏地区,有重点有步骤地建设核电厂。6.政企分开,省为实体,联合电网,统一调度,集资办电。7.因地制宜,多能互补,综合利用,讲求利益。8.节约能源,降低消耗9.重视环境保护,积极防止对环境的污染。 变电所是联系发电厂和用户的中间环节,起着变换和分配电能的作用。变电所根据它在系统中的地位,可分为下列几类: 1.枢纽变电所位于电力系统的枢纽点,连接电力系统高压和中压的几个部分,汇集多个电源,电压为330~500kV的变电所,称为枢纽变电所。全所停电后,将引起系统解列,甚至出现瘫痪。 2.中间变电所高压侧以交换潮流为主,起系统交换功率的作用,或使长距离输电线路分段,一般汇集2~3个电源,电压为220~330kV,同时又降压供当地用电,这样的变电所起中间环节的作用,所以叫中间变电所。全所停电后,将引起区域电网解列。 3.地区变电所高压侧一般为110~220kV,向地区用户供电为主的变电所,这是一个地区或城市的主要变电所。全所停电后,仅使该地区中断供电。 4.终端变电所在输电线路的终端,接近负荷点,高压侧电压为110kV,经降压后直接向用户供电的变电所,即为终端变电所。全所停电后,只是用户受到损失。 在电力系统中,除应采取各项积极措施或减少发生故障的可能性以外,故障一旦发生,必须迅速而有选择性地切除故障元件,这是保证电力系统安全运行的最有效方法之一。切除故障的时间常常要求小到十分之几甚至百分之几秒,实践证明只有装设在每个电气元件上的保护装置才有可能满足这个要求。这种保护装置直到目前为止,大多是由单个继电器或继电器与其附属设备的组合构成的,故称为继电保护装置。在电子式静态保护装置和数字式保护装置出现以后,虽然继

10KV变电站的设计毕业论文

10KV变电站的设计毕业论文 目录 第一章绪论..................................................... - 1 - 1.1 变电站发展的历史与现状.................................. - 1 - 1.1.1 概况............................................... - 1 - 1.1.2 变电站综合自动化系统的设计原则..................... - 1 - 第二章变电站的负荷计算和无功率补偿计算......................... - 3 - 2.1 负荷计算................................................ - 3 - 2.3变电所主变压器的选择..................................... - 5 - 2.4变电所安装位置........................................... - 6 - 第三章变电站主接线设计......................................... - 7 - 3.1 电气主接线的基本要求.................................... - 7 - 3.2 常用的主接线............................................ - 7 - 3.3工厂变电所主要接线方案选择............................... - 9 - 第四章短路电流计算............................................ - 11 - 4.1短路电流计算的目的...................................... - 11 - 第五章电气设备的选择及校验.................................... - 15 - 5.2变电所一次一次设备的选择校验............................ - 16 - 5.2.1高压侧电气设备的选择校验.......................... - 16 - 5.2.2低压侧电气设备的选择校验.......................... - 19 - 5.3变电所进出线的选择及校验................................ - 20 - 5.3.1导线选择的原则.................................... - 21 - 5.3.2变电所导线的选择.................................. - 21 - 第六章变电所继电保护.......................................... - 24 - 6.1电力变压器的故障形式.................................... - 24 -

变电站的发展与设计毕业论文

变电站的发展与设计毕业论文 第一章原始资料分析 一、原始资料 1、待建***变电所年负荷增长率为5%,总负荷考虑五年发展规划。 2、待建***变电所受电方案(1)从距离30km的110kV东郊变电站受电,方案 (2)从距离70km的110kV灌南变受电。 3、其他资料: (1)、地形地势平坦,土壤电阻率为1.5х104欧?厘米,所址高于百年一遇最高洪水位; (2)交通:仅靠国家二级公路,进所公路为0.4km。 (3)水源:供水方便,水源充足; (4)气象资料:地区最高气温38°C,最热月平均气温28°C,最热月地下0.8m 处平均气温22°C,年主导风力为东风,年雷暴雨日数为20天。 4、待建城北变电所各电压等级负荷参数如下表:

