当前位置:文档之家› 关于变频器与直流电阻调速器节电比较资料

关于变频器与直流电阻调速器节电比较资料

关于变频器与直流电阻调速器节电比较资料
关于变频器与直流电阻调速器节电比较资料

关于变频器与直流电阻调速器节电比较资料

以凸轮调速系统)装置为例:

经测其启动电阻为0.74Ω总阻值(这里为了不给凸轮调速系统厂方造成影响就不提厂家名称了)

假设使用2台22kw电机及总功率44kw架线电压250v

∵p =ui

∴i=44÷250

I=176A

那么电机在运行,欠压,过载或启动时启动电阻功率是p=ui=176*0.74=22.922kw那么电阻电阻所消耗的能量。和转子线圈所消耗的电能即为无用功既浪费的电能,

∵P启/(P启+P电机)=22.922/(22.922+44)=0.34=34%

既有34%的能量被做了无用功,若算上电机转子线圈做的无用功,那它实际大于34%了所以直流电阻调速器费电大于34%,变频器没有启动电阻是否也这样费电呢?因为变频器有了欠压,过载保护,启动是又没有电阻再加上减速时会发电可以供给电机一部分能量,而直流电机没有这部分保护,减速又不能发电,等缺点,所以使用变频器是省电可观的。我们可以进行下一步的计算,还是用同样功率的电机同样的架线电压计算如下:

假设在理想状态下,变频器输入电压250v要达到44kw的功率电流为176A根据能量守恒,则输出侧也为44kw因电压关系电机选用170v三项交流电机44kw

∵p=ui

∴i=p/u=44/170=258A

又因为变频器工作在开关状态所以258*250V=64.5KW用1-电机44KW/64.5KW=1-0.68=0.32%即当电机达到44KW时只用了68%的能量,节省了32%的能量,若把电机的过载及变频器输入有电解滤波提升直流电压的功率因数,变频器有提高电机功率因数的功能,减速可以发电的特性和它在低速时恒转距超过额定值时是恒功率的特点等等因素都考虑进去他的节电效率远超过35%所以选择变频器还是接电可观的。这是保守的算法如果用开关状态下的电机总功率去除以架线总功率44KW即特理想状态下,再用1-64.5/44=0.47再除去功率因数等等因素还是大于35%,如果我们按每天工作18小时那将是节电277.2kw .尊敬的用户那你自己算算一年下来节电是多么可观的

阿!!!!!

变频器制动电阻选配表

制动电阻标称功率 = 制动电阻降额系数×制动期间平均消耗功率×制动使用率% 在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。交流电机变频调速技术日益成熟,交流变频驱动调速平稳,调速范围宽,对机械冲击低,交流电机维护量低,交流变频调速已取代直流调速,完全能够满足拉坯辊速度控制的需要。 4、5号连铸机的拉矫机为五辊双机架三驱动,上拉坯辊、下拉坯辊、矫直辊由三台同型号电机共同驱动,完成引锭杆的上下传送运行和连铸坯牵引,三台电机必须保持同步,与一般的同步要求不同的是要保证三个辊面的线速度相同,而不是三台电机的转速相同,以避免出现负载分配不均引起母线过压、欠压、过载故障。

