当前位置:文档之家› DNA甲基化

DNA甲基化

DNA甲基化
DNA甲基化

DNA甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。这些方法概括起来可分为三类:基因组整体水平的甲基化检测、基因特异位点甲基化的检测和新甲基化位点的寻找。

近15年来,人们越来越认识到DNA甲基化研究的重要性,开发出一系列检测DNA的方法。根据研究目的这些方法分为:基因组整体水平的甲基化检测,特异位点甲基化的检测和新甲基化位点的寻找。根据研究所用处理方法不同可以分为:基于PCR的甲基化分析方法;基于限制性内切酶的甲基化分析方法;基于重亚硫酸盐的甲基化分析方法和柱层法等。

DNA甲基化的分析方法很多,可分为总基因组甲基化的检测和单基因序列特异性甲基化分析的研究。总基因组甲基化的检测又分为全基因组序列特异性甲基化分析和基因组非特异性甲基化水平的研究。前者包括甲基化差异性杂交显示(differential methylation hybridization,DMH)、寡核苷酸微阵列法和基因组限制性酶切扫描法(restriction landmarkgenomescanning,RLGS);后者包括3H—SAM掺人后液闪检测法和高压液相色谱法。

对单基因序列特异性甲基化分析包括传统的甲基化敏感的限制性内切酶(methylation sensitive restriction endonucleases,MSREs)分析、比较简洁的甲基化特异性PCR(methylation specific PCR,MSP)、全面反映甲基化情况的亚硫酸氢钠变性后测序(bisulfitegenomic sequencing)、甲基化敏感性单核苷酸引物扩增(methylation sensitive single nucleotide primer extension,Ms—SnuPE)、较新颖的甲基化荧光检测(methylight)、结合亚硫酸氢钠变性的限制性酶分析(combined bisulfite restrictionan alysis,COBRA)、酶的区域性甲基化特异性分析(enzymatic regional methylation assay,ERMA)和变性高压液相色谱法(denaturing high performance liquid chromatography,DHPLC)。

甲基化敏感的单核苷酸的扩增(Ms—SnuPE)

Ms—SnuPE即甲基化特异的单核苷酸扩增,它能对不同甲基化特异位点进行快速定量,是一种快速估计特异性CpG位点甲基化不同情况的定量方法。

先用重亚硫酸盐处理基因组DNA,未甲基化的胞嘧啶全部转化为尿嘧啶,而甲基化的胞嘧啶不变。进行PCR扩增,然后取等量扩增产物置于2管中,分别作为Ms—SnuPE单核苷酸引物延伸的模板。设计用于Ms—SnuPE延伸的引物的3’端紧邻待测碱基。同时于2个反应体系中加入等量的Taq酶、引物、同位素标记的dCTP或dTTP。这样,如果待测位点被甲基化,则同位素标记的dCTP会在反应延伸时连于引物末端;若是未被甲基化,则标记的dTTP参与反应。末端延伸产物经电泳分离和放射活性测定后可得出C/T值,即为甲基化与非甲基化的比值,从而分析得到待测片段中CpG位点甲基化情况。

甲基化敏感限制性内切酶(MSRE)法

methylation sensitive restriction endonuclease,MSRE是一类对其识别位点含有甲基化碱基敏感的限制性内切酶,目前至少已发现320种。此类酶如在其切割位点中含有一个甲基化碱基,则它们中的绝大多数就不能切割DNA。MSRE法是基于甲基化敏感Ⅱ型限制性内切酶不能切割含有一个或多个甲基化切点序列的基本原理。用甲基敏感Ⅱ型内切酶及其同工酶(对甲基化不敏感)切割含有一个或多个甲基化CpG序列的片段,然后用DNA印迹法分析。此法

的最大优点就是无须知道靶DNA一级结构的详细信息,并可提供CpG岛甲基化状态的直接评价,包括取得一些对被检基因甲基化的定量分析信息。但该法除了需要大量的高相对分子质量DNA(≥5ug)外,还只能检测到拷贝数比例大于百分之几的甲基化等位基因,并且仅能提供MSRE识别序列中那些CpG岛甲基化状态的信息。

甲基化荧光PCR检测

甲基化荧光检测(methylight)是利用荧光定量性PCR检测亚硫酸氢钠处理后的序列改变。在TaqManR技术中,可以使用3种不同的单核苷酸(正义引物、反义引物和荧光杂交探针),进行不同序列的检测。与已存在的技术相比,甲基化荧光检测最明显的优点就是能同时对几百甚至几千例样品迅速检测。

高敏感、快速是本方法最显著的特点,它可以在非甲基化等位基因超出10 000倍的情况下精确地检测到甲基化的等位基因并定量,而且可以做多样本、多基因位点的快速分析。此外,该方法具备可重复、所需样本量少、不需要电泳分离的特点,可以为临床标本的分子生物学研究提供可靠的技术支持。缺点是费用高,测定每个位点都要用两端标有荧光素的探针和一对引物,且受较多因素影响。

结合亚硫酸氢钠处理和酶解分析(COBRA)

亚硫酸氢钠处理的DNA扩增后使甲基化的胞嘧啶残基成为胸腺嘧啶,而已经甲基化的胞嘧啶残基仍维持胞嘧啶。这种变化会产生新的酶切位点或保持原有的甲基化依赖位点。PCR 反应的引物中不包含CpG二核苷酸,因此与模板和原来的甲基化位点不会混淆。在此之后,将PCR产物纯化、酶切、聚丙烯酰胺凝胶电泳、电印迹、单核苷酸杂交和磷图像定量。

COBRA是一个测定DNA甲基化敏感的定量方法,在检测完全甲基化和完全不甲基化的样品时最常用。在甲基化变异细胞占少数的混杂的样品中,由于所用链特异性PCR不是特异扩增变异靶序列,故灵敏度较MSP差。

酶的区域性甲基化特异性分析(ERMA)

酶的区域性甲基化分析是一种定量区域性CpG甲基化密度研究方法。基因组DNA在亚硫酸氢钠处理后,感兴趣的区域由包含dam位点的引物扩增。扩增后的PCR产物与14C标记的SAM及dam甲基转移酶温育,作为标准DNA定量的内参照。之后将3H标记的SAM和M.SssI甲基转移酶温育。在每个检测中使用具有确定甲基化位点细胞系DNA的标准混合物,每个样品的3H/14C比值转化为所测序列的甲基化密度百分比。该方法不能确定单独CpG位点的甲基化状况。

亚硫酸氢钠测序法(bisulfite genomic sequencing)

直接测序法是建立在MSP基础上进一步深入研究CpG岛各个位点甲基化情况的方法。重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,行PCR扩增(引物设计时尽量避免有CpG,以免受甲基化因素的影响)所需片段,则尿嘧啶全部转化成胸腺嘧啶。最后,对PCR产物进行测序,并且与未经处理的序列比较,判断是否CpG位点发生甲基化。此方法一种可靠性及精确度很高的方法,能明确目的片段中每一个CpG位点的甲基化状态。在寻找有意义的关键性CpG位点上,有其他方法无法比拟的优点。测序法以CpG岛两侧不含CpG点的一段序列为引物配对区,所以能够同时扩增出甲基化和非甲基化靶序列。它的不足是耗费时间和耗资过多,至少要测序10

2.1 基因组整体水平甲基化分析

2.1.1 高效液相色谱柱(HPLC)及相关方法

HPLC是一种比较传统的方法,能够定量测定基因组整体水平DNA甲基化水平。它由Kuo 等1980年[18]首次报道。过程是将DNA样品先经盐酸或氢氟酸水解成碱基,水解产物通过色谱柱,结果与标准品比较,用紫外光测定吸收峰值及其量,计算5mC/(5mC 5C)的积分面积就得到基因组整体的甲基化水平。这是一种检测DNA甲基化的标准方法。但它需要较精密的仪器。Fraga等2002年[19]运用高效毛细管电泳法(HPCE)处理DNA水解产物,以确定5mC的水平。与HPLC相比,HPCE更加简便、快速、经济。HPLC及HPCE测定基因组整体DNA甲基化水平的敏感性均较高。Oefner等1992年[20]提出变性高效液相色谱法(DHPLC)用于分析单核苷酸和DNA分子。邓大君等2001[21]将其改进与PCR联用建立了一种检测甲基化程度的DHPLC分析方法。将重亚硫酸盐处理后的产物进行差异性扩增,由于原甲基化的在重亚硫酸盐处理时仍被保留为胞嘧啶,因此原甲基化的在PCR扩增时,其变性温度也相应上升,使PCR产物在色谱柱中保留的时间明显延长,这样就可以测定出PCR产物中甲基化的情况。

这种方法的最明显优点是:可用于高通量混合样本检测,能够明确显示目的片段中所有CpG 位点甲基化的情况,但不能对甲基化的CpG位点进行定位。

2.1.2 SssI 甲基转移酶法[22]

SssI甲基转移酶能够催化DNA的CpG位点发生甲基化。3H-S-腺苷甲硫氨酸(3H-SAM)在SssI甲基转移酶催化作用使基因组DNA的CpG位点发生甲基化。通过测定剩余的放射性标记的SAM即可得到原基因组整体甲基化水平,即测到的放射性强度与所测DNA甲基化水平成反比。这种方法的缺点是所使用的SssI甲基转移酶不稳定,致结果不够精确。

2.1.3 免疫化学法[23]

这种方法是基于单克隆抗体能够与5mC发生特异性反应。应用荧光素标记抗体使之与预先已固定在DEAE膜上的样品DNA特异性结合,对DEAE膜上的荧光素进行扫描得到5mC 的水平,其荧光素强度与5mC水平成正比。Oakeley等1997年[23]报道了这种方法。这种方法需要精密的仪器。