二、对原始资料进行分析计算 为满足电力系统对无功的要求,需在用户侧安装合理的电容器,进行无功补偿,提高用户功率因数,减小主变压器容量,35kV及10kV线路用户功率因数均提高到0.9为宜。 按原始资料表中的有功及计划补偿后的功率因数,计算出最大无功,得出以下

三、网络系统图

第二章 ***变电所接入系统设计 一、电压等级确定 输电线路电压等级的确定应符合国家规定的标准。选择电压等级时,应根据输送的容量和距离,以及接入电网的额定电压来确定,输送容量按五年发展规划。所以待建城北变电所的受电电压等级为110kV 。 二、确定回路数 ***变电所所供负荷为I 、 II 类重要负荷,因此***变电站应采用双回110kV 线路接入系统。 三、110kV 线路导线规格、型号确定 因待建***变电站距离110kV 东郊变30km,地处平原,采用架空线路,导线选择LGJ 型。 四、导线截面选择 导线截面选择的方法一般是:按经济电流密度初选导线标称截面积,后进行电压损失校验 1、待建***变电站总负荷计算 042 .4593)233.8823.0624.11265.7718.8(1719241518~353535j j jQ P S +=+++++++++=+=737 .51825.106%)51)(042.4593(9.0%)51)((%)51(~5535355j jQ P S +=++?=++=+

辽宁工学院综合教学楼变电所扩大初步设计毕业论文

摘要 本设计的主要内容包括:10/0.4kV变电所主变压器选择;变电所电气主接线设计;短路电流计算;负荷计算;无功功率补偿;电气设备选择(母线、高压断路器、隔离开关、电流互感器、电压互感器、避雷器和补偿电容器);配电装置设计;继电保护规划设计;防雷保护设计等。 根据电气主线设计应满足可靠性、灵活性、经济性的要求,本变电所电气主接线的高压侧采用单母线接线,低压侧采用单母线分段的电气主接线形式;对低压侧负荷的统计计算采用需要系数法;为减少无功损耗,提高电能的利用率,本设计进行了无功功率补偿设计,使功率因数从0.69提高到0.9;短路电流的计算包括短路点的选择及其具体数值计算;而电气设备选择采用了按额定电流选择,按短路电流计算的结果进行校验的方法;继电保护设计主要是对变压器进行电流速断保护和过电流保护的设计计算;配电装置采用成套配电装置;本变电所采用避雷针防直击雷保护。 本设计十分注重运用我国电气设计的新技术和新的设备,实用性及强,考虑到是实际工程的应用,便以通俗易懂的语言进行阐述。 关键词:变电所设计;电气主接线;继电保护

Abstract The design on the topic of "Liaoning Institute of Technology Teaching Building substation expansion preliminary design." The main design elements include : 10/0.4kV main transformer substation choice; Electrical Substation main wiring design; Short-circuit current calculation; Load Calculation; Reactive power compensation; Electrical Equipment (bus, HV circuit breakers, isolation switches, current transformer and voltage transformer, and compensation capacitor MOA); Distribution Equipment design; relay Planning and Design; Lightning protection design. According to the main line of electrical design should meet the reliability, flexibility, economy requirements, The substation main electrical wiring High Side single-bus wiring, low voltage side of the single-bus above the main electrical wiring form; the low-pressure side load calculated using the statistical needs coefficient; To reduce the reactive power loss, increased energy utilization, The design of reactive power compensation design, power factor from 0.69 to 0.9; short-circuit current calculations include short-circuit point for the selection and specific numerical calculation; and electrical equipment chosen by the choice of rated current, short-circuit current calculation by the results of the calibration methods; relay design of the main transformer Current Protection and over-current protection design; distribution installations complete set of power distribution equipment; The substation using direct lightning stroke prevention lightning protection. The design is very close attention to the use of our electrical design of the new technology and new equipment, practical and strong, Taking into account the actual application, in a user-friendly language to describe it. Key words:: substation design; Electrical wiring; Relay .

