当前位置:文档之家› 森林群落结构特征分析和物种多样性指数计算公式

森林群落结构特征分析和物种多样性指数计算公式

森林群落结构特征分析和物种多样性指数计算公式
森林群落结构特征分析和物种多样性指数计算公式

实验九森林群落基本特征分析

列出调查结果表格,每个大组共享数据(做成excel

表格)。实验报告上完成调查资料。

标题:

生态因子:

表格内容;样方编号,物种名称,调查指标

重要值计算:重要值(importance value,

IV)是一个重要的群落定量指标, 常用于比较不同群

落间某一物种群落中的重要性。计算式为:

IV(%)=(相对多度+相对频度+相对优势度)/3 相对多度(%) = 100×某物种的株数/所有种的

总株数;

相对频度(%)=100×某物种在统计样方中出现的

次数/所有种出现的总次数;

相对优势度(%)= 100×某个种的胸高断面积/所

有种的胸高断面积。

在测定灌木的重要值采用IV=相对多度+相对频度

+相对盖度,相对盖度是指样方中某物种的盖度占总

盖度的百分比。

通过数据分析森林群落的基本特征(参考教材相关内容),自己独立完成。

实验十群落物种多样性指数的计算

物种多样性指数计算实例

物种多样性指数计算 (1)多样性指数的计算公式如下: ① Gleason(1922)指数 D=S / lnA 式中:A为单位面积,S为群落中的物种数目。 ② Margalef指数 D=(S-1)/ lnN 式中S为群落中的总数目,N为观察到的个体总数。 ③ Simpson指数 D=1-ΣP i 2 式中Pi种的个体数占群落中总个体数的比例。 ④ Shannon-wiener指数 H′= -ΣP i lnP i 式中:Pi=Ni/N 。 ⑤ Pielou均匀度指数 E=H/Hmax 式中:H为实际观察的物种多样性指数,Hmax为最大的物种多样性指数,Hmax=LnS(S为群落中的总物种数)。 (2)乔木层物种多样性 调查区域乔木层物种多样性指数见表6-11和图6-4。评价范围内各群落乔木层Gleason指数在~之间,Margalef指数在~之间,Simpson指数在~之间,Shannon-wiener指数在~之间,Pielou指数在~之间。数据表明评价范围内乔木层的多样性指数较低。 表1 调查区域乔木层物种多样性指数

图1 调查区域乔木层物种多样性指数 (A:荔枝树群落;B:相思树+银合欢群落;C:相思树群落;D:巨尾桉群落) (3)灌木层物种多样性 调查区域灌木层物种多样性指数见表6-12和图6-5。灌木层各个多样性指数与乔木层变化表现有一定的一致性。评价范围内各群落灌木层Gleason指数在~之间,Margalef指数在~之间,Simpson指数在~之间,Shannon-wiener指数在~之间,Pielou指数在~之间。数据表明评价范围内灌木层的多样性指数较低。 表2 调查区域灌木层物种多样性指数

北师大版生物八下第22章物种的多样性

第22章物种的多样性 (夜郎中学:余明灯) 第1节生物的分类 一.教学目标: 1.尝试根据一定的特征对生物进行分类; 2.生物分类原则、等级和基本单位 3.练习编写检索表 4.说明对生物统一命名的重要性 二.教学重难点: 1.生物分类的方法;生物命名的方法 2.活动“尝试对生物分类” 3.活动“编制检索表” 三.课时安排:2课时 四.教学过程: 第1课时 《一》创设情景、引入新课 地球上约有35万中植物和150多万种动物,它们有的形态结构相似,有的彼此千差万别,我们怎样识别这些种类繁多的生物呢?当我们到商品繁多的超市购买东西,会很容易的找到我们所需要的,为什么?——因为它们是按一定的规律分类排列的。认识生物也要采用类似商品分类的方法,根据生物的某些特征将它们分门别类,这就是生物分类。 《二》活动“尝试对生物分类” 【活动过程】:展示图片 观察图片上这些你们所熟悉的各种生物,各小组讨论分析,尝试将它们分成不同的生物类群。 检查结果 问:你们组是根据什么将这些生物分类的?(性状差异和亲缘关系)【导出】:根据这个原则,生物学家将地球上现存的生物依次分为7个等级:界、门、纲、目、科、属、种 (其中基本单位是——种,即为最小的单位;最大的单位是界。);把各个分类等级按其高低和从属关系顺序排列起来,就构成生物分类的阶层系统。如教材

31页—32页在分类阶层系统中,我们都可以在不同的分类单位中找到各种生物的位置。 刚才看了同学们的分类情况,各有不同,这样是否有利于我们识别生物?如果各执一词是不是就乱套了?那么我们是否需要一个统一的标准呢? (需要) 所以生物学家根据生物特征的差异,编制出生物检索表。 讲解编制方法 活动“编写检索表” 第2课时 《一》复习旧课,引入新课 【提问】:(1)生物学家们为了弄清各种生物之间的亲缘关系是怎样将生物进行分类的? (界、门、纲、目、科、属、种) (2)为了便于人们按照统一的标准识别生物,生物学家们依据什么 编制了什么来进行生物的分类? (生物特征差异检索表) 【引入】:很好!我们要认识一件事物,首先要给它命名,认识生物也是如此,今天我们 就来看看生物的命名。 《二》生物的命名 【师生活动】:在我们认识生物的过程中发现,由于不同的地区,同一种生物往往有多个名称。 请看图,图上的生物在我们这里叫什么名字呢?——(红苕) 这是我们平时喜欢吃的红苕,但它有多个名字哦,在北京则称之为白薯,到了湖南就变成了红薯,江苏又叫山芋,而山东和东北又称之为地瓜。 请再看看图中的这两株植物是什么?——(土豆山药) 不同的两种植物它们却有一个共同的名字——山药,像上面这样两中情况再现实生活中比较常见,那么这样是否方便呢?(容易引起歧义)