三台变频器接受相同的速度指令,按照同一频率运行,但由于三辊处于一个半径8m的圆弧段的不同位置上,若要保持三个辊面的线速度相同,则三台电机的转速实际应有轻微差别,加上三台电机的参数不可能完全相同,这就造成了三台电机同步的困难。如果打开母线调节功能,虽然可以在一定程度上避免由于不同步造成的母线电压升高,但会造成电机转速的不稳定,从而使拉速值波动,进一步影响到结晶器钢水液面和二冷配水的稳定,甚至有造成事故的危险。为此,我们利用变频器内置的PI控制功能,使三台电机构成主从驱动系统,即以上拉坯电机作为主驱动电机,工作在速度调节方式,下拉坯电机和矫直电机作为从动电机,工作在带有速度修正的速度调节方式下,通过比较主从电机的力矩电流产生偏差信号,从而修正从动电机的速度。变频器间的力矩电流信号传送可以通过变频器内置的模拟量输入、输出通道来实现,无需另外添加硬件。这种方法构成的主从驱动系统,结构简单,完全利用变频器内置功能实现,可以连续自动完成速度修正,应用在多辊传动的拉矫机上效果非常理想。 拉矫机和结晶器振动装置采用变频器调速系统,拉矫机变频器的启动、停止以及调速由PLC 发送给拉矫机变频器,拉矫机的实际速度FM经光电隔离后再反馈给PLC,然后由PLC传送给相应仪表显示实际值。结晶器振动采用同调方式,即振动频率随拉速变化而变化,即根据下面的公式,来控制结晶器振动频率f: 计算出振动频率f由PLC发送给结晶器振动变频器,使结晶器的振动适应于拉速变化,系统框图如图所示。 结晶器 2008-11-25 19:43 在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。 结晶器包括: 直型结晶器、 弧形结晶器curved mold:用于弧型和超低头型(椭圆型)连铸机上。 组合式结晶器composite mold:由四块壁板组成,每块壁板又由一块铜板和一块钢(铁)板用螺栓连接而成。 多级结晶器multi stage mold 调宽结晶器adjustable mold:宽度可调的结晶器,一般只用于板坯连铸。 结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。结晶器的振动频率要求准确,并根据拉坯速度自动调整,在高振频时,由于电机负载率上升,转差率增加,导致振动频率有所降低,而为了保证振动频率的精确,需要打开变频器的转差补偿控制,在负载增加时,使变频器自动增加输出频率以提供在没有速度降低情况下所需要的电机转差率,补偿量正比于负载的增加量,并在整个调速范围内都起作用。 另外,结晶器的振动是由电机带动偏心机构旋转来实现的,因此表现为输出电流及母线电压呈现周期性震荡,在振动频率较高时有引起母线过电压故障的可能,通过允许变频器的母线调节功能,使变频器会基于直流母线电压自动调整输出频率,监测到母线电压瞬时升高时变频器会适当增加输出频率以减小引起母线电压升高的再生能量,这样做降低了出现变频

变频器节能计算

变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。 变频节能 什么是变频器 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 PWM和PAM的不同点是什么 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 电压型与电流型有什么不同 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 为什么变频器的电压与电流成比例的改变 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

变频器的制动电阻作用

在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。 因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。

最新变频器节电率的计算整理

几种典型负载的节电率计算方法 (1)各种风机、泵类因为P∝n的三次方,节电效果显著,应首先应用变频器,具体值见表1。表1 应用变频器节电效果 计算时可用

式中P%——实际消耗功率百分值; s——实际转速百分值; K——系数,K=0.0001。 节电率N%=1-P% 举例,转速n为90%时,相应频率值为45Hz,则P%=0.0001×(90)3=73%。所以N%=1 -73%=27%。一般风机、泵类节电率在30%以上。 (2)空压机、挤出机、搅拌机因为P∝n,所以节电率与允许减速范围成正比,N%=n%。 (3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率也大些,功率波动负载如图所示。

(4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载PH,一定压力后自动卸载,电动机空载Po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。经实际运行,约有15%~20%的节电率。而且t2

(5)间歇负载如高位水箱、水池、水塔等。工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。间歇工作负载的功率变化情况(Po=0)如图所示。

(6)人为的负载转移来实现节电这种情况往往发生在中央空调系统的冷却泵、冷冻泵或其他同类地方。平常开一台泵,电动机 处于满负载或超负载,而且压力、流量也无富余度,使用变频器后没办法实现节电。但各用泵较多,一般是1:1(五星级宾馆大都如此),这时只有采用人为的负载转移方法来实现节电,见表2。

制动电阻的选择和计算

1 引言 目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。台达变频器属于不可控整流电压源型的变频器,其制动方式属于能耗制动和直流制动。能耗制动是台达变频器让生产机械在运动过程中快速地减速或停车的主要形式;直流制动则在电机运转准备时刻输出一直流电流产生转矩迫使电机停止,以得到平稳的启动特性,或者当变频器停止时刻输出一直流电流产生转矩迫使电机停止,以确保电机已准确停车。在使用台达变频器的变频调速系统中,减速的方法就是通过逐步降低给定频率来实现的。在频率下降过程中,电动机将处于再生制动状态(发电机状态),使得电动机的转速迅速地随频率的下降而下降。在制动过程中,泵生电压的产生会导致直流母线上的电压升高,此时变频器会控制刹车单元通过刹车电阻把升高的电压以热能的方式消耗掉。为了使得系统平稳降速,需要设置适当的减速时间,同时选择合适的制动电阻和制动单元才能满足需要。目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。本文所介绍的计算方法仅仅是供参考,具体的情况要根据每一个现场的使用情况来进行分析计算。 2 制动电阻的介绍 制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。 3 制动电阻的阻值和功率计算 3.1刹车使用率ED% 制动使用率ED%,也就是台达说明书中的刹车使用率ED%。刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。(图1) 图1刹车使用率ED%定义 现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。 3.2 制动单元动作电压准位 当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。台达制动电压准位如表1所示。