论文--110kv变电站设计(上海电力学院)

本科毕业论文 发电厂设计 上海电力学院 施春迎 第一章 主变及所用变的选择 第一节 主变压器的选择 一、负荷统计分析 1、 35kV 侧 Q 1max=var 44.61971000085.0/10000cos /222max 1212max 12 K P P =-=-? Q 2max=var 44.61971000085.0/10000cos /222max 2222max 22K P P =-=-? Q 3max =var 47.3718600085.0/6000cos /222max 3232max 32K P P =-=-? Q 4max =var 4500600080.0/6000cos /222max 4242max 42 K P P =-=-? Q 5max = var 4500600080.0/6000cos /222max 5252max 52 K P P =-=-? ∑35 P =P 1max +P 2max +P 3max +P 4max +P 5max =10000+10000+6000+6000+6000=38000(KW) ∑35 Q =Q 1max +Q 2max +Q 3max +Q 4max +Q 5max =6197.44+6197.44+3718.47+4500+4500=25113.35(KVar ) S 35MAX =2max 352max 35Q P +=22 35.25113 80003+=45548.66(KVA ) 35?Cos = MAX S P 35max 35∑= 66 .4554838000 =0.83 考虑到负荷的同时率,35kV 侧最大负荷应为: S ’35MAX =S 35MAX ?35η=45548.66?0.85=38716.36(KVA)

变电站设计毕业设计(论文)

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

110kv变电站设计-毕业论文

毕业设计报告 课题名称 110kV变电站一次部分设计学生姓名 学号 专业 班级 指导老师 ?目录

摘要 (3) 概述 (4) 第一章电气主接线 (6) 1.1110kv电气主接线 (7) 1.235kv电气主接线 (8) 1.310kv电气主接线 (10) 1.4站用变接线 (12) 第二章负荷计算及变压器选择 (13) 2.1负荷计算…………………………………………………(13) 2.2主变台数、容量和型式的确定 (14) 2. 3 站用变台数、容量和型式的确定 (16) 第三章最大持续工作电流及短路电流的计算…………………(17) 3.1 各回路最大持续工作电流 (17) 3.2 短路电流计算点的确定和短路电流计算结果…………(1

8) 第四章主要电气设备选择 (19) 4.1高压断路器的选择 (21) 4.2隔离开关的选择 (22) 4.3 母线的选择 (23) 4.4 绝缘子和穿墙套管的选择…………………………………(24) 4.5 电流互感器的选择…………………………………………(24) 4.6电压互感器的选择…………………………………………(26) 4.7各主要电气设备选择结果一览表 (29) 附录I 设计计算书 (30) 附录II 电气主接线图 (37) 10kv配电装置配电图 (39) 致谢 (40) 参考文献 (41)

摘要 本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,

变电所设计研究毕业论文

变电所设计研究毕业论文 目录 1 绪论 (1) 1.1 变电站概述 (1) 1.1.1 变电站在电力系统中的地位 (1) 1.1.2 负荷对变电所供电的要求 (1) 1.1.3 电力系统的额定电压 (2) 1.2 我国变电站及其设计的现状、发展趋势及新变化 (3) 1.3 变电站设计的主要原则 (4) 1.4 设计任务书 (5) 2 电气主接线设计 (8) 2.1 电气主接线设计基础 (8) 2.1.1 对电气主接线的基本要求 (8) 2.1.2 变电站电气主接线的设计原则 (8) 2.1.3 电气主接线设计步骤 (9) 2.2 电气主接线的基本形式 (11) 2.3 电气主接线选择 (11) 3 变电站主变压器选择 (15) 3.1 主变压器台数的选择 (15) 3.2 无功补偿措施 (15) 3.2.1 无功功率补偿的必要性 (15) 3.2.2 无功功率补偿的方法 (16) 3.3 主变压器容量的选择 (17) 3.4 主变压器型号的选择 (18) 3.5 主变压器型号选择 (19) 3.6 变电所所用电设计 (20) 3.6.2 直流系统 (20) 3.6.3 所用电选择 (21) 4 短路电流计算 (22)