森林生态学讲稿-第四章森林群落结构特征

森林植物群落结构特征 一、森林植物群落概念 (一)群落概念 群落的概念很模糊,没有一个概念能让所有生态家都满意的定义。群落或生物群落(biological community)是指特定空间或生境下生物种群有规律的组合,它们之间及其与环境间相互影响,具有一定的结构和功能。 植物群落(plant community):生活在同一生境而彼此相互作用的各种植物有规律的组合。森林群落(forest community)指以木本植物为主体的植物群落。 植被(vegetation):某一地区或整个地球表面全部植物群落总和称为植被。 (二)群落的基本特征 群落都具有以下共同特征: 1具有一定的种类组成:每个群落都是由一定的植物、动物、微生物种群组成的,因此,物种组成是区别不同群落的首要特征。 2具有一定的群落结构:如生活型组成、种的分布格局、成层性、季相等 3具有一定的外貌:一个群落中的植物个体,分别处于不同高度并具有不同密度,从而决定了群落外部形态。如森林、灌丛或草丛等。 4形成群落环境:生物群落对其居住的环境产生重大影响,并形成群落环境,包括光照、温度与土壤等都经过了生物群落的改造。 5不同物种间存在相互影响:群落的形成和发展必须经过生物对环境的适应和生物种群之间的相互适应。生物群落并非种群的简单集合。种群组合成群落取决于两个条件:第一,必须共同适应它们所处的无机环境;第二,它们内部的相互关系必须取得协调、平衡。 6具有一定的动态特征:群落运动形式为季节、年际动态、演替与演化。 7具有一定的分布范围:任一群落都分布在特定地段或特定生境上,不同群落的生境和分布范围不同。 8具有特定的群落边界特征:在自然条件下,有些群落具有明显的边界,可以清楚地加以区分;有的则不具有明显边界,而处于连续变化中。 (三)群落的性质 机体论(离散论):以美国的Clements(1916,1928)为代表。 群落是高度有组织的物种组合,边界清楚,可象物种那样进行自然分类;高度强调种间相互作用的重要性,演替被类比为个体发育。认为群落是有明显边界的离散单位,或者说是自然界的一个基本组织单位,像有机体(如人)与种群(物种)是自然界的一个实体单位一样,所以(1)有诞生,生长,成熟和死亡的不同发育阶段;和有机体一样有明确的边界,而且与其他群落是间断的、可分的,独立存在,可重复出现,因此可以像物种那样进行分类。

多样性指数介绍

多样性指数 多样性指数是用来描述一个群落的多样性的统计量。在生态学中,它被用来描述生态系统中的生物多样性,在经济学中可以用来描述一个地区中经济活动的分布。多样性指数经常被用来估算任何一个群落,每个成员都属于一个独特的群体或物种。在很多情况下,多样性指数的估计量是有偏的,因此相似的值之间往往不能直接比较。 一些常用多样性指数将讨论如下: 种丰富度(Species richness) 种丰富度S便是生态系统中物种的数目。这个指数无法表示相对丰度。实际上,除了一些非常贫瘠的系统之外,记录一个生态系统真实的种总丰富度是不可能的。系统中物种的观察值是其真实物种丰富度的有偏估计值,并且观察值会随着取样的增加非线性的增长。因此在表示从生态系统中观察到的物种丰富度时,S 常被称作种密度(species density)。 香农多样性指数(Shannon's diversity index) 香农多样性指数用来估算群落多样性的高低,也叫香农-维纳(Shannon-Wiener)或香农-韦弗(Shannon-Weaver)指数。公式如下: 其中S表示总的物种数,pi表示第i个种占总数的比例(Pielou 1975)。当群落中只有一个居群存在时,香农指数达最小值0;当群落中有两个以上的居群存在,且每个居群仅有一个成员时,香农指数达到最大值ln k。 物种均一度(Species Evenness) 物种均一度用来描述物种中的个体的相对丰富度或所占比例。群落的均一度可以用Pielou均一度指数J表示(Pielou's evenness index,J): 其中H'为香农指数,H'max是H'的最大值:

各种生物多样性指数计算

各种生物多样性指数计算 Simpson指数运算公式 生物多样性测定要紧有三个空间尺度:α多样性,β多样性,γ多样性。α多样性要紧关注局域平均生境下的物种数目,因此也被称为生境内的多样性(within-habitat diversity)。β多样性指沿环境梯度不同生境群落之间物种组成的的相异性或物种沿环境梯度的更替速率也被称为生境间的多样性(between-habitat diversity),操纵β多样性的要紧生态因子有土壤、地貌及干扰等。γ多样性描述区域或大陆尺度的多样性,是指区域或大陆尺度的物种数量,也被称为区域多样性(regional diversity)。操纵γ多样性的生态过程要紧为水热动态,气候和物种形成及演化的历史。 α多样性 a. Gleason(1922)指数 D=S/lnA 式中A为单位面积,S为群落中的物种数目。 b. Margalef(1951,1957,1958)指数 D=(S-1)/lnN 式中S为群落中的总数目,N为观看到的个体总数。 (2)Simpson指数 D=1-ΣPi2 式中Pi种的个体数占群落中总个体数的比例。 (3)种间相遇机率(PIE)指数

请运算它的物种多样性指数。 Simpson指数: Dc=1-ΣPi2=1-Σ(Ni/N)2=1-[(99/100)2+(1/100)2]=0.0198 DB=1-[(50/100)2+(50/100)2]=0.5000 Shannon-wiener指数:

HC=-ΣNi/N ln Ni/N i=-(0.99×ln0.99+0.01×ln0.01)=0.056 HB=-(0.50×ln0.50+0.50×ln0.50)=0.69 Pielou平均度指数: Hmax=lnS=ln2=0.69 EA= H/Hmax=-[(1.0×ln1.0)+0]/0.69=0 EB=-(0.50×ln0.50+0.50×ln0.50)/0.69=0.69/0.69=1 EC=0.056/0.69=0.081 从上面的运算能够看出,群落的物种多样性指数与以下两个因素有关: ①种类数目,即丰富度;②种类中个体分配上的平均性 β多样性 β多样性能够定义为沿着环境梯度的变化物种替代的程度。不同群落或某环境梯度上不同点之间的共有种越少,β多样性越大。精确地测定β多样性具有重要的意义。这是因为:①它能够指示生境被物种隔离的程度;②β多样性的测定值能够用来比较不同地段的生境多样性;③β多样性与α多样性一起构成了总体多样性或一定地段的生物异质性。 (1)Whittaker指数(βw) βw=S/mα-1 式中:S为所研究系统中记录的物种总数;mα为各样方或样本的平均物种数。(2)Cody指数(βc) βc=[g(H)+l(H)]/2 式中:g(H)是沿生境梯度H增加的物种数目;l(H)是沿生境梯度H失去的物种数目,即在上一个梯度中存在而在下一个梯度中没有的物种数目。

生物多样性和人类的关系

生物多样性与人类的关系 摘要: 随着社会经济的加速发展,人们的生活水平都迅速地提高了,但是与此同时,与我们人类共同拥有地球母亲的其他生物日益的减少,生物的多样性受到严酷的考验和威胁,于是保护生物多样性是当前世界国家最紧迫的任务之一,也是全球生物学界共同关心的焦点问题之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就消亡了,这对人类无疑是一种悲哀和灾难。保护生物多样性的行动势在必行、迫在眉睫。 关键词:生物多样性,威胁,保护 一、生物多样性的认识 生物多样性包括动物、植物、微生物的物种多样性,物种的遗传与变异的多样性及生态系统的多样性。其中,物种的多样性是生物多样性的关键条件,它既体现了生物之间及环境之间的复杂关系,又体现了生物资源的丰富性。目前我们已经知道的生物大约有200万种,这些形形色色的生物物种就构成了生物物种的多样性。 生物多样性是生物及其与环境形成的生态复合体以及与此相关的各种生态过程的总和,由遗传(基因)多样性,物种多样性和生态系统多样性等部分组成。遗传(基因)多样性是指生物体内决定性状的遗传因子及其组合的多样性。物种多样性是生物多样性在物种上的表现形式,可分为区域物种多样性和群落物种(生态)多样性。生态系统多样性是指生物圈内生境、生物群落和生态过程的多样性。遗传(基因)多样性和物种多样性是生物多样性研究的基础。 二、生物多样性对人类的影响 生物多样性提供了地球生命的基础,包括人类生存的基础。除了经济价值和生态价值外,还具有重大的社会价值,如艺术价值、美学价值、文化价值、科学价值、旅游价值等。许多动物、植物和微生物物种的价值现在还不清楚,如果这些物种遭到破坏,后代人就不再有机会利用,因此必须注意保护,才能使社会实现可持续发展。 人类也是生物多样性的一部分。没有生物多样性,人类不能在地球上生存。

各种生物多样性指数计算

Shannon-wie ner 指数 Simpson 指数计算公式 生物多样性测定主要有三个空间尺度:a多样性,B多样性,丫多样性。a 多样性主要关注局域均匀生境下的物种数目,因此也被称为生境内的多样性 (within-habitat diversity )。B多样性指沿环境梯度不同生境群落之间物种 组成的的相异性或物种沿环境梯度的更替速率也被称为生境间的多样性 (between-habitat diversity ),控制B多样性的主要生态因子有土壤、地 貌及干扰等。丫多样性描述区域或大陆尺度的多样性,是指区域或大陆尺度的物种数量,也被称为区域多样性(regional diversity )。控制丫多样性的生态过程主要为水热动态,气候和物种形成及演化的历史。 a多样性 a. Gleason (1922 )指数 D=S/I nA 式中A为单位面积,S为群落中的物种数目。 b. Margalef (1951 ,1957,1958 )指数 D= (S-1 ) /lnN 式中S为群落中的总数目,N为观察到的个体总数。 (2)Simpson 指数 D=1- 2Pi2

式中Pi种的个体数占群落中总个体数的比例。 (3)种间相遇机率(PIE)指数 D=N (N-1 ) / 2Ni (Ni-1 ) 式中Ni为种i的个体数,N为所在群落的所有物种的个体数之和。 (4)Shannon-wiener 指数 H' = - 2PilnPi 式中Pi=Ni/N 。 (5)Pielou均匀度指数 E=H/Hmax 式中H为实际观察的物种多样性指数,Hmax为最大的物种多样性指数, Hmax=LnS (S为群落中的总物种数) (6 )举例说明 例如,设有A,B,C,三个群落,各有两个物种组成,其中各种个体数组成如下: 请计算它的物种多样性指数。 Simps on 指数: Dc=1- 2Pi2=1-艺(Ni/N ) 2=1-[(99/100)2+(1/100)2]=0.0198

各种生物多样性指数计算

Shannon-wiener指数, Simpson指数计算公式 生物多样性测定主要有三个空间尺度:α多样性,β多样性,γ多样性。α多样性主要关注局域均匀生境下的物种数目,因此也被称为生境的多样性(within-habitat diversity)。β多样性指沿环境梯度不同生境群落之间物种组成的的相异性或物种沿环境梯度的更替速率也被称为生境间的多样性(between-habitat diversity),控制β多样性的主要生态因子有土壤、地貌及干扰等。γ多样性描述区域或大陆尺度的多样性,是指区域或大陆尺度的物种数量,也被称为区域多样性(regional diversity)。控制γ多样性的生态过程主要为水热动态,气候和物种形成及演化的历史。 α多样性 a. Gleason(1922)指数 D=S/lnA 式中A为单位面积,S为群落中的物种数目。 b. Margalef(1951,1957,1958)指数 D=(S-1)/lnN 式中S为群落中的总数目,N为观察到的个体总数。 (2)Simpson指数 D=1-ΣPi2 式中Pi种的个体数占群落中总个体数的比例。 (3)种间相遇机率(PIE)指数