2.1.4 氯乙醛法

Oakeley等1999年[24]首先描述了这种使用氯乙醛和荧光标记的方法。首先,将DNA经重亚硫酸盐处理使未甲基化的胞嘧啶全部转变为尿嘧啶,而甲基化的胞嘧啶保持不变(Frommer等1992年)[25],然后经过银或色谱柱去除DNA链上的嘌呤,再将样品与氯乙醛共同孵育,这样5mC就转变为带有强荧光的乙烯胞嘧啶,荧光的强度与原5mC的水平成正比。这种方法可以直接测定基因组整体5mC水平。其优点是所用试剂价格低廉且稳定性好,避免了放射性污染,但缺点是费时费力,而且氯乙醛是一种有毒的物质。

2.2 特异性位点的DNA甲基化的检测

2.2.1 甲基化敏感性限制性内切酶(methylation-sensitive restriction Endonuclease,MS-RE)-PCR/Southern法

这种方法利用甲基化敏感性限制性内切酶对甲基化区的不切割的特性,将DNA消化为不同大小的片段后再进行分析。常使用的甲基化敏感的限制性内切酶有HpaⅡ-MspⅠ(识别序列CCGG)和SmaⅠ-Xmal(CCCGGG)等。由于后者识别的碱基数相对较多,其碱基序列在体内出现的概率相对较低,所以以前者即HpaⅡ-MspⅠ更常用。其中HpaⅡ和MspⅠ均能识别CCGG序列,然而当序列中的胞嘧啶发生甲基化时,HpaⅡ不切割,利用HpaⅡ-MspⅠ的这种属性处理DNA,随后进行Southern或PCR扩增分离产物,明确甲基化状态[12][26]。

这是一种经典的甲基化研究方法,其优点是:相对简单,成本低廉,甲基化位点明确,实验结果易解释;缺点是:1.由于CG不仅仅限于CCGG序列中,因此非该序列中的CG将被忽略;

2.只有检测与转录相关的关键性位点的甲基化状态时,该检测方法的结果才有意义;

3.相对而言,Southern方法较复杂,且需要样本的量大;

4.存在着酶不完全消化引起的假阳性的问题;

5.不适用于混合样本。

2.2.2 直接测序法

直接测序是由Frommer等[25]提出的研究DNA甲基化方法。过程是:重亚硫酸盐使DNA 中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变(见图1),行PCR 扩增所需片段,则尿嘧啶全部转化成胸腺嘧啶,最后,对PCR产物进行测序并且与未经处理的序列比较,判断是否CpG位点发生甲基化。此方法是一种可靠性及精确度很高的方法,能明确目的片段中每一个CpG位点的甲基化状态,但需要大量的克隆测序,过程较为繁琐、昂贵[27]。

图1:重亚硫酸盐处理过程示意图。DNA经重亚硫酸盐处理后,甲基化的胞嘧啶不变,未甲基化的胞嘧啶转变为尿嘧啶

2.2.3 甲基化特异性的PCR(methylation-specific PCR, MS-PCR)

Herman等1996年[28]在使用重亚硫酸盐处理的基础上新建的一种方法。它将DNA先用重亚硫酸盐处理,这样未甲基化的胞嘧啶转变为尿嘧啶,而甲基化的不变,随后行引物特异性的PCR。MS-PCR中设计两对引物,并要求:1.引物末端均设计至检测位点结束;2.两对引物分别只能与重亚硫酸盐处理后的序列互补配对,即一对结合处理后的甲基化DNA链,另一对结合处理后的非甲基化DNA链。检测MSP扩增产物,如果用针对处理后甲基化DNA 链的引物能扩增出片段,则说明该被检测的位点存在甲基化;若用针对处理后的非甲基化DNA链的引物扩增出片段,则说明被检测的位点不存在甲基化(见图2)[26][27]。

图2:甲基特异性的PCR扩增(MS-PCR)示意图。DNA经重亚硫酸盐处理后,以处理后的产物作为模板,加入甲基化特异性的引物(primerⅠ)或非甲基化的引物(primerⅡ),进行特异性的扩增(如图所示),只有结合完全的甲基化或非甲基化特异性引物的片段才能扩增出产物。

这种方法的优点是:1.避免了使用限制性内切酶及其后续相关问题;2.敏感性高;可用于石蜡包埋样本[12];缺点是:1.要预先知道待测片段DNA的序列;2.引物设计至关重要;3.若待测DNA中5-甲基胞嘧啶分布极不均衡,则检测时较为复杂;4.这种方法只能作定性研究,即只能明确是否存在甲基化;若要求定量,则需用其他的方法进行进一步检测;5.存在重亚硫酸盐处理不完全导致的假阳性。

2.2.4 甲基化敏感性单核苷酸引物延伸(methylation-sensitive single nucleotide primer extension,Ms-SnuPE)

Gonzalgo and Jones 1997年提出了结合重亚硫酸盐处理和单核苷酸引物延伸(Kuppuswamy 等1991年提出[29])的Ms-SnuPE方法[30],用于定量检测已知序列中特异位点的甲基化水平。过程是:先将研究序列用重亚硫酸盐处理,未甲基化的胞嘧啶全部转化为尿嘧啶,而甲基化的胞嘧啶不变。进行PCR扩增,然后取等量扩增产物置于2管中,分别作为Ms-SnuPE 单核苷酸引物延伸的模板。设计用于Ms-SnuPE延伸的引物的3’端紧邻待测碱基。同时于2个反应体系中加入等量的Taq酶、引物、同位素标记的dCTP或dTTP。这样,如果待测位点被甲基化,则同位素标记的dCTP会在反应延伸时连于引物末端;若是未被甲基化,则标记的dTTP参与反应。末端延伸产物经电泳分离和放射活性测定后可得出C/T值,即为甲基化与非甲基化的比值,从而分析得到待测片段中CpG位点甲基化情况[5][29](见图3)。同理也可以用dGTP或dA TP。而且,若需研究一条链上不同位点CpG甲基化情况,可通过设计不同的引物在同一反应中完成[12]。

图3: 甲基化敏感性单核苷酸引物延伸(Ms-SnuPE)示意图。DNA经重亚硫酸盐处理后,以PCR扩增后得到产物作为Ms-SnuPE延伸的模板,于反应体系中入设计好的引物和同位素标记的dCTP或dTTP进行甲基化特异的单核苷酸引物延伸,随后,电泳分离、测定同位素放射活性,确定甲基化水平。

这种方法的优点:1.可以了解特异位点甲基化情况且不受内切酶的限制;2.通过设计的不同引物在同一延伸反应情况可以了解不同位点CpG甲基化的状况;3.可以检测出样本序列中分布不均匀的甲基化位点;4.是一种能够用于定量检测甲基化水平的方法;5.仅需少量的DNA样本,可以用于石蜡包埋样本的测定。缺点是:1.实验步骤略复杂,若要检测多个位点时则需设计多个引物[5];2.存在放射性污染及重亚硫酸盐处理不完全的问题。

2.2.5 结合重亚硫酸盐的限制性内切酶法(combined bisulfite restriction analysis,COBRA)Xiong and Peter报道了COBRA[31]甲基化检测法。这种方法对标本DNA行重亚硫酸盐处理及PCR扩增,处理后原甲基化的胞嘧啶被保留,而非甲基化的胞嘧啶变为胸腺嘧啶。随后

(见图4)。用限制性内切酶对转化后PCR产物切割的特性以识别原标本DNA的甲基化状况。

图4:结合重亚硫酸盐的限制性内切酶法(COBRA)示意图。重亚硫酸盐处理DNA后行PCR扩增,用限制性内切酶(BstUI)识别转化后序列中的酶切位点,消化产物电泳分离,与完全非甲基化阴性对照组比较,得出序列中特异位点甲基化水平(图4参考引文[31]并略加修改)。

这种方法的优点有:1.方法相对简单,不需预先知道CpG位点及样本序列;2.可以进行甲基化水平的定量研究;3.需要样本量少,可用于石蜡包埋样本的分析[32]。缺点是:1.只能获得特殊酶切位点甲基化情况,因此检测阴性不能排除样品DNA中存在甲基化的可能[5];2.由于酶和PCR的使用,只能分析一种特定序列[5]。

2.2.6 甲基化敏感性单链构象分析(methylation-specific single-strand conformation analysis,MS-SSCA)

甲基化敏感性单链构象分析(MS-SSCA)又称重亚硫酸盐甲基化-PCR-SSCP(Single-Strand Conformation Polymorphism,SSCP)(BiPS),由Maekawa等1999年[32]报道。方法是:先用重亚硫酸盐处理待测片段,针对非CG二核苷酸区设计引物进行PCR扩增,扩增产物变性后作非变性的聚丙酰胺凝胶电泳,由于DNA电泳时的移动性取决于其二级结构即DNA 的空间构象,而后者又由DNA碱基的序列决定。因此,经处理后变性的单链DNA将停留在聚丙酰胺膜的不同位置上,这样甲基化与非甲基化的就被分离开,随后行单链构象多态性分析加以明确(见图5):

图5:甲基化敏感性单链构象分析(MS-SSCA)示意图。重亚硫酸盐处理DNA后,设计引物(非CG二核苷酸区)对处理后的DNA进行扩增, 产物解链后行聚丙酰胺凝胶电泳,由于甲基化和非甲基化单链DNA形成不同的空间构象,它们在电泳中移动速率不同,故出现在不同位置,从而判定待测片段中甲基化情况。

这种方法的优点是:1.能够方便的应用于任何序列的甲基化状态分析;2.能够对甲基化的等位基因进行半定量;3.可以提示甲基化状态分布的不均匀性;缺点是:1.只有甲基化水平较高的单链才能明显的区分开,而较低水平的则不易分开,有时会因甲基化的CpG位点随机和不均匀分布导致电泳条带出现拥挤、拖尾的现象,故敏感性及准确性略低;2.检测片段不宜过长。