变频器节能效率计算

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: n= 60f p(1?s) 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。 1.1变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz。电机定子绕组内部感应电动势为 U1≈E1=4.44f1Nk1?1 式中E1-定子绕组感应电动势,V; ?1-气隙磁通,Wb; N-定子每相绕组匝数; f1-基波绕组系数。 在变频调速时,如果只降低定子频率f1,而定子每相电压保持不变,则必然会造成?1增大。由于电机制造时,为提高效率减少损耗,通常在U1=U n,f1=f n时,电动机主磁路接近饱和,增大?1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。

若在降低频率的同时降低电压使E 1f 1?保持不变则可保持?1不变从而避免了主磁路过饱和 现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 T =m 1pf 12π(r 2s +sx 22r 2)(E 1f 1 )2 式中T -电动机转矩,N.m ; m 1—电源极对数; p —磁极对数; s —转差率; r 2—转子电阻; x 2—转子电抗; 由于转差率s 较小,(r 2s ?)2?x 22则有 T ≈m 1pf 12πr 2s (E 1f 1)2 =kf 1s 其中k =m 1p 2πr 2(E 1f 1)2 由此可知:若频率f 1保持不变则T ∝s ;若转矩T 不变则s ∝1f 1?; 电动机临界转差率s m ≈r 2x 2=r 2 2πf 1L 2=C f 1 其中C =r 22πL 2 电动机最大转矩T m =m 1pf 1 4π12πf 1L 2(E 1f 1)2=常数 最大转速降?n m =s m n 1=C f 160f 1 p =60p =常数 由此可知:保持E 1f 1=?常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。因此不同频率的各条机械特性曲线是平行的,硬度相同。 1.2风机、泵负载特性 以风机、泵类为代表的二次方减转矩负载即转矩与转速平方成正比。如图所示,在低转速下负载转矩非常小。 风机、水泵的负载特性如下 n 1n 2?=Q 1Q 2? (n 1n 2?)2=H 1H 2?=T 1T 2? (n 1n 2?)3=P 1P 2? 式中Q 1Q 2?—风量、流量,m 3s ?; H 1H 2?—风压,Pa ;

变频器制动电阻的作用

变频器制动电阻的作用 当变频器带动的电机或其他感性负载在停机的时候,一般都是采用能耗制动的方式来实现的,就是把停止后电机的动能和线圈里面的磁能都通过一个别的耗能元件消耗掉,从而实现快速停车。当供电停止后,变频器的逆变电路就反向导通,把这些剩余电能反馈到变频器的直流母线上来,直流母线上的电压会因此而升高,当升高到一定值的时候,变频器的制动电阻就投入运行,使这部分电能通过电阻发热的方式消耗掉,同时维持直流母线上的电压为一个正常值。 我现在用的是一个mm440的变频器,外界了一个制动电阻,我不知道设置那个参数可以切换到制动电阻制动,即制动电阻起作用!问题补充:我是想知道设置那个参数,可以让我的变频器在需要时起作用。还是默认的参数就可以啊? 要想使制动电阻工作,要满足以下几个条件:1、直流制动没有使能。P1230=0默认,P1233=0默认。2、复合制动没有使能。P1236=0默认。3、动力制动必须使能。也就是P1237>0。例如P1237=4(50%) 4、不使用最大直流电压控制器,P1240=0或2。主要是减速出现过压,首先最大电压控制器工作,制动电阻还没到门限,不会工作。通过以上设置,(如果你是380V 设定)制动电阻在默认直流电压达到或超过605V时动作。 变频器带负载直接断电对变频器有什么不良影响吗?这样的话是不是制动电阻就不起作用了。 原则上是没有影响的。但如果频繁的上电,电容的充电电阻就会频繁的受到冲击,网侧整流如果结构是带晶闸管软上电的问题就不大了。但不管什么结构,上电的冲击都是有的(主回路,控制回路等)。 第二个问题,有点复杂,要定量分析。有的变频器是有网侧电源判断电路的,当网侧电源断电后,变频器会开始自由停车(或并且给出报警信号)。有的是根据直流总线电压来推断的,控制电压也来自于直流总线,如果网侧断电前变频器已经开始减速停车,且负载有足够的转动惯量,已经开始把能量回馈给变频器,就会在断电后仍然有足够的直流总线电压,控制电源仍然存在,制动回路仍然会工作(适用再生制动,注意,直流制动是没有能力回馈的),把负载的能力回馈到制动电阻上,当回馈的能量不足以保持直流总线电压时,控制回路掉电,变频器进入自由停车状态。也就是说网侧电源掉电后,变频器仍然会保持制动力矩一段