请计算它的物种多样性指数。 Simpson指数: Dc=1-ΣPi2=1-Σ(Ni/N)2=1-[(99/100)2+(1/100)2]=0.0198 DB=1-[(50/100)2+(50/100)2]=0.5000 Shannon-wiener指数:

HC=-ΣNi/N ln Ni/N i=-(0.99×ln0.99+0.01×ln0.01)=0. HB=-(0.50×ln0.50+0.50×ln0.50)=0.69 Pielou均匀度指数: Hmax=lnS=ln2=0.69 EA= H/Hmax=-[(1.0×ln1.0)+0]/0.69=0 EB=-(0.50×ln0.50+0.50×ln0.50)/0.69=0.69/0.69=1 EC=0./0.69=0. 从上面的计算可以看出,群落的物种多样性指数与以下两个因素有关: ①种类数目,即丰富度;②种类中个体分配上的均匀性 β多样性 β多样性可以定义为沿着环境梯度的变化物种替代的程度。不同群落或某环境梯度上不同点之间的共有种越少,β多样性越大。精确地测定β多样性具有重要的意义。这是因为:①它可以指示生境被物种隔离的程度;②β多样性的测定值可以用来比较不同地段的生境多样性;③β多样性与α多样性一起构成了总体多样性或一定地段的生物异质性。 (1)Whittaker指数(βw) βw=S/mα-1 式中:S为所研究系统中记录的物种总数;mα为各样方或样本的平均物种数。(2)Cody指数(βc) βc=[g(H)+l(H)]/2 式中:g(H)是沿生境梯度H增加的物种数目;l(H)是沿生境梯度H失去的物种数目,即在上一个梯度中存在而在下一个梯度中没有的物种数目。

论述生物多样性及多样性指数

论述生物多样性及多样性指数 摘要:讨论生物多样性重点针对生物多样性与人类生存环境的关系来体现生多样性的意义,以及现在对于生物多样性的保护。 关键词:生物多样性意义保护指数 生物多样性是指一定范围内多种多样活的有机体(动物、植物、微生物) 有规律地结合所构成稳定的生态综合体。这种多样包括动物、植物、微生物的物种多样性,物种的遗传与变异的多样性及生态系统的多样性。其中,物种的多样性是生物多样性的关键,它既体现了生物之间及环境之间的复杂关系,又体现了生物资源的丰富性。我们目前已经知道大约有200万种生物,这些形形色色的生物物种就构成了生物物种的多样性。生物多样性是生物及其与环境形成的生态复合体以及与此相关的各种生态过程的总和,由遗传(基因)多样性,物种多样性和生态系统多样性等部分组成。遗传(基因)多样性是指生物体内决定性状的遗传因子及其组合的多样性。物种多样性是生物多样性在物种上的表现形式,可分为区域物种多样性和群落物种(生态)多样性。生态系统多样性是指生物圈内生境、生物群落和生态过程的多样性。遗传(基因)多样性和物种多样性是生物多样性研究的基础,生态系统多样性是生物多样性研究的重点。 生物多样性可以帮助清洁我们呼吸的空气以及喝的水。生物多样性提供我们食物。生物多样性为建造我们的屋子提供原材料。生物多样性还带给我们自然世界的无尽美丽。夸张吗?一点也不。正是生物多样性使这个星球上的生命得以持续。通过森林吸收二氧化碳这种温室气体,我们才得以呼吸空气。通过土壤、微生物和气象变化移除了水中的污物我们才得以喝到水。全部的物种--植物、动物、微生物,组成了生命。 所有的生命都离不开水,所以,生物多样性也与水资源有关。因为我们只有有限的水--不是说我们将来什么时候都能从火星上运一船下来--生物多样性、特殊的不同生态系统净化我们的水:森林、土壤和细菌、小溪与云彩一起运作--实际上是过滤,才使我们重新喝到水。没有生物多样性,这个世界就会变得贫瘠与中毒--更像火星-- 然后我们就不能再生存在地球上了。 由于生态与我们息息相关,所以我们要保护生态系统多样性,具体的措施有 措施1→就地保护: 为了保护生物多样性,把包含保护对象在内的一定面积的陆地或水体划分出来,进行保护和管理。比如,建立自然保护区实行就地保护。自然保护区是有代表性的自然系统、珍稀濒危野生动植物种的天然分布区,包括自然遗迹、陆地、陆地

最新物种多样性指数计算参考

物种多样性计算方法参考 二. 以种的数目和全部种的个体总数 表示的多样性 在多数生态学著作中,称这类种多样性指数为种丰富度指数。这类指数不需要考虑研究面积的大小,而是以一个群落中的种数和个体总数的关系为基础的。 (6.6) 2.Odum 指数(1960) N S D ln = (6.7) 6. Menhinick 指数(1946) N S N S D 或ln ln = (6.8) 4.Monk 指数(1967) N S D = (6.9) 式中S 为物种数,N 为全部种的个体总数。这类丰富度指数以Margalef 指数和Menhinnick 指数最为常用。 三. 种的数目、全部种的个体总数及每个种的个体数 综合表示的多样性 这些指数综合反映了群落中种的丰富程度和均匀程度,是应用较普遍的一类多样性指数。这里N i 是i 的个体数,其他字母同前。 1. Simpson 指数 (1949) =1, 2, …,S ) (6.10) 或者