2.2.7 甲基化敏感性变性梯度凝胶电泳(methylation-specific denaturing gradient gel electrophoresis,MS-DGGE)

变性梯度凝胶电泳(DGGE)是一种能够将具有单碱基差别的DNA分离的方法。其原理是:当双链DNA在变性梯度凝胶中进行到与DNA变性温度对应一致的位置时,DNA部分解链(解链区域的长度大小不等),与每一个解链区域相对应的温度称为解链温度(T)。Tm主要由核苷酸的序列决定,这是因为DNA链上相邻碱基间的相互作用对稳定DNA双螺旋起重要作用。因此,很小的变化(如单碱基变化)也会引起DNA片段Tm值的改变。DGGE系统中,DNA片段在变性梯度聚丙烯酰胺凝胶电泳时,由于凝胶中变性剂浓度自上而下呈梯度递增,因此,当DNA片段到达与该区域的T值相当的某一浓度位置时,DNA解链变为分枝状,其移动减慢,停留在凝胶的的某一位置,这样不同的DNA片段就被分离。mAggerholm等1999年[35]将其用于甲基化的检测,先用重亚硫酸盐处理DNA使为甲基化的胞嘧啶转变为尿嘧啶引起点突变,这样再结合使用DGGE,经电泳分离、分析该片段的甲基化状况。

这种方法的优点是:DGGE可以用来检测出除最高温度解链区域以外的所有发生甲基化的DNA片段,需样品量少,能较直观的显示出甲基化情况[36]。缺点是:解链温度和DGGE 的变性浓度梯度需要摸索。

2.2.8 甲基化敏感性解链曲线分析(methylation-specific melting curve analysis,MS-MCA)Worm等[37]2001年报道的MS-MCA是将DNA经重亚硫酸盐处理与Lightcycle联用检测DNA序列甲基化的方法。荧光素标记双链DNA。这种方法根据检测到的荧光度对应的解链温度,判断分析研究序列中甲基化的情况。在Lightcycle过程中,随着温度升高,逐渐达到DNA双链各解链区域的解链温度Tm,DNA呈区域性逐渐解链,一般说来,序列中CG含量越高,对应的解链温度越高。由于非甲基化的胞嘧啶经重亚硫酸盐处理后变为尿嘧啶、PCR后变为胸腺嘧啶,故其所在序列中的CG含量降低,热稳定性降低,解链温度降低。而甲基化的由于其CG含量高,故其解链温度高。所作结果与标准曲线对照,根据这种特性就可以明确研究序列中CpG的分布区及甲基化程度。(见图6、图7)。

图6:甲基化敏感性解链曲线分析(MS-MCA)示意图。完全非甲基化时,解链温度低(如A);完全甲基化时,解链温度高(如B);当等位基因的甲基化的发生集中于一条链或等位基因甲基化嵌合分布时,解链温度改变(如C、D)(图6参考引文[37])。

图7:甲基化程度与解链温度关系示意图。p15Ink4b基因的荧光解链曲线,重亚硫酸盐处理HL-60(曲线a,完全未甲基化的)和MOLT-4(曲线b,完全甲基化的)这两个细胞系及取自慢性髓性白血病病人骨髓细胞中p15Ink4b的基因(其曲线为c和d,示部分甲基化的)。曲线a、b、c、d的解链峰值分别为81.3℃、88.9℃、84.4℃和86.2℃(图7参考引文[37])。这是一种能对甲基化分布不均匀的DNA样本进行半定量分析的方法。缺点是:1. 它不能够精确检测甲基化的具体位点;2.研究序列的长度不宜过长;3. 该法对低水平的DNA甲基化敏感性低[37]。

2.2.9 荧光法(Methylight)

Eads等[38]2000年报道的荧光法利用实时PCR(Real-time PCR)测定特定位点甲基化的情况。其过程如下:先用重亚硫酸盐处理待测DNA片段。设计一个能与待测位点区互补的探针,探针的5'端连接报告荧光,3'端连接淬灭荧光,随后行实时定量PCR。如果探针能够与DNA杂交,则在PCR用引物延伸时,TaqDNA聚合酶5'到3'端的外切酶活性会将探针序列上5'端的报告荧光切下,淬灭荧光不再能对报告荧光进行抑制,这样报告荧光发光,测定每

个循环报告荧光的强度即可得到该位点的甲基化情况及水平;同理,若标记的探针未能与DNA杂交,则引物延伸不能跳过未甲基化位点,报告荧光不被切下,不发光。同样方法,也可对引物进行荧光标记,并通过不同标记的组合,检测多个位点的甲基化水平[39]。

高敏感、快速是本方法最显著的特点,它可以在非甲基化等位基因超出10000倍的情况下精确的检测到甲基化的等位基因并定量,而且可以做多样本、多基因位点的快速分析。此外其具备可重复、所需样本量少、不需要[12]电泳分离的特点。它可以为临床标本的分子生物学研究提供可靠的技术支持。缺点是费用高,测定每个位点都要用两端标有荧光素的探针和一对引物,且受较多因素影响。

2.2.10 DNA微阵列法

Yan等2001年[40]将以分子杂交为基础的微阵列技术应用于DNA甲基化检测中,这种方法是基于杂交的寡核苷酸微阵列,是一种在基因组中寻找新位点的方法。包括用于整个基因组范围内扫描的差异甲基化(DMH)杂交(Huang等1999年[41])和用于检测某个位点的甲基化特异性微阵列MSO(Gitan等2002年[42])。前者类似于mRNA表达谱或cDNA微阵列,是CpG岛微阵列,后者类似于寡核苷酸微阵列,是针对CpG二核苷酸位点的甲基化特异性寡核苷酸微阵列[26]。

MSO要求预先设计一对含有2个不相邻的GC(或AC)的探针,用于识别甲基化和非甲基化的序列,其中含GC的探针(5[42]'---GC---GC---3')识别甲基化序列,含AC的探针(5'---AC---AC---3')识别非甲基化序列,探针的5'端通过Linker固定于玻璃板上。首先对待研究片段用重亚硫酸盐处理,将非甲基化的胞嘧啶变为尿嘧啶,甲基化的不变,再行PCR 扩增,产物的3'端用荧光素标记,移至连有探针的玻璃板上进行杂交,通过检测杂交后产生的荧光强度判断待测序列中甲基化的水平。此方法一定要设立对照。该法可用于多样本、多位点甲基化的检测,样本需要量少,适于临床样本,但存在假阳性问题。

2.2.11 甲基化敏感性斑点分析(methylation sensitive dot blotassay,MS-DBA)

G Clément等2005年[43]报道了一种新的方法,能够定量或半定量分析样本中的甲基化水平。这个方法的过程是:先用重亚硫酸盐处理待测DNA片段,随后以非CG区的引物行PCR扩增,将扩增产物变性后转移到尼龙膜上,用3'端DIG标记的含有2个CG(或TG)的双核苷酸探针与DNA杂交,随后用带有荧光标记的抗DIG抗体与之反应。与双CG的探针获得杂交的标本含有甲基化,而与TG探针杂交的标本未被甲基化。通过比较斑点上荧光的强度测定甲基化水平。

这种方法的优点是快速、简便、易于掌握,可一次检测多种样本,包括石蜡包埋样本。缺点是:1. 检测序列不能过长;2. 若探针错误杂交或重亚硫酸盐处理不完全,则可能出现假阳性或假阴性结果。

2.2.12 甲基化特异性多连接依赖性探针扩(Methylation-Specific multiplex ligation-dependent probe amplification,MS-MLPA)

Anders O.H.等2005年改进MLPA[44]为MS-MLPA[45]用于检测特异位点的甲基化。MS-MLPA中,针对甲基化的和非甲基化的位点分别设计两个探针,每个探针都包括两个寡核苷酸部分,其中短的部分由合成产生,长的部分来源于phageM13的衍生物,后者有一个非杂交填充片段,不同探针其长度不同。探针的两个寡核苷酸杂交序列均与目标序列互补,其末端都连有相同的PCR引物。且要求[45]设计的MS-MLPA的探针要有甲基化敏感的限制性内切酶HhaⅠ(GCGC)或HpaⅡ(CCGG)的识别位点,这样,经探针和目标序列杂交后,降低反应体系温度,并向其中加入连接酶HhaⅠ,若原样本DNA中含有HhaⅠ识别的非甲基化的位点,则非甲基化探针的两个寡核苷酸部分不能连接,而甲基化的探针顺利连接不被切割,在随后的PCR反应中只有两个寡核苷酸部分连接后的探针才能被扩增。最后分析扩增片段,确定待研究位点的甲基化情况(具体过程见图8)。

图8:甲基化特异性多连接依赖性探针扩增(MS-MLPA)示意图。用设计好的甲基化与非甲基化的探针(探针各寡核苷酸部分含有杂交序列,不同探针其填充片段的长短不同)分别与待测DNA杂交,结合上的寡核苷酸探针经连接酶连接,若DNA片段中存在甲基化位点,则带有(HhaⅠ)识别位点的探针不能被切割,同理,若为非甲基化,则DNA片段被HhaⅠ切开,且探针不能被连接,这样,在随后的PCR扩增过程中,只有连接的探针能被扩增,最后对扩增的片段进行分析,得出原DNA中特异位点甲基化的情况(图8参考引文[45])。这种方法的优点是:1.需要样本的数量少,由于探针具有非常短的识别序列,因此MPLA可以用于局部降解的DNA,如从石蜡包埋的DNA样本;2.可用于分析大量混合样本。缺点是探针连接位点受限制性内切酶位点识别的限制,且要考虑到所用酶的反应适宜温度。