制动电阻选型

制动电阻选型 一、能耗制动的工作方式 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速w1小于转子转速w时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩Te,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能P经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压Ud升高。过高的直流电压将使各部分器件受到损害。 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动(如下图所示)。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。

制动单元V B 制动单元的功能是当直流回路的电压Ud 超过规定的限值时(如660V 或710V ),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路 制动电阻R B 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 二、制动单元与制动电阻的选配 1、估算负载转矩 公式: 根据 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; 要有足够的制动力矩才能产生需要的制动效果,制动力矩太小,变频器仍然会过电压跳闸。制动力矩越大,制动能力越强,制动性能约好。但是制动力矩要求越大,设备投资也会越大。 制动力矩精确计算困难,一般进行估算就能满足要求。 (1)按100%制动力矩设计,可以满足90%以上的负载。 (2)对电梯,提升机,吊车,按100%。 (3)开卷和卷起设备,按120%。 (4)离心机100%。 (5)需要急速停车的大惯性负载,可能需要120%的制动力矩。 普通惯性负载80%。 (6)在极端的情况下,制动力矩可以设计为150%,此时对制动单元和制动电阻都必 须仔细合算,因为此时设备可能工作在极限状态,计算错误可能导致损坏变频器 本身。 (7)超过150%的力矩是没有必要的,因为超过了这个数值,变频器本身也到了极限, 没有增大的余地了。 d T J dt Ω

变频器调速节能的计算方法

变频器调速节能的计算方法 一﹑概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。 在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 对风机、泵类,采用挡板调节流量对应电机输入功率PL与流量Q的关系的三次方成正比,即,再与采用挡板调节流量对应电机输入功率PL相减后再除以节省的功率与系统调速前后的速差成正比,速差越大,节能越显著。 恒转矩负载变频调速一般都用于满足工艺需要的调速,不用变频调速就得采用其他方式调速,如调压调速﹑电磁调速﹑绕线式电机转子串电阻调速等。由于这些调速是耗能的低效调速方式,使用高效调速方式的变频调速后,可节省因调速消耗的转差功率,节能率也是很可观的。 3、电磁调速系统 电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。转差离合器的本身的损耗是由主动部分的风阻?磨擦损耗及从动部分的机械磨擦损所产生的。如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入?输出功率可由下式计算: 电动机轴输出功率式中:T2—转差离合器的输出转矩 n2 –-转差离合器的输出轴转速 电动机的输出功率,即为转差离合器的输入功率。对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不

ABB 800系列变频器制动电阻选用

ABB 800系列变频器制动电阻的选定 1、制动电阻的必要性 如应用中减速时及下降时所产生的再生能量过大,则有变频器内部的主电路电压上升导致损坏的可能。 因为通常变频器中内置有过电压保护功能,检测出主电路过电压(OV)后则停止,不会造成损坏。但是,因在检测出异常后电机 会停止,所以就难于进行稳定的持续运行。 有必要应用制动电阻器/制动电阻器单元/制动单元,将再生能量释放到变频器外部。 (1)再生能量 连接在电机上的负载,在旋转时有动能、在高位置时有势能。电机减速、或负载减小时,该能量会返回到变频器。这种现象称为再生,该能量即称为再生能量。 (2)制动电阻的避免方法 避免制动电阻连接的方法有以下的方法。因为避免方法必定会增加减速时间,请研究确认即使减速时间延长也没有问题。 ·减速时,防止失速功能生效(出货时的设定中,已设为有效)(为防止主电路过电压的发生,自动地增加减速时间)。 ·将减速时间设定得更长。(每单位时间的再生能量减少)。 ·选择自由旋转停止。(再生能量不会返回到变频器)。 2、制动电阻的简单选定 根据平常的动作模式中的再生能量产生的时间比率进行简单设定的方法。请按照下述的动作形式计算使用率。