4.2 短路的危害及预防办法 (22) 4.3 短路电流计算的目的 (23) 4.4 短路电流计算方法 (23) 4.5 短路电流计算 (23) 4.5.1 110kV侧母线短路计算 (26) 4.5.2 35kV侧母线短路计算 (27) 4.5.3 10kV侧母线短路计算 (28) 5 电气设备的选择 (31) 5.1 导体的选择和校验 (31) 5.1.1 110kV母线选择及校验 (33) 5.1.2 35kV母线选择及校验 (33) 5.1.3 10kV母线选择及校验 (34) 5.2 断路器和隔离开关的选择及校验 (35) 5.2.1 110kV侧断路器及隔离开关的选择及校验 (36) 5.2.2 35kV侧断路器及隔离开关的选择及校验 (38) 5.2.3 10kV侧断路器及隔离开关的选择及校验 (40) 5.2.4 10kV侧母联断路器的选择和校验 (42) 5.3 互感器的选择 (44) 5.3.1 电流互感器的选择 (44) 5.3.2 电流互感器的校验 (45) 5.3.3 电压互感器的选择 (46) 6 防雷保护 (48) 6.1 直击雷保护 (49) 6.2 侵入波保护 (49) 6.3 变电所接地装置 (50) 7 配电装置 (51) 7.1 配电装置概述 (51) 7.1.1 配电装置的类型及其特点 (51) 7.1.2 配电装置型式的选择 (52) 7.2 对配电装置的基本要求和设计步骤 (52)

电气工程及其自动化毕业论文

电气工程及其自动化毕业论文 本科生毕业设计(论文) 摘要 本设计的主要内容包括:10/0.4kV变电所主变压器选择;变电所电气主接线设计;短路电流计算;负荷计算;无功功率补偿;电气设备选择(母线、高压断路器、隔离开关、电流互感器、电压互感器、避雷器和补偿电容器);配电装置设计;继电保护规划设计;防雷保护设计等。 根据电气主线设计应满足可靠性、灵活性、经济性的要求,本变电所电气主接线的高压侧采用单母线接线,低压侧采用单母线分段的电气主接线形式;对低压侧负荷的统计计算采用需要系数法;为减少无功损耗,提高电能的利用率,本设计进行了无功功率补偿设计,使功率因数从0.69提高到0.9;短路电流的计算包括短路点的选择及其具体数值计算;而电气设备选择采用了按额定电流选择,按短路电流计算的结果进行校验的方法;继电保护设计主要是对变压器进行电流速断保护和过电流保护的设计计算;配电装置采用成套配电装置;本变电所采用避雷针防直击雷保护。 本设计十分注重运用我国电气设计的新技术和新的设备,实用性及强,考虑到是实际工程的应用,便以通俗易懂的语言进行阐述。 关键词:变电所设计;电气主接线;继电保护 I 本科生毕业设计(论文) Abstract

The design on the topic of "Liaoning Institute of Technology Teaching Building substation expansion preliminary design." The main design elements include : 10/0.4kV main transformer substation choice; Electrical Substation main wiring design; Short-circuit current calculation; Load Calculation; Reactive power compensation; Electrical Equipment (bus, HV circuit breakers, isolation switches, current transformer and voltage transformer, and compensation capacitor MOA); Distribution Equipment design; relay Planning and Design; Lightning protection design. According to the main line of electrical design should meet the reliability, flexibility, economy requirements, The substation main electrical wiring High Side single-bus wiring, low voltage side of the single-bus above the main electrical wiring form; the low-pressure side load calculated using the statistical needs coefficient; To reduce the reactive power loss, increased energy utilization, The design of reactive power compensation design, power factor from 0.69 to 0.9; short-circuit current calculations include short-circuit point for the selection and specific numerical calculation; and electrical equipment chosen by the choice of rated current, short-circuit current calculation by the results of the calibration methods; relay design of the main transformer Current Protection and over-current protection design; distribution installations complete set of power distribution equipment; The substation using direct lightning stroke prevention lightning protection.