2.3甲基化新位点的寻找

随着甲基化研究水平的提高,近年来,提出了以限制性标记基因组扫描(RLGS)为代表的一系列新兴的全基因组甲基化扫描分析的新技术,另如:甲基化敏感的限制性指纹谱技术(methylation-sensitive restriction fingerprinting technique, MSRF)、甲基化间区位点扩增(amplification of inter-methylated sites, AIMS)等,这些新技术的出现为甲基化胚胎发育、肿瘤细胞异常基因印记向更深层次的发展提供了有效方法学工具。简单说来,[46][47][48] 1.RLGS是将稀有切点限制酶(NotⅠ)和二维凝胶电泳相结合,与NotⅠ-Eco RV文库进行对比分析,检测、扫描全基因组甲基化的情况。它的缺点是只能分析基因组中50%左右的CpG岛;2.MSRF用到限制性内切酶,如:MseⅠ、BstUⅠ,并采用10碱基随机引物扩增差异甲基化片段,几乎可以检测全基因组所有CpG岛,但此方法复杂、需要后续鉴定、技术难度高;3.AIMS技术采用甲基化敏感和甲基化不敏感同裂酶(isoschizomer)裂解以及接头(adaptor)引物扩增甲基化间区序列,此方法可通过接头引物控制扩增带的复杂程度,且所得片段在200-2000bp之间,可以直接克隆到载体并测序。优点是简单方便,可以作为全基因组差异印记基因筛选的有效工具。

2.3.1 限制性标记基因组扫描(restriction landmark genomic scanning,RLGS)

Costello等2000年报道的RLGS[46,49]能对整个基因组的甲基化状态进行分析,发现新甲基化基因的方法。这种方法联合使用了限制性内切酶及二维电泳。其过程是:先用甲基化敏感的稀频限制性内切酶NotⅠ消化基因组DNA,甲基化位点保留,标记末端、切割、行一维电泳,随后再用更高频的甲基化不敏感的内切酶切割,行二维电泳,这样甲基化的部分被切割开并在电泳时显带,得到RLGS图谱与正常对照得出缺失条带即为甲基化的可能部位[5]。这种方法可同时分析不同肿瘤中甲基化模式的异同和寻找肿瘤内DNA甲基化的新靶点,由于新发现的甲基化新靶点的作用尚不清楚,因此其需要后续进一步分析确定,此外,RLGS 图谱不能完全确认所缺失的片段是由于甲基化所致还是由于DNA本身缺失所致[5]且结果分析复杂,不易解释。

2.3.2 MBD(Methyl-CpG binding domain column chromatography,甲基化结合区)柱层析法根据MBD蛋白家族和MeCP2的特性,Masahiko Shiraishi等2004年[50]提出了一种新的方法MBD柱层析法,用于筛选和发现基因组中甲基化的情况。并且比较了MBD和重亚硫酸盐基因组测序法,得出:用MBD柱层析法分析得出的甲基化片段均能用重亚硫酸盐测序法证实[50]。

现已较清楚CpG岛的甲基化在基因沉默中起着重要作用,但其过程中的很多具体环节及机

制尚不清楚[51]。如:基因沉默是由启动子区个别位点CpG发生甲基化引起的,还是由全部的CpG发生甲基化而引起的。但研究认为启动子区胞嘧啶甲基化导致基因表达沉默并非是由于甲基基团阻碍了转录因子的结合,而是由于那些能与甲基化区特异性结合的蛋白发挥作用[52,53]而引起的。

已发现一些能与CpG甲基化位点特异性结合的蛋白,一种是MeCP1,它能够与对称性多位点甲基化CpG位点相结合,另一种是MeCP2,不同于MeCP1的是它能够与单甲基化CpG 位点特异结合,且不与半甲基化位点结合。而且报道的MBD1、MBD2、MBD3、MBD4蛋白都与MeCP2有着相同的特性[54,55]。

这种方法是:MBD柱中含有甲基化位点特异性结合蛋白的功能区(Methylation Binding Domain, MBD),能够与甲基化位点特异性结合。该蛋白一端通过连接多个组蛋白与凝胶结合,其另一端的多肽功能区暴露,这样当待测DNA片段通过时,含有甲基化位点的DNA 即与MBD多肽牢固结合。在Masahiko Shiraishi等的研究中还发现,甲基化位点的数目是决定MBD柱结合力的最主要因素,而且,甲基化的密度也对其有重要的影响,也就是说,相同长度的DNA片段中甲基化位点密度越高,其结合力就越强[50]。

这种方法的优点是:1.是一种高通量的检测方法;2.可对未知片段进行初筛,选出的含有甲基化的片段进一步检测以发现新的甲基化位点;3.方法快速、简便。缺点是:1.一些DNA 片段的特殊构型也可与MBD柱相结合,造成MBD非特异性捕获而引起假阳性(如:EcoRⅡ可与MBD结合);2.是一种定性而非定量的方法;3. 由于MBD柱中所含多肽的量不完全相同,因此,使用不同的MBD柱或单个柱经多次使用得到的分离产物之间会存在差异[50]。

2.3.3 联合甲基化敏感性限制性内切酶的MBD(Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes,COMPARE-MS)

Srinivasan Yegnasubramanian 2006年[55]报道了一种新技术COMPARE-MS,该法将MBD柱层析法与MS-RE联用,互补了各自单用的弊处,能够快速、敏感的检测DNA甲基化情况,可用于临床标本检测,作为早期诊断和肿瘤分级的依据[56]。其过程是:用非待测区的内切酶和甲基化敏感的限制性内切酶同时消化DNA片段,随后通过MBD柱捕获,保留了含有甲基化区的片段,最后通过实时PCR扩增定量分析(见图9)。

图9:联合甲基化敏感性限制性内切酶的MBD(COMPARE-MS)示意图。用甲基化以外的位点的内切酶(A酶)与甲基化敏感的内切酶(B酶)联用,则甲基化的DNA链不被切开,非甲基化的切开,再行MBD捕获存在甲基化位点的DNA片段,最后行实时PCR扩增并分析;这就避免了因仅用内切酶(A酶B酶)而不用MBD捕获时由于内切酶消化不完全而引起假阳性的问题,同样避免了单用MBD时由于非特异性捕获而引起的假阳性(图9参考引文[55]并略加修改)。

这种方法联合运用了MBD柱层析法及MS-RE法,这就避免了单用MBD引起的非特异性捕获及MS-RE不完全消化引起的假阳性的问题。因此,在快速、简便检测的同时,亦保证了结果的特异性和敏感性。缺点是:需要使用限制性内切酶,因此不同程度地受到内切酶识别位点的限制。

DNA甲基化和肿瘤的关系

DNA 甲基化与肿瘤 一、DNA甲基化与基因表达 5-甲基胞嘧啶是天然存在的修饰碱基,甲基化的 mCpG ,在DNA 双链中对称出现。哺乳类动物基因组约60 %的表达基因5′端启动子存在未被甲基化的CpG岛,而启动子区域外的CpG岛大都为 mCpG。正常情况下,非活化的X染色体、印迹基因等的启动子区域的CpG岛为甲基化状态,而看家基因的 CpG岛则是去甲基化状态。 DNA 甲基化状态与基因表达呈负相关。其调控作用主要在转录水平抑制基因表达。 DNA甲基化的检测方法 经过亚硫酸盐处理后的DNA中胞嘧啶(C)转变为胸腺嘧啶(T),但是甲基化的中的CpG二核苷酸C 未转变为T,而无甲基化的CpG二核苷酸则发生这种转变,由此可以推断DNA是否发生甲基化。TATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGG CCGCCAGTGTGATGGATATCTGCAGAATTGCCCTTTAGTAT TGTTTGGTGAAATGGTACGTGTTTATAATTTTAGTTATTTAG GAGGTTGAGGTAGGAGGATTTTTTGAGTTTAGGAGTTTAA GTTTAGTTTGGGTAATATAGTTTAGTGGTTATATTAAAAAA AGTAAAATAGTCGGGCGCGGTGGTTTACGTTTGTAATTTTA GTATTTTGGGAGGTCGAGGCGGGTGGATTACGAGGTTAGG AGGTTGAGATTATTTTAAGGGCAAT

DNA 甲基化抑制基因转录的分子机制 ①DNA 双螺旋结构的大沟为DNA 与多种转录因子的作用部位,mCpG的甲基化胞嘧啶突入大沟,抑制转录因子的结合而抑制转录。②mCpG 激活阻遏蛋白因子,如DMAP1、TSG101、 Mi2等,通过阻遏蛋白因子的作用抑制转录。③DNA甲基化与组蛋白乙酰化的研究发现,组蛋白H3、H4 的赖氨酸去乙酰化后带负电荷,与带正电荷的DNA 结合更紧密,不利于转录过程中的聚合物解聚,从而抑制基因转录。甲基化的CpG 结合蛋白(MeCPs) 与DNA 的mCpG结合,并与组氨酸去乙酰化酶(HDAC) 形成复合物共同抑制转录。 二、DNA甲基化与肿瘤 以往的研究认为癌基因激活、抑癌基因失活主要是基因突变、缺失导致的DNA 序列改变。在肿瘤研究中,检测到许多肿瘤的重要基因并未发生突变、缺失,基因表达的异常主要通过DNA 甲基化实现。癌基因的去甲基化和抑癌基因的甲基化状态,可导致癌基因激活、抑癌基因的失活。癌基因的低甲基化和抑癌基因的高甲基化改变是肿瘤细胞的一个重要特征。 DNA 甲基化状态的改变导致基因结构和功能的异常,与肿瘤发生的关系是近年来研究的热点。 DNA甲基化的异常与基因突变、缺失等基因组异常也有密切的关系