(6.11) 2. 修正的Simpson 指数(Romme 1982) ?? ? ???-=∑=S i i N N D 12)(ln (6.12) 3. Pielou 指数(1969) (i =1,2,…S ) (6.13) 可见(6.11)和(6.13)式关系极为密切,有人将以上三式通称为Simpson 指 数。 4.McIntosh 指数(1967) N N N N D S i i -- = ∑=1 2 (i =1,2,…,S ) (6.14) 5.Hurlbert(1971)指数 ??? ? ??????? ??--=∑=S i i N N N N D 1211 (i =1,2,…,S ) (6.15) 或者 ?? ? ??--??? ??=∑=11N N N N N D i S i i 这一指数也叫种间机遇率。 6.Hill(1973)多样性数(Hill’s dirversity numbe r ) A S i i A N N D -=∑?? ? ??= 11 1 (6.16) Hill 多样性数的第0,1,2阶(在(6.16)式中A =0, 1, 2)正好符合三个重要的多样性测定值,即: 数0:D 0=S (6.17) S 为种的总数,该数等同于(6.31)式

森林生态学基础—森林群落结构特征

第5章森林群落结构特征 5.1 森林群落的概念 5.1.1 群落 在自然界中,任何植物都极少单独生长,几乎都是聚集成群的。植物群居在一起,在植物和植物之间就发生了复杂的相互关系。就高等植物而言,这种关系包括生存空间、各植物体对光能的利用、对水分和矿质养分的利用,植物分泌物的彼此影响,以及植物之间附生、寄生和共生的关系等。另一方面,群居在一起的植物受环境影响的同时,又作为一个整体影响一定范围的外界环境,并在其内部形成特有的“植物环境”(包括小气候和土壤);这种“改变了的”环境又反过来影响植物的本身。因此,群居在一起的植物并非杂乱无章的堆积,而是一个有规律的组合,在环境相似的不同地段有规律的重复出现。 早在1807年,近代植物地理学的创始人Alexander Humboldt 就注意到自然界植物的这种分布规律。1890年,丹麦植物学家E.Warming在《植物生态学》一书中指出:一定的种所组成的天然群聚即群落;形成群落的种实行同样的生活方式,对环境有大致相同的要求,或一个种依赖于另一个种而生存,种与种之间关系密切。1908年俄国的地植物学家 B.H.Cykaчёв将植物群落定义为:“不同植物有机体的特定结合,在这种结合下,存在植物之间以及植物与环境之间的相互影响”。 综上所述,植物群落可定义为:在特定空间或特定生境下,具有一定的植物种类组成及其与环境之间彼此影响、相互作用,具有一定的外貌及结构,包括形态结构与营养结构,并具特定的功能的植物集合体。森林群落就是具有一定树木种类组成的植物群落。 5.1.2 群落的性质 虽然生态学家们认识到生物都以多种形式的有机集群存在,但对于群落单元的划分及群落的客观实体性仍有争议。生态学界存在两派截然对立的观点,即机体论观点和个体论观点。 5.1.2.1机体论观点 机体论观点认为群落是客观存在的实体,是有组织的生物系统,像有机体和种群那样。 机体论观点把群落和有机体相比拟,强调组成群落的各个种是高度结合的,相互依存的,一个种群从其先锋阶段到稳定的顶级阶段和有机体一样有其出生、生长、成熟、繁殖和死亡,群落的这种生活史虽然是复杂的,但却是一个真实的过程。强调群落在很多方面表现为整体性,认为群落是自然单位,它们和有机体一样具有明确的边界,而且与其他群落是间断的、可分的,它们独立存在,可重复出现。

高中生物群落的结构特征和群落演替(含答案)

第32讲群落的结构特征和群落演替 基础巩固 1.2013·皖北模拟种群和群落是生态学研究的重要生命系统。下列关于种群、群落的说法正确的是() A.种群和群落都具有典型的垂直分层现象 B.种群密度能够准备地反映种群数量变化的趋势 C.群落中两个物种之间可能存在一种以上的种间关系 D.自然状态下的群落演替是有方向的,最终形成稳定性高的森林群落 2.以下关于群落演替的叙述,错误的是() A.生态系统的恢复力稳定性越小,群落演替越慢 B.在群落演替过程中群落的物种组成不断发生变化 C.生物与非生物因素之间复杂的相互作用可导致群落演替 D.初生演替形成的群落内无竞争现象,次生演替形成的群落内竞争明显 3.下列调查活动或实验中,实验所得到数值与实际数值相比,可能偏大的是() A.标志重捕法调查池塘中鲤鱼的种群密度时,部分鲤鱼身上的标志物脱落 B.探究培养液中酵母菌种群数量时,从试管上层吸出培养液计数且没有振荡试管 C.调查土壤小动物丰富度时,用诱虫器采集小动物没有打开电灯 D.样方法调查草地中的蒲公英时,不统计正好在样方线上的个体 4.早在宋代,我国就产生了四大家鱼混养技术。图K32-1表示某池塘中四大家鱼及其食物的分布,相关分析正确的是() 图K32-1 A.四大家鱼在池塘中的分布具有垂直分层现象 B.此图表明四种鱼类在能量流动上的关系为:鲢鱼→鳙鱼→青鱼 C.鲢鱼和鳙鱼、青鱼和草鱼在混合放养时都是共生关系 D.若浮游动物大量死亡,鲢鱼数量将以“J”型曲线持续增长 能力提升 5.2012·南昌调研将两种仓库害虫拟谷盗和锯谷盗共同饲养于面粉中,二者数量变化如图 K32-2所示。据实验判断,正确的是() 图K32-2 A.拟谷盗种群增长率的最大值出现在第50天以后 B.拟谷盗种群似“S”型增长,其增长受种内斗争因素制约 C.拟谷盗种群和锯谷盗种群为竞争关系,竞争程度由强到弱