110KV变电站设计毕业论文

华北电力大学 毕业设计(论文)题目110KV变电站电气主接线设计 专业电气工程及其自动化 班级 学生 指导教师 成人教育学院 2012年09月10日

本次设计为110kV降压变电站电气一次部分的初步设计,根据原始资料,以设计任务书和国家有关电力工程设计的规程、规及规定为设计依据。变电站的设计在满足国家设计标准的基础上,尽量考虑当地的实际情况。在本变电站的设计中,包括对变电站总体分析和负荷分析、变电站主变压器的选择、电气主接线、电气设备选择、短路电流计算等部分的分析计算以及防雷设计。在保证供电可靠性的前提下,减少事故的发生,降低运行费用。 本次设计正文分设计说明书和设计计算书两个部分,设计说明书包括电气主接线设计、变压器选择说明、短路电流计算说明、电气设备选择说明、配电装置设计、电气总平面布置和防雷保护设计;设计计算书包括变压器选择、短路电流计算、电气设备选择及校验等,并附有电气主接线图及其它相关图纸。 关键词:110kV变电站;短路电流;一次部分;设备选择

摘要 (Ⅰ) 第一部分设计说明书 1原始资料 (1) 1.1变电站的基本情况 (1) 1.2设计任务 (2) 2 变压器选择 (3) 2.1 变压器绕组与调压方式的选择 (3) 2.2 变压器相数的选择 (3) 2.3 变压器容量和台数的选择 (3) 2.4变压器的冷却方式 (4) 3电气主接线设计 (5) 3.1主接线的设计原则 (5) 3.2主接线设计的基本要求 (6) 3.3 主接线方案的比较和确定 (7) 4短路电流计算 (11) 4.1短路电流计算的目的 (11) 4.2短路电流计算的规定 (11) 4.3短路电流计算的步骤 (12) 4.4短路类型及其计算方法 (12) 5高压电器选择 (14) 5.1高压断路器的选择 (14) 5.2隔离开关的选择 (14) 5.3各级电压母线的选择 (15) 5.4 电流互感器的选择 (15) 5.5电压互感器的选择 (16) 5.6避雷器的选择 (16)

110KV变电站一次系统设计毕业设计开题报告

毕业设计(论文)开题报告

三相短路电流的计算步骤如下: (1)根据已经选择的变电站主接线方案画出电气主接线图; (2)根据规定的电气设备选择任务,确定所用的短路计算点; (3)计算各个电气元件的电抗标么值,画出以标么值表示的等值电路图; (4)对各短路计算点进行网络化简,求出X*∑; (5)求出各个电源对短路点的转移阻抗; (6)求出各个电源的计算电抗Xca,由运算曲线查出各时刻的短路电流标么值,最后求出各短路计算点的三相短路电流。 四.主要电气设备的选择 1.断路器和隔离开关的选择 断路器和隔离开关的型式选择要根据电压等级、安装地点、对系统稳定运行的影响等因素决定。 断路器选择校验内容:1)选择类型;2)选择额定电压;3)选择额定电流;4)校验切断能力;5)校验热稳定性;6)校验动稳定性。 隔离开关的选择校验内容:1)选择类型;2)选择额定电压;3)选择额定电流;4)校验切断能力;5)校验热稳定性;6)校验动稳定性。 2.电压互感器的选择内容: 1)根据安装地点和用途,选择电压互感器的型号、台数;2)确定额定电压;3)根据额定电压,确定接线方式和准确级。 3. 电流互感器的选择内容: 1)选择类型;2)选择额定电压;3)选择额定电流;4)校验动稳定性;5)校验热稳定性;6)在施工阶段,需要校验准确级。 4.避雷器的选择内容:1)选择避雷器型号;2)选择额定电压;3)校验最大允许电压;4)校验工频放电电压。 5.高压熔断器的选择 高压熔断器只适用于35kV及以下电压等级,较广泛地用于高压输电线路、变压器和电流互感器等设备过载及短路保护。它的选择内容:1)选择型式种类;2)选择额定电压;3)选择额定电流;4)选择开断电流。 6.硬母线及其软导体的选择 硬导体包括矩形、槽形和管形等,软导体指钢芯铝绞线。对于年最大负荷利用小时数较大,距离长、传输容量大的回路(如发电机引出线回路变压器引出线回路),一般按经济电流密度选择截面,其它短导体按长期发热允许电流选择截面。一般原则如下 (1)发热允许电流选择截面; (2)电流密度选择截面; (3)电压校验(对110kV及以上电压的母线进行校验); (4)相短路状态下,进行热稳定和动稳定校验。 五.防雷保护的设计 避雷器的配置原则: (1)配电装置的每组母线上,应装设避雷器。 (2)旁路母线上是否应装设避雷器,应看旁路母线投入运行时,避雷器到被保护设备的电气距离是否满足而定。 (3)220kV以下变压器和并联电抗器处必须装设避雷器,并尽可能靠近设备本体。 (4)220kV及以下变压器到避雷器的电气距离超过允许值时,应在变压器附近增设一组避雷器。 (5)三绕组变压器低压侧的一相上宜设置一台避雷器。