(1)使用率3%ED以下的情况 请选定制动电阻器。与变频器容量相对应的制动电阻器的一览表记载在使用说明书·产品样本中。请根据所使用的变频器连接相应的制动电阻器。(如变频器的容量变大,则可在变频器的散热风扇上安装制动电阻器)。 (2)使用率10%ED以下的情况 请选定制动电阻器。与变频器容量相对应的制动电阻器的一览表记载在使用说明书·产品样本中,请根据所使用的变频器相应的制动电阻器单元。 3、制动电阻的简易选定 用前页的制动电阻的简易选定方法中,超过使用率10%ED时,或者需要非常大的制动转矩时,请按下述的选定方法先计算再生能 量再进行选定。 (1)必要的制动电阻值的计算 注意:制动转矩计算,请根据变频器容量的选定中规定的电机容量的选定进行计算。 (2)平均再生能量的计算 ·再生能量在电机旋转方向与转矩方向相反时产生。1个周期的再生能量按以下公式进行计算。

制动单元正确选型和制动电阻计算公式

制动单元正确选型和制动电阻计算公式制动单元正确选型和制动电阻 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。 制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速)在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C

变频器制动电阻的确定

变频器制动电阻的确定 0 引言 在通用变频器、异步电动机和机械负载所组成的变频调速传动系统中,当电动机减速或所传动的位能负载下放时,异步电动机将处于再生发电制动状态。传动系统中所储存的机械能经异步电动机转换成电能,通过逆变器的续流二极管整流后回馈到直流侧,致使直流侧储能电容器的电压上升。如果电动机的制动并不快,电容器的电压升高就不十分明显。相反,如果电动机制动较快时,电容器的电压会上升很高,过高的电压会使变频器中的“制动过电压保护”动作,甚至造成变频器损坏。 目前,在变频调速系统中,电动机的快速制动或准确停车,一般采用动力制动和再生制动。对于动力制动方式,系统所需的制动转矩在电动机额定转矩的20%以下且制动并不快时,则不需要外接制动电阻,仅电动机内部的有功损耗,就可以使直流侧电压限制在过电压保护的动作值以下。反之,则需要选择制动电阻来耗散电动机再生的这部分能量。 1 变频器动力制动原理 1.1 变频器电压检测及驱动电路 为了实现电气制动,变频器的直流侧必须设置电压检测电路,检测电容器的电压,以实现能耗制动。图1为一种电压检测电路的工作原理图。 电压检测电路主要由电压采样电阻R1、R2、R3,滞环比较器LM399,逻辑转

换器件等组成。电压采样回路直接检测变频器直流侧电容器C 两端的电压,当被检测电压值超过设定的允许值时,滞环比较器翻转,输出端接近0 V,经逻辑转换后,触发制动晶体管V 导通,经过电阻R0释放,使电压下降;反之,当检测电压低于设定值时,滞环比较器翻转回原状态,使V关断。 特别强调的是,滞环比较器上下限值的设定很重要。一般选择原则:上限电压设定为正常直流电压的1.3倍,下限电压应考虑电网正常电压的波动,一般整定为略高于电网电压向上波动的最大值。 1.2 变频器制动单元 如图2 虚线框所示为制动单元PW 的实际电路,包括晶体管V、二极管D1、D2和制动电阻RB。

变频器节能效率计算精编版

变频器节能效率计算公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: 60f n= 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。

变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。电机定子绕组内部感应电动势为 U 1≈U 1=4.44U 1UU 1 1 式中U 1-定子绕组感应电动势,V ; 1-气隙磁通,Wb ; U -定子每相绕组匝数; U 1-基波绕组系数。 在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。 若在降低频率的同时降低电压使U 1U 1?保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 T =U 1UU 12π(U 2U +UU 22U 2)(U 1U 1)2 式中T -电动机转矩,; U 1—电源极对数; U —磁极对数; U —转差率; U 2—转子电阻; U 2—转子电抗;