物种多样性指数计算参考

物种多样性指数计算参考Newly compiled on November 23, 2020

物种多样性计算方法参考 二. 以种的数目和全部种的个体总数表示的多样性 在多数生态学着作中,称这类种多样性指数为种丰富度指数。这类指数不需要考虑研究面积的大小,而是以一个群落中的种数和个体总数的关系为基础的。 指数(1958) () 指数(1960) N S D ln = () 6. Menhinick 指数(1946) N S N S D 或ln ln = () 指数(1967) N S D = () 式中S 为物种数,N 为全部种的个体总数。这类丰富度指数以Margalef 指数和Menhinnick 指数最为常用。 三. 种的数目、全部种的个体总数及每个种的个体数综合表示的多样 性 这些指数综合反映了群落中种的丰富程度和均匀程度,是应用较普遍的一类多样性指数。这里N i 是i 的个体数,其他字母同前。 1. Simpson 指数 (1949) =1, 2, …,S ) 或者

() 2. 修正的Simpson 指数(Romme 1982) ?? ????-=∑=S i i N N D 12)(ln 3. Pielou 指数(1969) (i =1,2,…S ) () 可见()和()式关系极为密切,有人将以上三式通称为Simpson 指数。 4.McIntosh 指数(1967) N N N N D S i i -- =∑=12 (i =1,2,…,S ) 5.Hurlbert(1971)指数 ??? ???????? ??--=∑=S i i N N N N D 1211 (i =1,2,…,S ) () 或者 这一指数也叫种间机遇率。 (1973)多样性数(Hill’s dirversity numbe r ) A S i i A N N D -=∑? ?? ??=111 Hill 多样性数的第0,1,2阶(在()式中A =0, 1, 2)正好符合三个重要的多样性测定值,即: 数0:D 0=S S 为种的总数,该数等同于()式 数1:H e D =1 ()

第三章森林结构特征与生态功能

第三章森林结构特征与生态功能 ?⑴构成森林的植物成分 ?枯立木:林木中常常由于自然枯死或感染病虫害而枯死的林木称为枯立木。 ?森林是以乔木为主的植物群落,除乔木树种外,其他植物成分还很多。 (一)立木层 是所有乔木树种的总称。每一株树木称为立木或林木。立木层中的树种因其经济价值、作用和特点不同,又分为以下几类: ?优势树种又称建群树种。它是群落中数量最多的树种,它决定着群落特点,支配环境。 ?主要树种:又称目的树种。是符合人们经营目的的树种,一般具有最大的经济价值。 主要树种同时又是优势树种,但是有些天然林中,主要树种不一定数量最多;次生林中,往往缺少主要树种。 ?伴生树种:又称辅佐树种。它是陪伴主要树种生长的树种,一般比主要树种耐荫,生长速度同步而终生高度略低。伴生树种的作用主要是促使主要树种干材通直,抑制其萌条和侧枝发育。在防风为主的防守林带中,伴生树种可增加树冠层的厚度和紧密度,提高防护效益。 ?次要树种:又称非目的树种。它是群落中不符合经营目的要求的树种,经济价值低。 木材松软的软杂木多属次要树种。次生林大多由次要树种组成。 ?先锋树种:稳定的森林被破坏后,迹地裸露,小气候剧变,稳定群落中的原主要树种难以更新,而不怕日灼、霜害的喜光树种,适者生存占据了地盘。被誉为先锋树种。 (二)下木层 ?下木即林内的灌木,但其高度一般终生不超过成熟林分平均高的一半(这一点是与幼树区别的重要标志)。 ?下木对防护、更新有重要影响,也具有经营上的意义。 (三) 地被物层 ?死地被物层:指林地上的枯枝落叶层。 ?活地被物层:是林内的草本植物和半灌木、小灌木、苔藓、地衣、真菌等组成的植物层次,居林内最下层,往往又可分两个层次:草本层和苔藓层。 (四)层外植物 ?又称层间植物。是林内没有固定层次的植物成分。如藤本植物、附生植物、寄生植物,以及土壤中的细菌、真菌、藻类等。层外植物往往是湿热气候的标志。层外植物利害具有双重性:有的具有很高的经济价值,有的缠绕在树干上可使林木致死,被称为“绞杀植物”。 1)树种组成 ?林分的树种组成,指乔木树种所占的比例。 ?林分由一个树种组成者,称为纯林;由两个或两个以上的树种组成者,称为混交林。?树种组成,是决定林分价值的重要标志。我国南方气候湿热,多混交林;而高纬度和高海拔地区气候寒冷,树种组成简单。 ?2)林相(林层) ?乔木林冠的层次状况,称为林相。林冠集中在一个层次,称为单层林;林冠分为两层或两层以上的称为复层林;林冠层次不清,上下连接构成垂直郁闭者,称为连层林。 (3)林龄

物种多样性指数计算参考

物种多样性计算方法参考 二. 以种的数目和全部种的个体总数 表示的多样性 在多数生态学著作中,称这类种多样性指数为种丰富度指数。这类指数不需要考虑研究面积的大小,而是以一个群落中的种数和个体总数的关系为基础的。 (6.6) 2.Odum 指数(1960) N S D ln = (6.7) 6. Menhinick 指数(1946) N S N S D 或ln ln = (6.8) 4.Monk 指数(1967) N S D = (6.9) 式中S 为物种数,N 为全部种的个体总数。这类丰富度指数以Margalef 指数和Menhinnick 指数最为常用。 三. 种的数目、全部种的个体总数及每个种的个体数 综合表示的多样性 这些指数综合反映了群落中种的丰富程度和均匀程度,是应用较普遍的一类多样性指数。这里N i 是i 的个体数,其他字母同前。 1. Simpson 指数 (1949) =1, 2, …,S ) (6.10) 或者 (6.11)