DNA甲基化_去甲基化与癌症

收稿日期:2012-10-04 第一作者:周建生(1988-),男,硕士生,E-mail: zhoujiansheng0902@https://www.doczj.com/doc/006577959.html, *通信作者:焦炳华(1962-),男,博士,教授, E-mail: jiaobh@https://www.doczj.com/doc/006577959.html, DNA 甲基化/去甲基化与癌症 周建生,杨生生,缪明永,焦炳华* (第二军医大学基础部生物化学与分子生物学教研室,上海 200433) 摘要:DNA 甲基化是真核细胞基因组中常见的可遗传的表观遗传修饰,在调节细胞增殖、分化、个体发育等方面起重要作用,并且DNA 甲基化水平异常与肿瘤的发生发展密切相关。DNA 甲基化及被动去甲基化主要是在DNA 甲基转移酶家族参与下完成的,而DNA 的主动去甲基化机制尚不是很明确。在肿瘤细胞中DNA 的整体甲基化水平显著降低,但抑癌基因的启动子区域却出现高甲基化。目前尽管有DNA 去甲基化药物用于癌症的临床治疗,但药物特异性较差,因而研究特定基因的主动去甲基化机制有助于研发特异性高的药物用于癌症的治疗。 关键词:DNA 甲基化;DNA 去甲基化;癌症;表观遗传治疗 Relationship between DNA methylation/demethylation and cancer ZHOU Jiansheng, YANG Shengsheng, MIAO Mingyong, JIAO Binghua * (Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, the Second Military Medical University, Shanghai 200433, China) Abstract: DNA methylation, the most common heritable epigenetic marker of eukaryote genome, plays a critical role in cell proliferation, differentiation, and development. Aberrant DNA methylation is correlated with the onset and progression of cancer. It is well accepted that DNA methylation and DNA passive demethylation are mainly catalyzed by the family of DNA methyltransferases. However, the mechanism of DNA active demethylation is unclear. In cancer cells, the global genomic levels of DNA methylation are lower, but the promoter methylation levels of tumor suppressor genes are higher than in normal tissues. Several demethylating agents have been applied for the clinical treatment of cancer, but these agents are lack of specificity for target genes. So studying the mechanism of active demethylation of specific genes avails the research and development of high-specificity agents for the treatment of cancer.Key words: DNA methylation; DNA demethylation; cancer; epigenetic therapy 表观遗传的概念最初是由Conrad Hal Waddington 于1942年提出的,他认为基因型通过一些偶然的、不确定的机制决定了不同的表现型[1];1987年Holliday 将这一表观遗传概念用于DNA 甲基化水平改变引起基因表达活性改变现象[2];现代表观遗传是指在基因的DNA 序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可以遗传的表型。主要的表观遗传标记存在于染色体的不 同水平,包括DNA 和组蛋白修饰、组蛋白多样性、直接结合于DNA 或组蛋白上的染色体非组蛋白修饰、核内RNA(nuclear RNA, nRNA)、染色体高度有序的结构及位置效应等。其中,DNA 甲基化作为一种重要的表观遗传修饰,参与许多生物过程,包括基因转录调控、转座子沉默、基因印记、X 染色体失活及癌症的发生发展等。本文主要综述DNA 甲基化/去甲基化机制及DNA 甲基化/去

DNA甲基化功能汇总

Functions of DNA methylation: islands, start sites, gene bodies and beyond DNA甲基化功能:岛,起始位点,基因体和其他 peter a. jones 摘要 DNA甲基化通常被描述为一个“沉默”的表观遗传标记,的确,5-甲基胞嘧啶的功能最初是在20世纪70年代提出。现在,归功于甲基化绘图的基因组规模的改良,我们可以评估在不同的基因组背景下的DNA甲基化:在基因体上,在调控元件和重复序列上,转录起始位点有或者没有CpG岛。新出现的图片是DNA甲基化功能似乎随背景而改变,DNA甲基化和转录的关系比我们最先认识到的更为微妙。有必要提高我们对DNA甲基化的功能的理解,为了解释这个疾病标记中观察到的变化,比如癌症。 两篇重要的文章在1975年分别表示胞嘧啶残基的甲基化在CpG二核苷酸背景中能作为表观遗传标记。这些文章提出序列可以被重新甲基化,即甲基化通过一种机制的体细胞分裂能够被遗传,包括一种能识别半甲基化CpG回文的酶,甲基基团的存在,可以由DNA结合蛋白和DNA甲基化直接沉默基因解释。虽然这些关键原则中的几个被证明是正确的,解开DNA甲基化与基因沉默的关系已被证明是具有挑战性的。 在CpG序列背景下,在动物身上的大部分工作都集中在5-甲基胞嘧啶(5mC)。据报道,在哺乳动物的其他序列的甲基化广泛分布在植物和一些真菌中。在哺乳动物中,非CpG甲基化的功能目前未知。在这里我主要集中在哺乳动物基因组中的CpG甲基化,包括在其他动物和植物中观察到的差异的讨论。 理解DNA甲基化的功能需要通过基因组考虑甲基化的分布。超过一半的基因脊椎动物的基因组包含短(约1 kb)CpG丰富的区域称为CpG岛(CGIS),其余的基因组因为CpGs而耗尽。当5mC通过自发或酶胸腺嘧啶脱氨基作用被转换成胸腺嘧啶,认为基因组的损失是由于甲基化的序列在种族中的脱氨基;认为CGI存在是因为他们可能是从来没有或只有瞬时甲基化。然而,有很多关于准确定义CGI是什么的讨论,虽然在

DNA甲基化

DNA甲基化概述 在哺乳动物基因组中,甲基化是一种表观遗传机制,包括将甲基转移到胞嘧啶的C5位置形成5-甲基胞嘧啶。DNA甲基化通过招募参与基因抑制的蛋白或通过抑制转录因子与DNA的结合来调节基因表达。在发育过程中,DNA甲基化的模式在基因组中发生变化,这是DNA从头甲基化和去甲基化的动态过程的结果。 DNA甲基化是被一个甲基转移酶家族所催化,转移S腺苷甲硫氨酸(SAM)的一个甲基到第五个碳胞嘧啶残基形成5mc , Dnmt3a和Dnmt3b可以建立一个新的DNA甲基化模式来去修饰DNA,被称为从头甲基化。另一方面,Dnmt1在DNA复制过程中起作用,将亲代DNA链上的甲基化模式复制到新合成的子链上。这三种DNA都广泛参与胚胎的发育。这三种DNA都广泛参与胚胎的发育。当细胞到达终末分化时,Dnmt的表达大大降低。这似乎表明有丝分裂后细胞的DNA甲基化模式是稳定的。 大部分DNA的甲基化发生在鸟嘌呤核苷酸或CpG位点之前的胞嘧啶上。总的来说,哺乳动物基因组中CpG位点的减少可能是由于5 - mc可脱氨成胸腺嘧啶的诱变潜力。剩余的CpG位点分布在整个基因组中,除了CpG岛外,它们都被严重甲基化。DNA甲基化对沉默逆转录病毒分子、调节组织特异性基因表达、基因印记和X染色体失活至关重要。不同基因组区域的DNA甲基化可能根据潜在的遗传序列对基因活动产生不同的影响。 一、DNA甲基化的位置 1.1 基因间区 大约45%的哺乳动物基因组由转座因子和病毒因子组成,这些因子被大量甲基化而沉默。这些元素中的绝大多数是通过DNA甲基化或随着时间的推移由于5mC的破坏而产生的突变而失活的。如果表达,这些元素是潜在的有害的,因为它们的复制和插入可以导致基因损坏和DNA突变。胞内颗粒(IAP)是小鼠基因组中最具侵袭性的逆转录病毒之一。在整个生命过程中,IAP在配子形成、发育和成年阶段都被高度甲基化。甚至在胚胎内部,当基因组其余部分相对低甲基化时,Dnmtl维持对IAP元件的抑制。当Dnmtl被基因突变耗尽,导致广泛的低甲基化时,IAP元素被表达。这表明,在基因间区,DNA甲基化的主要作用之一是抑制潜在有害基因元素的表达。 1.2 CpG岛 CpG岛是大约1000个碱基对长度的DNA延伸,它们的CpG密度比基因组的其他部分高,但通常不会甲基化。大多数基因启动子,大约70%,在CpG岛。特别是,管家基因的启动子常常嵌入到CpG岛。CpG岛,尤其是那些与启动子相关的基因在小鼠和人类之间高度保守。在整个进化过程中,CpG岛屿的位置和保存意味着这些区域具有重要的功能。 CpG岛通过调控染色质结构和转录因子的结合来促进基因表达。DNA有规律地包裹在组蛋白周围,形成被称为核小体的小段。DNA与组蛋白的联系越紧密,对基因表达的宽容程度就越低。CpG岛的一个共同特征是,它们比其他DNA片段包含更少的核团。与CpG 岛相关的少数核小体常含有组蛋白,其修饰涉及增强基因表达。尽管约50%的CpG岛包含已知的转录起始位点,但CpG岛往往缺乏常见的启动子元件,如TATA boxes 。由于许多转录因子结合位点富含GC, CpG岛可能会增强对转录起始位点的结合。CpG岛虽然缺乏共同的启动子元件,但却能增强DNA的可达性,促进转录因子的结合。 CpG岛的甲基化导致了稳定的基因表达沉默。在配子发生和胚胎早期发育期间,CpG 岛经历了差异甲基化。通过CpG岛调控基因表达的甲基化能力对建立很重要。印迹基因仅由两个遗传亲本染色体中的一个表达,它们的表达由遗传亲本决定。除了印迹基因外,CpG