高压变频器节能计算

摘要:降低厂用电率,降低发电成本,提高上网电能的竞争力,已成为各火电厂努力追求的经济目标。近几年电网的负荷峰谷差越来越大,频繁的调峰任务使部分辅机仍然运行在工频状态下,造成大量电能流失。本文着重介绍了高压变频器的工作原理及实际运行情况的详细节能分析,使我们对其节能效果以及典型风机水泵节能计算有了更进一步认识。因此得出结论高压变频调速技术的日趋成熟,在电力系统中广泛应用,节能效果明显。 关键词:调速高压变频器功率单元IGBT 节电率 一、引言 众所周知,高压电动机的应用极为广泛,它是工矿企业中的主要动力,在冶金、钢铁、化工、电力、水处理等行业的大、中型厂矿中,用于拖动风机、泵类、压缩机及各种大型机械。其消耗的能源占电动机总能耗的70%以上,而且绝大部分都有调速的要求,由于高压电机调速方法落后,浪费大量能源而且机械寿命降低。上世纪90年代,由于变频调速技术在低压电动机应用得非常成功,人们开始研究高压电动机变频技术的应用,设计了高-高电压源型变频技术方案。该方案采用多电平电路型式(CMSL),由若干个低压PWM 变频功率单元,以输出电压串联方式(功率单元为三相输入、单相输出)来实现直接高压输出的方法。经过我厂多方调研、比较,最后选择同利德华福电气技术合作。本文将从HARSVERT-A系列高压变频器的工作原理及实际运行状况两方面分析豫新发电厂引风机、凝结水泵的节能情况。 二、高压变频器的工作原理 (一)变频器的结构:现以6kV五级单元串联多电平的高压变频器为例。 1.系统主回路:部是由十五个相同的功率单元模块构成,每五个模块为一组,分别对应高压回路的三相,单元供电由干式移相变压器进行供电,原理如图1。 图1:变频器的结构 2.功率单元构成:功率单元是一种单相桥式变换器,由输入干式变压器的副边绕组供电。经整流、滤波后由4个IGBT以PWM方法进行控制(如图2所示),产生设定的

制动电阻的选型计算

制动电阻的选型:动作电压710V 1) 电阻功率(千瓦)=电机千瓦数*(10%--50%), 1) 制动电阻值(欧姆) 粗略算法:R=U/2I~U/I 在我国,直流回路电压计算如下:U=380*1.414*1.1V=600V 其中, R:电阻阻值 U:直流母线放电电压, I:电机额定电流 2) 最小容许电阻(欧姆):max(驱动器technical data中要求,放电电压/额定电流), 制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速) 在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C为变频器内部电解电容的容量。这里制动单元动作电压值一般为710V。 C、然后进行制动单元的选择 在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下: 制动电流瞬间值=制动单元直流母线电压值/制动电阻值 D、最后计算制动电阻的标称功率 由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率 = 制动电阻降额系数 X 制动期间平均消耗功率 X 制动使用率% 制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。

变频器制动电阻的选择及安装和配线注意事项

变频器制动电阻的选择及安装和配线注意事项 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动。 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程

变频器节能效率计算完整版

变频器节能效率计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: 60f n= 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。

变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。电机定子绕组内部感应电动势为 U 1≈U 1=4.44U 1UU 1 1 式中U 1-定子绕组感应电动势,V ; 1-气隙磁通,Wb ; U -定子每相绕组匝数; U 1-基波绕组系数。 在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大 1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增 加,功率因素降低。 若在降低频率的同时降低电压使U 1U 1?保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 T =U 1UU 12π(U 2U +UU 22 U 2)(U 1U 1)2 式中T -电动机转矩,; U 1—电源极对数;

变频器电路中的制动电路

变频器电路中的制动控制电路 一、为嘛要采用制动电路? 因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。这是一个电动机将机械势能转变为电能回馈回电网的过程。 此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。尤其在大惯性负载需减速停车的过程中,更是频繁发生。这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。 一例维修实例: 一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。将模块和驱动电路修复后,带7.5kW电机试机,运行正常。即交付用户安装使用了。 运行约一个月时间,用户又因模块炸裂。检查又为两相模块损坏。这下不敢大意了,询问用户又说不大清楚。到用户生产现场,算是弄明白了损坏的原因。原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒内停机。采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。为快速停车,用户将控制参数设置为减速停车,将减速时间设置为30秒。在减速停车过程中,电机的再生电能回馈,使变频器直流回路电压异常升高,有时即跳出过电压故障而停机。用户往往实施故障复位后,又强制开机。正是这种回馈电能,使直流回路电压异常升高,超出了IGBT的安全工作范围,而炸裂了。

相关主题
文本预览
相关文档 最新文档