2. 修正的Simpson 指数(Romme 1982) ?? ????-=∑=S i i N N D 12)(ln (6.12) 3. Pielou 指数(1969) (i =1,2,…S ) (6.13) 可见(6.11)和(6.13)式关系极为密切,有人将以上三式通称为Simpson 指数。 4.McIntosh 指数(1967) N N N N D S i i -- =∑=12 (i =1,2,…,S ) (6.14) 5.Hurlbert(1971)指数 ? ?????????? ??--=∑=S i i N N N N D 1211 (i =1,2,…,S ) (6.15) 或者 ?? ? ??--??? ??=∑=11N N N N N D i S i i 这一指数也叫种间机遇率。 6.Hill(1973)多样性数(Hill’s dirversity numbe r ) A S i i A N N D -=∑? ?? ??=111 (6.16) Hill 多样性数的第0,1,2阶(在(6.16)式中A =0, 1, 2)正好符合三个重要的多样性测定值,即: 数0:D 0=S (6.17) S 为种的总数,该数等同于(6.31)式 数1:H e D =1 (6.18) H 是信息指数(见下面)

森林生态学基础—种群及其基本特征

第三章种群及其基本特征 种群生态学(population ecology)是研究生物种群与环境之间相互关系的科学。种群不仅是构成物种的基本单位,而且也是构成群落的基本单位。 种群是人类利用与保护或控制生物物种的对象。因此种群生态学与生态环境建设和物种保护有着密切的关系,涉及珍贵、稀有及濒危物种的保护和开发,有害生物的控制。 3.1种群的基本概念 在自然界,生物很少以孤立的个体形式长期存在,它或多或少,直接或间接地依赖别的生物而存在。生物也只有形成一个群体才能繁衍后代。因此个体必须依赖群体而存在,群体则是个体发展的必然结果。 种群(population)是同一物种占有一定空间和一定时间的个体集合群。种群这个术语在生物学科中广泛应用,除生态学外,在进化论、遗传学和生物地理学中也经常使用。 种群虽是由许多个体集合而成,但并不是个体的简单组合。种群具有自己独特的性质、结构,特别是具有自动调节的能力,以适应空间和时间上的变化。因此,种群既反映了构成它的个体的特性,也反映了它构成群落的特性。种群的研究既有助于个体研究的深化,又是群落及生态系统研究的基础。 种群是物种(species)具体的存在单位、繁殖单位和进化单位。一个物种通常可以包括许多种群,不同种群之间存在着明显的地理隔离,长期隔离的结果有可能发展为不同的生态种(ecospecies),甚至产生新的物种。如油松从河南、山东向北分布到辽宁,内蒙,其分布比较广阔,显然不能说它们是一个种群,可能因地理隔离、人为作用、生境分化等影响,在种内形成不同的类群。它们之间在形态上、生理上或生态习性上分别表现出显著的差异。并随着生态环境的长期特化逐渐显现出变异现象。所以,物种的进化是通过种群表现出来,种群亦是物种进化的单位。 事实上,种群的空间界限和时间界限并不是十分明确的,除非种群栖息地具有清楚的边界,如岛屿、湖泊等。因此,种群的空间界限常常由研究者根据调查的目的予以划定。如种群可以抽象地泛指森林中的全部油松林,也可以具体指森林中一小块油松林,生长在不同地段内的同种各个集合体,可以理解为一个种群,也可以理解为彼此独立的种群。这样,种群可以作为抽象的概念在理论上加以应用如种群生态学、种群遗传学理论和种群研究方法,也可以作为具体的研究对象又分为自然种群和实验种群,实验种群指实验室内饲养或培养的一群生物。 种群可以由单体生物(unitary organism)或构件生物(modular organism)组成。在由单体生物组成的种群中,每一个体都是由一个受精卵直接发育而来,个体的形态和发育都可以预测,如哺乳类、鸟类、两栖类和昆虫都是单体生物的例子。相反,由构件生物组成的

物种多样性指数计算参考

物种多样性计算方法参考 二. 以种的数目和全部种的个体总数 表示的多样性 在多数生态学著作中,称这类种多样性指数为种丰富度指数。这类指数不需要考虑研究面积的大小,而是以一个群落中的种数和个体总数的关系为基础的。 1.Margalef 指数(1958) (6.6) 2.Odum 指数(1960) N S D ln = (6.7) 6. Menhinick 指数(1946) N S N S D 或ln ln = (6.8) 4.Monk 指数(1967) N S D =

(6.9) 式中S 为物种数,N 为全部种的个体总数。这类丰富度指数以Margalef 指数和Menhinnick 指数最为常用。 三. 种的数目、全部种的个体总数及每个种的个体数 综合表示的多样性 这些指数综合反映了群落中种的丰富程度和均匀程度,是应用较普遍的一类多样性指数。这里N i 是i 的个体数,其他字母同前。 1. Simpson 指数 (1949) =1, 2, …, S ) (6.10) 或者 (6.11) 2. 修正的Simpson 指数(Romme 1982) ?? ? ???-=∑=S i i N N D 12)(ln

(6.12) 3. Pielou 指数(1969) ( i =1,2,…S ) (6.13) 可见(6.11)和(6.13)式关系极为密切,有人将以上三式通称为Simpson 指数。 4.McIntosh 指数(1967) N N N N D S i i -- =∑=1 2 (i =1,2,…,S ) (6.14) 5.Hurlbert(1971)指数 ? ??? ??????? ??--=∑=S i i N N N N D 1211 (i =1,2,…,S ) (6.15) 或者 这一指数也叫种间机遇率。 6.Hill(1973)多样性数(Hill’s dirversity number )