DNA甲基化

DNA甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。这些方法概括起来可分为三类:基因组整体水平的甲基化检测、基因特异位点甲基化的检测和新甲基化位点的寻找。 近15年来,人们越来越认识到DNA甲基化研究的重要性,开发出一系列检测DNA的方法。根据研究目的这些方法分为:基因组整体水平的甲基化检测,特异位点甲基化的检测和新甲基化位点的寻找。根据研究所用处理方法不同可以分为:基于PCR的甲基化分析方法;基于限制性内切酶的甲基化分析方法;基于重亚硫酸盐的甲基化分析方法和柱层法等。 DNA甲基化的分析方法很多,可分为总基因组甲基化的检测和单基因序列特异性甲基化分析的研究。总基因组甲基化的检测又分为全基因组序列特异性甲基化分析和基因组非特异性甲基化水平的研究。前者包括甲基化差异性杂交显示(differential methylation hybridization,DMH)、寡核苷酸微阵列法和基因组限制性酶切扫描法(restriction landmarkgenomescanning,RLGS);后者包括3H—SAM掺人后液闪检测法和高压液相色谱法。 对单基因序列特异性甲基化分析包括传统的甲基化敏感的限制性内切酶(methylation sensitive restriction endonucleases,MSREs)分析、比较简洁的甲基化特异性PCR(methylation specific PCR,MSP)、全面反映甲基化情况的亚硫酸氢钠变性后测序(bisulfitegenomic sequencing)、甲基化敏感性单核苷酸引物扩增(methylation sensitive single nucleotide primer extension,Ms—SnuPE)、较新颖的甲基化荧光检测(methylight)、结合亚硫酸氢钠变性的限制性酶分析(combined bisulfite restrictionan alysis,COBRA)、酶的区域性甲基化特异性分析(enzymatic regional methylation assay,ERMA)和变性高压液相色谱法(denaturing high performance liquid chromatography,DHPLC)。 甲基化敏感的单核苷酸的扩增(Ms—SnuPE) Ms—SnuPE即甲基化特异的单核苷酸扩增,它能对不同甲基化特异位点进行快速定量,是一种快速估计特异性CpG位点甲基化不同情况的定量方法。 先用重亚硫酸盐处理基因组DNA,未甲基化的胞嘧啶全部转化为尿嘧啶,而甲基化的胞嘧啶不变。进行PCR扩增,然后取等量扩增产物置于2管中,分别作为Ms—SnuPE单核苷酸引物延伸的模板。设计用于Ms—SnuPE延伸的引物的3’端紧邻待测碱基。同时于2个反应体系中加入等量的Taq酶、引物、同位素标记的dCTP或dTTP。这样,如果待测位点被甲基化,则同位素标记的dCTP会在反应延伸时连于引物末端;若是未被甲基化,则标记的dTTP参与反应。末端延伸产物经电泳分离和放射活性测定后可得出C/T值,即为甲基化与非甲基化的比值,从而分析得到待测片段中CpG位点甲基化情况。 甲基化敏感限制性内切酶(MSRE)法 methylation sensitive restriction endonuclease,MSRE是一类对其识别位点含有甲基化碱基敏感的限制性内切酶,目前至少已发现320种。此类酶如在其切割位点中含有一个甲基化碱基,则它们中的绝大多数就不能切割DNA。MSRE法是基于甲基化敏感Ⅱ型限制性内切酶不能切割含有一个或多个甲基化切点序列的基本原理。用甲基敏感Ⅱ型内切酶及其同工酶(对甲基化不敏感)切割含有一个或多个甲基化CpG序列的片段,然后用DNA印迹法分析。此法

DNA甲基化实验操作原理及方法-Hxg

DNA 甲基化重亚硫酸氢盐修饰法(DNA METHYLATION BISULFITE MODIFICATION) 实验操作原理及方法 一、实验目的: 通过本实验,可以检测特定DNA序列的甲基化状态。 二、实验原理: DNA 甲基化是指由S-腺苷甲硫氨酸(SAM)提供甲基基团,在DNA 甲基转移酶(DNA methyltransferases,DNMTs)的作用下,将CpG 二核苷酸的胞嘧啶(C)甲基化为5-甲基化胞嘧啶(5-m C)的一种化学反应。DNA 甲基化是调节基因转录表达的一种重要的表观遗传的修饰方式。 DNA 甲基化主要在转录水平抑制基因的表达。DNA 甲基化引起基因转录抑制的机制可能主要有以下3 种:(1)DNA甲基化直接干扰特异性转录因子与各基因启动子中识别位置的结合。(2)序列特异性的甲基化DNA 结合蛋白与启动子区甲基化CpG 岛结合,募集一些蛋白,形成转录抑制复合物,阻止转录因子与启动子区靶序列的结合,从而影响基因的转录。(3)DNA 甲基化通过改变染色质结构,抑制基因表达。 重亚硫酸氢盐修饰法检测DNA甲基化的基本原理是基于DNA变性后用重亚硫酸氢盐处理,可将未甲基化胞嘧啶修饰成尿嘧啶。此反应的步骤是:1、在C-6位点磺化胞嘧啶残基;2、在C-4处水解去氨基来产生尿嘧啶磺酸盐;3、在碱性条件下去硫酸化。在这个过程中,5-甲基胞嘧啶由于甲基化基团干扰了重亚硫酸氢盐进入到C-6位点而保持着未反应的状态。在重亚硫酸氢盐处理后,使用针对每个修饰后DNA链的引物进行PCR反应。在这个PCR产物中,每5-甲基胞嘧啶显示为胞嘧啶,而由未甲基化胞嘧啶转变成的尿嘧啶则在扩增过程中被胸腺嘧啶所取代。 BSP(bisulfate sequencing PCR) :重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,进行PCR扩增。最后,对PCR产物进行测序,并且与未经处理的序列比较,判断是否CpG位点发生甲基化。

DNA甲基化的总结

DNA甲基化是指在DNA甲基转移酶(DNMTs)的催化下,将甲基基团转移到胞嘧啶碱基上的一种修饰方式。它主要发生在富含双核苷酸CpG岛的区域,在人类基因组中有近5万个CpG岛[5]。正常情况下CpG岛是以非甲基化形式(活跃形式)存在的,DNA甲基化可导致基因表达沉默。DNMTs的活性异常与疾病有密切的关系,例如位于染色体上的DNMT3B基因突变可导致ICF综合征。有报道[6]表明,重度女性侵袭性牙周炎的发生与2条X染色体上TMP1基因去甲基化比例增高有关。DNMT基因的过量表达与精神分裂症和情绪障碍等精神疾病的发生也密切相关。风湿性疾病等自身免疫性疾病特别是系统性红斑狼疮(SLE)与DNA甲基化之间关系已经确定[7],在SLE病人的T细胞发现DNMTs活性降低导致的异常低甲基化。启动子区的CpG岛过度甲基化使抑癌基因沉默,基因组总体甲基化水平降低导致一些在正常情况下受到抑制的基因如癌基因被激活[8],都会导致细胞癌变。 甲基化作用是转录水平上表达调控的基本方式之一。由于宿主细胞基因组DNA中不 同位点的甲基化程度存在某种平衡,并形成一定的空间结构特点。一旦转基因的整合破坏了这种平衡及空间特征,破坏后的结构便成为宿主基因组防御系统识别的信号,使新整合的DNA 序列发生不同程度的甲基化,甲基化基因序列则通过抑制甲基化DNA结合蛋白(MeCP2)的结合而抑制转录的顺利进行Ⅲo。在拟南芥中发现了DNA甲基化可以导致基因沉默汹埘]。在基因沉默过程中,外源或内源性信号引起部分DNA序列中CpG的甲基化,甲基化CpG结合域蛋白2(MeCP2)结合到甲基化的胞嘧啶上聚集HDACs使组蛋白去乙酰化,该蛋白与去乙酰化的组蛋白通过聚集更多的DNA 甲基转移酶来加强沉默信号,从而引起基因沉默H?。 ?。DNA甲基化对染色质结构和基因表达的作用很可能是通过一组蛋白介导的,这些蛋白可能含有共同的高度保守的甲基化的CpG结合结构域(MBD)L45 J。DNA甲基化在基因印记、x染色体失活、某些疾病的发生发展中发挥重要作用。其直接作用机制可能是CpG岛甲基化干扰了一些转录因子(transcription factor,TF)与基因调控区的结合,使甲基从DNA分子大沟中突出,从而阻止转录 因子与基因相互作用。间接机制可能是由于甲基化DNA与甲基化DNA结合蛋白结合或DNA甲基化改变染色质结构,这2种情况都间接阻碍TF与DNA结合从而抑制转录m1。DNA甲基化一般是通过转录抑制机制来调节特定基因的,具体的机制可能有:5一MeC伸入DNA双螺旋大沟,影响转录因子的结合;序列特异的甲基化DNA结合蛋白(MDBP一1,MDBP一2)与甲基化的启动子序列特异性结合而抑制转录因子与靶序列的结合;甲基化CpG结合蛋白(MeCPl,MeCP2)与甲基化的二核苷酸CpG结合,发挥类似转录抑制蛋白的作用H“。一般DNA甲基化会通过干扰转录因子与识别位点结合和招募组蛋白乙酰转移酶(histon acefltransfeI"SeS,HATs)、组蛋白去乙酰化酶(histone deacetylases,HDACs)形成辅助阻遏复合体,使基因沉默而抑制其表达,而去甲基化则使沉默的基因重新激活Ⅲ卜 DNA甲基化尤其是基因启动子区CpG岛的高甲基化,会导致基因表达的下降或沉默。甲基化抑制基因的表达目前认为要有两个方面,一方面甲基化引起的基因结构改变可直接阻碍一些转录因子与其结合位的结合;另一方面可能与一些甲基化