毕业设计(论文)-某220KV变电所电气设计

设计说明书 一、概述 1.1 设计依据及原则 根据《江苏省35-220 kV变电所设计技术导则》(2002)、《220-500kV 变电所所用电设计技术规程》(DL/T 5155-2002)、《220-500kV变电所设计技术规程》(DL/T 5218-2006)、《35-110 kV变电所设计规范》(GB50059-1992)、《继电保护和安全自动装置技术规范》(GB14285-2006)、《高压配电装置设计技术规程》(DL/T 5352-2006)以及给定的《“电力系统自动化专业”毕业设计任务书》,并依据5-10年电力系统发展规划进行设计,力求做到供电可靠、调度灵活、检修方便和投资经济。 1.2系统概况 待建变电所的电压等级为220kV/110kV/10kV,220kV是本变电所的电源电压,110kV和10kV是二次电压。 待建变电所位于城市近郊,地势平坦,交通方便,主要承担开发区炼钢厂供电任务,另外还有变电站附近的汽车厂、电机厂、矿机厂、机械厂、炼油厂、饲料厂等重要用户。220kv 4回出线作为本所电源,2回线来自系统,2回线来自相临变电站,110kv 2回出线供炼钢厂负荷,10kv 11回出线供周围负荷。该变电所为枢纽变电所。 1.3设计规模 1.110KV线路2回,最大负荷为43MW. 负荷功率因数0.95. 2.10KV出线共11回,本侧最大出线总负荷为9.3MW,负荷功率因数平均为0.85。 3.年最大负荷利用小时数T max=5600小时,同时率0.9,线路损耗6%。 1.4环境条件 1.当地年最高温度40℃。 2.最热月(7月)平均温度28℃。

二、主变压器的选择 1.主变压器形式的选择 1.1相数的确定 根据《220~500kV变电所设计技术规程》(DL/T 5222-2005)第7.7.2条规定,“与电力系统连接的220~330kV变压器若不受运输条件的限制,应选用三相变压器。” 本变电所“地势平坦,交通方便”,应当选用三相变压器。 1.2绕组数确定 根据《220~500kV变电所设计技术规程》(DL/T 5222-2005)第7.2.4条220~330kV具有三种电压的变电所中,如通过主变压器各侧绕组的功率均达到该变压器额定容量的15%以上,或者第三绕组需要装设无功补偿设备时,均宜采用三绕组变压器,当中性点接地方式允许时采用自耦变压器。 根据待建变电所电压等级和负荷情况,选择三绕组变压器。 1.3调压方式的确定 用户为钢厂、厂矿生产企业,电压波动大,用户对供电质量要求较高,需要经常调压,故选择有载调压变压器 2.主变容量和台数的确定 相关的设计规范规定:选择的变压器容量Se需要满足下列两个条件:①Se≥0.7Smax;②Se≥Simp。其中,Smax为变电所的最大负荷容量;Simp 为变电所的全部重要负荷容量 通过计算(详见计算书),最后选择变压器的容量S e=40000KVA。考虑到重要负荷较多及今后的发展,故选择2台主变压器 综上所述:该变电所选择2台3相3绕组有载调压变压器 型号为 SFSZ-40000KVA/220+8×1.25%/121/10.5 主要技术参数如下: 额定容量比:100/100/50

相关主题
文本预览
相关文档 最新文档