植物群落的外貌和结构

第一节植物群落的外貌和结构 一、生活型组成特征 人们观察和区别植物群落时,首先关注的是群落中占优势的生活型,正是它赋予该群落一定的外貌形象,如森林、草原、荒漠等。 植物群落生活型的组成特征是当地各类植物与外界环境长期适应的反映。研究表明,一个大地域的典型植被,均有一定的生活型谱(表4-1),而且一定的植被类型,一般都以某一两种生活型为主,各拥有较丰富的植物种类。 表4-1 不同群落类型的生活型谱 热带和亚热带湿润森林均以高位芽植物占优势,如对高位芽植物作进一步划分即可比较出差异。 对每一群落,均可作叶级的分析,并作出叶级谱。不同植被类型的叶级谱都有一定的规律性,即往往以某一叶级占优势,并以此与其他类型相区别(表4-2)。叶面积的大小,与气候带有某种相关性。在热带地区,大叶的比例最高,随着逐渐离开赤道,叶面积较小的类型亦渐增多,而大叶的比例逐渐减少。 表4-2 不同群落类型叶级的比较 表4-3 贝加尔针茅草原生物学类群与生态类群综合分析表 (据内蒙古植被,1985,简化) 对生活型与生态类群组成的综合分析,能够更好地反映群落与所处环境的关系。对贝加尔针茅(Stipa baicalensis)草原作此类分析(内蒙古植被,1985)可显示出它的群落重要属性,即中旱生和旱中生的杂类草(双子叶植物)占有很大比重,也表明它的所在地环境并非十分干旱。 以上只涉及生活型内所含种数的多少,进一步分析还需考虑它们在群落中的各种数量特征,才能判别其所起的作用。

二、植物群落的空间结构和植物环境 群落中的各种植物,在群落内占据一定的生存空间,而全部植物(按所属生活型)的分布状况,构成了植物群落垂直的和水平的结构,并将原有生境改变为特殊的群落内部环境(植物环境)。 (一)垂直结构 大多数的群落都有高度上的分化或成层现象,这是群落中各植物间及植物和环境间相互关系的特殊形式。无论是木本群落或是草本群落,都可看到垂直分化。 在森林群落内,不同种类植物的植冠(叶层)分布在不同的或是相同的高度范围内,它们在群落内沿着垂直高度的梯度及光照强度的梯度,占有不同的位置。根据它们垂直高度,可划分出一定的层次。在森林中,一般划分出乔木层,林下的灌木层、草本层以及地被层(贴地的苔藓地衣)。这种层的分化是群落对环境条件适应的一种表现。然而在自然界,情况并不是那样简单,就乔木层而言,也不是所有乔木都长到一个几乎接近的高度。在热带雨林里,乔木层的垂直高度,可以达到30—40m或更高,一般可分出三个亚层,但是由于乔木层组成复杂,高矮参差不齐,三亚层的界限并不是一般目测能分辨出来的。还有不少灌木也能发育成幼树状态,因而往往与小乔木交错生长在近似的高度内,这样就会产生乔木亚层和灌木层的重叠。 除上述基本层次外,藤本植物和附生、寄生植物,攀援或附着在不同植物的不同高度,往往在整个群落的垂直高度内都有分布,因而并不形成一个层次。这类植物称之为层间植物。层间植物种类和数量的多少,是和热量、温度的大小密切有关的。例如在我国的海南岛和滇南的森林中,藤本植物种类繁多,生长奇特,它们的枝叶花果常伸到高达20—30m的林冠层中,下部的藤茎又粗又壮,在这种森林里几乎没有一株树木可幸免于它们的干扰。 群落特别是森林群落的分层现象与光照强度密切相关。一个群落中的光照强度,总是随着高度的下降而逐渐减弱,这主要是部分光被上层的有机体所吸收或反射。形成林冠最上层的树木是受到全光照照射的,上层树冠的枝叶可以吸收和散射一半以上的光能。在乔木的下层,是利用残余光的小树。下层的灌木层,大约利用全光照的10%,而草本层仅利用了1—5%的全光照,以维持本身的生长,最后是得到极微弱光照的苔藓地衣层。由此可见,森林的垂

各种生物多样性指数计算

-- Shannon-wiener 指数 ,

Simpson 指数计算公式 生物多样性测定主要有三个空间尺度:α多样性,β多样性,γ多样性。α 多样性主要关注局域均匀生境下的物种数目,因此也被称为生境内的多样性 ( within-habitat diversity )。β多样性指沿环境梯度不同生境群落之间物种 组成的的相异性或物种沿环境梯度的更替速率也被称为生境间的多样性 (between-habitat diversity ),控制β多样性的主要生态因子有土壤、地貌及干扰等。 γ多样性描述区域或大陆尺度的多样性,是指区域或大陆尺度的物 种数量,也被称为区域多样性( regional diversity )。控制γ多样性的生态过 程主要为水热动态,气候和物种形成及演化的历史。 α多样性 a. Gleason (1922 )指数 D=S/lnA

式中 A 为单位面积, S 为群落中的物种数目。 b. Margalef (1951 ,1957 ,1958 )指数 D= ( S-1 )/lnN 式中 S 为群落中的总数目, N 为观察到的个体总数。 (2) Simpson 指数 D=1- ΣPi2 式中 Pi 种的个体数占群落中总个体数的比例。 ( 3)种间相遇机率( PIE)指数 ---- --

D=N (N-1 ) / ΣNi (Ni-1 ) 式中 Ni 为种 i 的个体数, N 为所在群落的所有物种的个体数之和。

(4) Shannon-wiener指数 H'= - ΣPilnPi 式中 Pi=Ni/N 。 均匀度指数5) Pielou ( E=H/Hmax Hmax 为实际观察的物种多样性指数,为最大的物种多样性指数,式中 H (Hmax=LnS S 为群落中的总物种数) ( 6)举例说明 例如,设有 A,B,C, 三个群落,各有两个物种组成,其中各种个体数组成如下: 物种甲物种乙 100(1.0) A

相关主题
文本预览
相关文档 最新文档