DNA甲基化研究综述

DNA甲基化研究综述 The summarize of the research on DNA methylation 郭文媛 (生物技术 1353227) 摘要:DNA 甲基化是真核生物表观遗传学中一种重要的基因表达调控方式,是一种酶催化的修饰过程。其是在DNA 甲基转移酶催化下,将甲基基团转移到胞嘧啶的5 位碳原子上,使之转变成5-甲基胞嘧啶的化学修饰过程。在人类和其他哺乳动物中,此修饰过程通常发生在5'-CpG-'二核苷酸的胞嘧啶上。大量相关研究表明,DNA 甲基化与人类疾病密切相关。 Abstract:DNA methylation is an important epigenetic regulation of gene expression in eukaryotes.It is a kind of enzyme catalysis modification process: refers to the chemical modification process of DNA methyltransferase catalysis,the transfer of methyl groups onto cytosine carbon atom 5,making them into 5-methyl cytosine.In humans and other mammals,the modification process usually occurs in 5'CpG -'dinucleotide cytosine.A large number of relevant studies have shown that DNA methylation is closely related to human diseases. 关键词: DNA 甲基化; 甲基转移酶;表观遗传学; CpG 岛; Dnmt1; Dnmt3a; Dnmt3b; 基因沉默; DNA甲基化结合蛋白; 人类表观基因组计划 Key words:DNA methylation; Methyltransferase; Epigenetics; CpG island; Dnmt1; Dnmt3a; Dnmt3b ; Gene Silencing ;MBD; human epigenomeproject 表观遗传学研究的是不改变DNA 的一级结构而改变表型的一种基因表达调控机制,主要包括DNA 甲基化、组蛋白修饰、染色体重构、RNA 干扰等。 DNA甲基化是重要的表观遗传修饰之一,在大多数真核生物中广泛存在。DNA 甲基化水平受到环境、疾病、年龄和性别等因素的影响,处于动态的变化过程中。不同的细胞、组织或个体之间,甚至同一细胞或个体的不同发育时期,其DNA 甲基化状态和程度都可能存有差异。 2003 年10 月,人类表观基因组计划委员会正式宣布投资和启动人类表观基因组计划( human epigenomeproject,HEP) 。HEP 的主要目标是研究人类所有基因在主要组织以及200 多种细胞中正常和疾病状态下的甲基化模式,并在基因组水平绘制不同组织正常和疾病状态时的甲基化变异位点图谱[4],本文结合2013年至今DNA甲基化研究文献,综述了DNA甲基化分布特点和与疾病关系等方面的研究情况。 1.DNA甲基化 1.1DNA甲基化与DNA去甲基化 DNA 甲基化是表观遗传( Epigenetic) 的一种重要表现方式,指在DNA 甲基转移酶( DNA methyltransferase,DMT) 的催化下,以s -腺苷甲硫氨酸( SAM) 为甲基供体,将甲基转移到特定碱基上的过程。 DNA 去甲基化也被称为DNA 甲基化丢失(lossof DNA methylation), 即甲基基团从胞嘧 啶上消失的过程。包含主动去甲基化与被动去甲基化2 种模式。 1.2DNA甲基化分布 DNA 甲基化在生物体内的分布并不是随机的,而是呈现一定的规律性。

DNA甲基化原理

DNA甲基化 甲基化检测服务-亚硫酸氢钠处理后测序法(bisulfite genomic sequencing PCR, BSP)是利用未甲基化的胞嘧啶可以被亚硫酸氢钠发生脱氨基变为尿嘧啶的原理,用两一特异性引物扩增后测序。测序法克服了只能针对单个位点检测,并且这些位点必须是限制性内切酶识别位点的缺点,可以对任何基因序列的甲基化状态进行检测。 甲基特异性的PCR扩增(MS-PCR)示意图 DNA甲基化(英语:DNA methylation) DNA甲基化是一种表观遗传修饰,它是由DNA甲基转移酶(DNA methyl-transferase, DNMT)催化S-腺苷甲硫氨酸(S-adenosylmethionine, SAM)作为甲基供体,将胞嘧啶转变为5-甲基胞嘧啶(mC)的一种反应,在真核生物DNA中,5-甲基胞嘧啶是唯一存在的化学性修饰碱基。CG二核苷酸是最主要的甲基化位点,它在基因组中呈不均匀分布,存在高甲基化、低甲基化和非甲基化的区域,在哺乳动物中mC约占C总量的2-7%。DNA甲基化是表观遗传修饰的主要方式,能在不改变DNA序列的前提下,改变遗传表现。为外遗传编码(epigenetic code)的一部分,是一种外遗传机制。DNA甲基化过程会使甲基添加到DNA分子上,例如在胞嘧啶环的5'碳上:这种5'方向的DNA甲基化方式可见於所有脊椎动物。在人类细胞内,大约有1%的DNA碱基受到了甲基化。在成熟体细胞组织中,DNA甲基化一般发生於CpG双核苷酸(CpG dinucleotide)部位;而非CpG甲基化则於胚胎干细胞中较为常见。植物体内胞嘧啶的甲基化则可分为对称的CpG(或CpNpG),或是不对称的CpNpNp形式(C与G是碱基;p是磷酸根;N指的是任意的核苷酸)。特定胞嘧碇受甲基化的情形,可利用亚硫酸盐定序(bisulfite sequencing)方式测定。DNA甲基化可能使基因沉默化,进而使其失去功能。此外,也有一些生物体内不存在DNA甲基化作用。

DNA甲基化详解

提到遗传,我们都已经习惯于这样的概念,即基因组的编码信息存在于ACGT 这四种碱基的排列顺序中。然而,诸如胞嘧啶的甲基化修饰及其分布,组蛋白的乙酰化等,同样影响着表型。这就构成了表观遗传学(epigenetics)的主要研究内容。其实,早在1942年,C.H.Waddinton就提出了表观遗传学的概念,他指出,表观遗传与遗传相对,主要研究基因型和表型的关系。而现在,对于表观遗传学,比较统一的认识是,其研究在没有细胞核DNA序列改变的情况时,基因功能的可逆的可遗传的改变。也就是说,在不改变基因组序列的前提下,通过DNA和组蛋白的修饰等来调控基因表达,其中又以DNA甲基化(DNA methylation)最为常见,成为表观遗传学的重要组成部分。随着人类基因组计划的开展,科学家们开始在基因组水平来研究表观遗传学,逐步形成表观基因组学(epigenomics)。表观基因组学就是要在整个基因组水平来研究表观遗传过程以及与这些过程密切相关的特定基因组区域的识别与鉴定。2000年10月,人类表观基因组协会(Human Epigenome Consortium)由欧盟赞助,启动了旨在于人类6号染色体MHC区域首先做出DNA的甲基化图谱的先导计划(Pilot Project)。该计划顺利完成,引导启动了2003年的人类表观基因组计划(Human Epigenome Project,HEP)。2005年,美国国家卫生院(NIH)下属的国立癌症研究所启动了癌症基因组先导计划。2006年,该所与国立人类基因组研究所一起共同启动癌症基因组计划(Cancer Genome Project)。表观基因组学和DNA甲基化与癌症的研究成为新的热点。本文将简要介绍DNA甲基化与CpG岛,癌症与DNA甲基化,和DNA甲基化的重要检测方法。DNA甲基化与CpG岛:在人类表观遗传学研究中,最常见的就是CpG二核苷酸中胞嘧啶的甲基化修饰。其主要过程是,在CpG甲基化结合蛋白(Methyl-CpG Binding Proteins,MBDs) 和DNA甲基化转移酶(DNA methyltransferases, DNMTs)的作用下,使CpG二核苷酸5’端的胞嘧啶转变成为5’甲基胞嘧啶。在正常人类的DNA中,约有3-6%的胞嘧啶被甲基化。在哺乳动物中,约有50,000,000个CpG二核苷酸,其中70%的被甲基化。而那些可被甲基化的CpG 二核苷酸并非随机的分布于基因组序列中,相反,在基因组的某些区域中,通常是基因的启动子区域,5’端非翻译区和第一个外显子区,CpG 序列密度非常高,超过均值5倍以上,成为鸟嘌呤和胞嘧啶的富集区,称之为CpG岛(CpG Islands, CGIs)。CpG岛的概念最早由Adrian Bird提出,他称之为

表观遗传学 DNA主动去甲基化的Science之路

表观遗传学 DNA主动去甲基化的Science之路 (中国科学院上海生命科学研究院生物化学与细胞生物学研究所,上海 200031) 5-甲基胞嘧啶(5-methylcytosine, 5mC)被认为是哺乳动物基因组中除腺嘌呤(adenine)、胸腺嘧啶(thymine)、胞嘧啶(cytosine)及鸟嘌呤(guanine)之外的第五种碱基。它与染色质的另外一种重要组分组蛋白及其翻译后修饰的组合决定了特定基因组区域染色质的结构及基因转录活性,从而形成了一层叠加于碱基序列上的表观遗传信息。胞嘧啶甲基化,也称为DNA甲基化,参与了诸多生物学过程,包括基因印迹、X染色体的失活、基因组稳定性的维持、转座子及逆转录转座子的沉默及组织特异性基因的沉默等[1-2]。 在哺乳动物的个体发育中,DNA甲基化谱式主要经历了两次大规模的重编程过程,一次发生在从受精至着床的早期胚胎发育时期,另一次发生在配子发生过程中[3-4]。这两次重编程都涉及了基因组范围的主动去甲基化反应(global demethylation)。相对于基因组范围内的大规模主动去甲基化,在体细胞中会发生局部的、高度位点特异性的主动去甲基化[5-6]。DNA的去甲基化与DNA甲基化这两个过程相互平衡,维持了DNA甲基化谱式的稳定。任何一方的失调都会导致DNA甲基化谱式的紊乱,进而引起多种神经退行性疾病、免疫系统疾病以及癌症[7-8]。特别是两次基因组范围的主动去甲基化事件对于生命的起始以及生命的传承具有非常重要的意义。 DNA甲基化是由DNA甲基转移酶(DNA methyl-transferase)催化完成,那DNA去甲基化是如何完成的呢?也存在类似于DNA甲基转移酶的DNA去甲基化酶(DNA demethylase),抑或是其他的机制呢?就此,著名的华人生物学家、美国科学院院士朱健康教授在一篇综述中提出以下几种DNA去甲基化的可能方式(图1) [5]。(1)存在特异性识别并切除5mC的糖苷酶(glycosylase),切除5mC产生AP 位点(apurinic/apyrimidinic site),进而启动碱基切除修复途径(base excision repair, BER),用没有修饰的胞嘧啶取代原有的甲基胞嘧啶,最终完成DNA的去甲基化。(2)存在特异性识别5mC的脱氨酶(deaminase),通过脱氨作用将5mC转变成胸腺嘧啶,形成G/T错配。进而由识别G/T错配的糖苷酶,如TDG、MBD4等,启动BER途径,完成DNA的去甲基化。(3)通过核苷酸切除修复途径(nucleotide excision repair, NER)切除含有5mC的一段DNA,并用含有未修饰胞嘧啶的同样序列进行替换,进而完成DNA的去甲基化。(4)通过氧化作用将甲基基团氧化成羧基基团,再通过脱羧作用完成DNA去甲基化。 (5)通过水解作用直接将甲基基团去掉。朱健康教授实验室发现在拟南芥中存在着一种由DNA 糖苷酶(DME、DML2、DML3和ROS1等)介导的主动去甲基化机制。ROS1等可以切除5-甲基胞嘧啶,启动碱基切除-修复途径(base excision repair, BER)完成DNA去甲基化[5]。但在哺乳动物中并没有鉴定到这

DNA甲基化综述

分子生物学综述 题目:DNA甲基化的研究方法与技术姓名: 班级: 学号:

摘要:DNA 甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。这些方法概括起来可分为三类:基因组整体水平的甲基化检测、基因特异位点甲基化的检测和新甲基化位点的寻找。 关键字:表观遗传学;DNA甲基化;甲基化研究方法 1 导言 早在1942年,C.H.Waddington首次提出表观遗传学(epigenetics)的概念,并指出表观遗传与遗传是相对的,它主要研究基因型和表型的关系。几十年后,霍利迪(R. Holiday)针对表观遗传学提出了更新的系统性论断,也就是人们现在比较统一的认识[1],即在不改变基因组序列的前提下,通过DNA和组蛋白的修饰来调控基因表达,这种修饰以DNA甲基化最为常见。其主要任务是绘制出人类基因组中甲基化可变位点图谱,即不同组织与疾病状态下,5-甲基胞嘧啶出现及其分布频率的图谱,以指导和系统地研究DNA甲基化在人类表观遗传、胚胎发育、基因印记、等位基因失活及肿瘤发生中的重要作用[2]。DNA甲基化的研究,逐渐成为新的研究热点。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。让我一一介绍现有的大部分DNA甲基化研究方法,并对其相关特性进行简要分析与总结。

DNA甲基化是最早发现的基因表观修饰方式之一,可能存在于所有高等生物中。DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。甲基化的主要形式有5-甲基胞嘧啶,N6-甲基腺嘌呤和7-甲基鸟嘌呤。原核生物中CCA/TGG和GATC常被甲基化,而真核生物中甲基化仅发生于胞嘧啶。DNA的甲基化是在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5'端的胞嘧啶转变为5'甲基胞嘧啶。这种DNA修饰方式并没有改变基因序列,但是它调控了基因的 表达[3]。脊椎动物基因的甲基化状态有三种:持续的低甲基化状态,如管家基因;去甲基化状态,如发育阶段中的一些基因;高度甲基化状态,如女性的一条失活的X染色体[4]。 1.2 DNA 甲基化的生物学作用 1.2.1 DNA 甲基化与遗传印记、胚胎发育 DNA甲基化在维持正常细胞功能、遗传印记、胚胎发育过程中起着极其重要的作用。研究表明胚胎的正常发育得益于基因组DNA适当的甲基化。例如:缺少任何一种甲基转移酶对小鼠胚胎的发育都是致死性的(Li 等1992年和Okano等1999年)[3]。此外,等位基因的抑制(allelic repression)被印记控制区(imprinting control regions,ICRs)所调控,该区域在双亲中的一个等位基因是甲基化的[4]。印记基因的异常表达可以引发伴有突变和表型缺陷的多种人类疾病。如:脐疝-巨舌-巨大发育综合征(Beckwith-Wiedemann Syndrome, BWS)和Prader-Willi/Angelman综合征等[5]。

DNA甲基化

人类基因组单体型图细胞株中与遗传和基因表达变化有关的DNA甲基化模型 摘要 背景:DNA甲基化是参与基因调控和疾病的一种重要表观遗传学机制,但很 少人知道在个体间甲基化机制存在差异。在这,我们从77个图约鲁巴人的人类基因组单体中测量了22,290 CpG二核苷酸的淋巴母细胞系的甲基化水平,同时也使用了全基因组的基因表达和基因型数据。 结果:通过对超过三百万常见的单核苷酸多态性(SNP)位点的甲基化水平关联的分析,我们确定在173个基因的180个CpG双核苷酸位点与附近的单核苷酸多态性(独联体通常在5 KB内)的错误发现率为10%。在迪斯科相互 作用蛋白2的同源基因B(DIP2B,以前推测在DNA甲基化中发挥作用)中发现SNP rs10876043是最有趣的传输信号,全基因范围内的信号与第一组分的甲基化模式是有联系的。而且我们发现在整体信号联系中只有少量的反式作用。正如预期的那样,通过测量的RNA序列,我们发现基因的启动子甲基化和基因表达水平呈负相关关系。最后,发现有一个显着的SNP位点重叠,均与甲基化与基因的表达水平有关。 结论:我们的研究结果显示在个体间的差异在DNA甲基化方面有很强的遗传成 分。此外,丰富的单核苷酸多态性会影响甲基化和基因表达,为共享机制的一小部分的基因提供了证据。 背景:D NA甲基化在真核生物的基因组起着重要的调节作用。甲基化的改变可以影响转录和表型的变化[1],但DNA甲基化本身的变化根源,现在仍然知之甚少。大量证据确实存在DNA甲基化的个体差异随着年龄的增长[2,3],组织[4,5],物种[6]。在哺乳动物中,DNA甲基化是通过DNA甲基转移酶(转移酶)介导的,是在复制过程中负责重新甲基化和维持甲基化模式。参与合成的甲基化和DNA去甲基化的基因也可以影响甲基化的变化。例如,突变的甲基转移酶DNMT3L[7]和亚甲基四氢酸还原酶MTHFR[8]基因可导致人的血液中DNA低甲基化。这些变化发生在全基因组水平,与遗传变异是不同的,而是有针对性的对基因组区域影响DNA甲基化变异,例如,在H19/IGF2位点的差异性甲基化与遗传多态性有关9]。 最近的证据表明,DNA甲基化的依赖所在基因的序列含量[10?12]。在对家庭与双胞胎甲基化模式的研究中发现有很强的遗传效应,但随机因素和环境因素也有可能发挥重要作用2,14]。最近的工作表明,基因变异可能对所在的甲基化模式有重大影响[5,15-18],但影响甲基化的遗传变异是何种程度,机制尚不清楚。此外,在DNA甲基化变化的基础上对个体基因表达影响到何种程度,仍然是未知之数。

DNA甲基化和去甲基化的研究现状及思考_邓大君

Hereditas (Beijing) 2014年5月, 36(5): 403―410 https://www.doczj.com/doc/006577959.html, 综 述 收稿日期: 2014-01-07; 修回日期: 2014-01-27 基金项目:国家自然科学基金项目(编号:30921140311,31261140372)资助 作者简介:邓大君,教授,研究方向:肿瘤病因学和DNA 甲基化研究。E-mail :dengdajun@https://www.doczj.com/doc/006577959.html, DOI: 10.3724/SP.J.1005.2014.0403 网络出版时间: 2014-3-3 12:41:25 URL: https://www.doczj.com/doc/006577959.html,/kcms/detail/11.1913.R.20140303.1241.001.html DNA 甲基化和去甲基化的研究现状及思考 邓大君 北京大学肿瘤医院/研究所, 北京 100142 摘要: DNA 甲基化通过调节基因转录、印记、X 染色体灭活和防御外源性遗传物质入侵等, 在细胞分化、胚胎 发育、环境适应和疾病发生发展上发挥重要作用, 是当前表观遗传学研究的热点领域之一。文章介绍了在过去几年中TET 介导的DNA 羟甲基化及其在早期胚胎发育中的作用, DNA 主动去甲基化及其与被动去甲基化的关系, DNA 甲基化建立及其与组蛋白修饰、染色质构象、多梳蛋白和非编码RNA 结合等关系方面的重要研究进展和存在的问题以及DNA 甲基化的转化应用前景。 关键词: DNA 甲基化; 去甲基化; 表观遗传学; 稳态; 转化研究 DNA methylation and demethylation: current status and future per-spective Dajun Deng Peking University Cancer Hospital and Institute , Beijing 100142, China Abstract: DNA methylation plays important roles in cell differentiation, embryonic development, host adaptations to environmental factors, and pathogenesis through regulation of gene transcription and imprinting, X-inactivation, and de-fense of foreign genetic material invasion, is currently one of the hottest research fields on epigenetics. In the past few years, a number of important findings on DNA methylation have been achieved. These findings include discovery of TETs-catalyzed cytosine hydroxymethylation and its functions in the early embryonic development; the relationship be-tween active and passive DNA demethylation; establishment and maintenance of DNA methylation patterns and their asso-ciations with histone modifications, chromatin configuration, polycomb group proteins and non-coding RNA bindings. DNA methylation has become a new potential biomarker and therapy target. Keywords: DNA methylation; demethylation; epigenetics; homeostasis; translational research DNA 甲基化是指DNA 序列中的腺嘌呤(A)或胞嘧啶(C)碱基在甲基化转移酶的催化下与甲基发生共价结合, 可在细胞分裂过程中传递给子细胞的表 观遗传现象。由DNA 腺嘌呤甲基化酶(DNA adenine methylase, DAM)催化形成的O 6-甲基腺嘌呤(6mA)是一种CTAG 序列复制后维持甲基化, 在细菌表观

相关主题
文本预览
相关文档 最新文档