当前位置:文档之家› chapter 5-土的压缩性与地基沉降计算

chapter 5-土的压缩性与地基沉降计算

chapter 5-土的压缩性与地基沉降计算
chapter 5-土的压缩性与地基沉降计算

常用的地基沉降计算方法

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性 力学法、 分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据 的。在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s : E r P s 2 1μπ-?= (6-8) 式中 μ—地基土的泊松比; E —地基土的弹性模量(或变形模量E 0); r —为地基表面任意点到集中力P 作用点的距离,22y x r +=。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6 所示,设荷载面积A N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为集中力P= p 0(ξ,η)d ξd η代替。于是,地面上与N 点距 离r =22)()(ηξ-+-y x 的M (x, y )点的沉降s (x, y ),可由式(6-8)积分 求得: ??-+--=A y x d d p E y x s 22002 )()(),(1),(ηξηξηξμ (6-9) 图6-5 集中力作用下地基表面的沉降曲线 图6-6 局部荷载下的地面沉降

从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若 沉降已知又可以反算出应力分布。 对均布矩形荷载p0(ξ,η)=p0=常数,其角点C的沉降按上式积分的结果为: 2 1 bp E s c ω μ - = (6-10) 式中cω—角点沉降影响系数,由下式确定: ? ? ? ? ? ? + + + + + =)1 ln( ) 1 1 ln( 12 2 m m m m m cπ ω (6-11) 式中m=l/b。 利用式(6-10),以角点法易求得均布矩形荷载下地基表面任意点的沉降。例如矩形中心点的沉降是图6-6(b)中的虚线划分为四个相同小矩形的角点沉降之和,即 2 21 )2/ ( 1 4bp E p b E s cω μ ω μ- = - = (6-12) 式中cω ω2 =—中心沉降影响系数。 图6-7 局部荷载作用下的地面沉降 (a)绝对柔性基础;(b)绝对刚性基础 以上角点法的计算结果和实践经验都表明,柔性荷载下地面的沉降不仅产生于荷载面围之,而且还影响到荷载面之外,沉降后的地面呈碟形,见图6-7。但一般基础都具有一定的抗弯刚度,因而沉降依基础刚度的大小而趋于均匀。中心荷载作用下的基础沉降可以近似地按绝对柔性基础基底平均沉降计算,即 A dxdy y x s s A / ) , ( ??= (6-13) 式中A—基底面积, s(x, y)—点(x, y)处的基础沉降。 对于均布的矩形荷载,上式积分的结果为:

土的压缩性与地基沉降计算 渗流例题

学习指导 学习目标 在学习土的压缩性指标确定方法的基础上,掌握地基最终沉降量计算原理和地基固结问题的分析计算方法。 学习基本要求 1.掌握土的压缩性与压缩性指标确定方法 2.掌握地基最终沉降量计算方法 3.熟悉不同应力历史条件的沉降计算方法 4.掌握有效应力原理 5.掌握太沙基一维固结理论 6.掌握地基沉降随时间变化规律 主要基础知识 土中自重应力计算,土中附加应力计算,弹性力学基础知识 一、土的压缩试验与压缩性指标 1.室内压缩试验 土的室内压缩试验亦称固结试验,是研究土压缩性的最基本的方法。 室内压缩试验采用的试验装置为压缩仪(图片)。试验时将切有土样的环刀置于刚性护环中,由于金属环刀及刚性护环的限制,使得土样在竖向压力作用下只能发生竖向变形,而无侧向

变形。在土样上下放置的透水石是土样受压后排出孔隙水的两个界面。压缩过程中竖向压力通过刚性板施加给土样,土样产生的压缩量可通过百分表量测。常规压缩试验通过逐级加荷进行试验,常用的分级加荷量p为:50 kPa , 100 kPa , 200 kPa , 300 kPa , 400 kPa。 室内压缩试验过程可参见如下的室内压缩试验演示 室内压缩试验过程演示 详细了解压缩试验的试验操作步骤请进入固结试验1.mht室内固结试验(内容包括试验设备、试验方法、试验过程图片等) 根据压缩过程中土样变形与土的三相指标的关系,可以导出试验过程孔隙比e与压缩量 H 的关系,即: 公式推导(4-1) 这样,根据式(4-1)即可得到各级荷载p下对应的孔隙比e,从而可绘制出土样压缩试验的e-p曲线及e-lg p曲线等。 2. 压缩性指标 (1)压缩系数a 通常可将常规压缩试验所得的e-p数据采用普通直角坐标绘制成e-p曲线,如图4-1所示。设压力由p1增至p2,相应的孔隙比由e1减小到e2,当压力变化范围不大时,可将M1M2一小段曲线用割线来代替,用割线M1M2的斜率来表示土在这一段压力范围的压缩性,即:

土的压缩性和地基沉降计算

土的压缩性和地基沉降计算

第六章土的压缩性和地基沉降计算 第一节概述 客观地分析:地基土层承受上部建筑物的荷载,必然会产生变形,从而引起建筑物基础沉降,当场地土质坚实时,地基的沉降较小,对工程正常使用没有影响;但若地基为软弱土层且厚薄不均,或上部结构荷载轻重变化悬殊时,地基将发生严重的沉降和不均匀沉降,其结果将使建筑物发生各类事故,影响建筑物的正常使用与安全。地基土产生压缩的原因: 1.外因: (1)建筑物荷载作用,这是普遍存在的因素;(2)地下水位大幅度下降,相当于施加大面积荷载; (3)施工影响,基槽持力层土的结构扰动;(4)振动影响,产生震沉; (5)温度变化影响,如冬季冰冻,春季融化;(6)浸水下沉,如黄土湿陷,填土下沉。2.内因: (1)固相矿物本身压缩,极小,物理学上有意义,对建筑工程来说没有意义的; (2)土中液相水的压缩,在一般建筑工程荷载

(100~600)Kpa作用下,很小,可不计;(3)土中孔隙的压缩,土中水与气体受压后从孔隙中挤出,使土的孔隙减小。 上述诸多因素中,建筑物荷载作用是外因的主要因素,通过土中孔隙的压缩这一内因发生实际效果。 第二节土的压缩性 见土质学第二章第三节。 第三节,地基沉降量计算 一、无側向变形条件下的压缩量公式 关于土体压缩量的计算方法,目前在工程中广泛采用的是计算基础沉降的分层总和法。 分层总和法都是以无側向变形条件下的压缩量公式为基础,它们的基本假设是: 1.土的压缩完全是由于孔隙体积减少导致骨架变形的结果,而土粒本身的压缩可不计; 2.土体仅产生竖向压缩,而无测向变形;3.在土层高度范围内,压力是均匀分布的。 如图所示(见教材P127图4-15),在压力P1作用下压缩已经稳定时,相应的孔隙比为e1,试样高度为H,设固体土粒的体积为Vs,则孔隙体积为e1Vs,总体积V1=(1+e1)Vs;

地基沉降实用计算方法

第三节 地基沉降实用计算方法 一、弹性理论法计算沉降 (一) 基本假设 弹性理论法计算地基沉降是基于布辛奈斯克课题的位移解,因此该法假定地基是均质的、各向同性的、线弹性的半无限体,此外还假定基础整个底面和地基一直保持接触。 布辛奈斯克是研究荷载作用于地表的情形,因此可以近似用来研究荷载作用面埋置深度较浅的情况。当荷载作用位置埋置深度较大时,则应采用明德林课题的位移解进行弹性理论法沉降计算。 (二) 计算公式 建筑物的沉降量,是指地基土压缩变形达固结稳定的最大沉降量,或称地基沉降量。 地基最终沉降量:是指地基土在建筑物荷载作用下,变形完全稳定时基底处的最大竖向位移。 基础沉降按其原因和次序分为:瞬时沉降d S ;主固结沉降c S 和次固结沉降s S 三部分组成。 瞬时沉降:是指加荷后立即发生的沉降,对饱和土地基,土中水尚未排出的条件下,沉降主要由土体测向变形引起;这时土体不发生体积变化。(初始沉降,不排水沉降) 固结沉降:是指超静孔隙水压力逐渐消散,使土体积压缩而引起的渗透固结沉降,也称主固结沉降,它随时间而逐渐增长。(主固结沉降) 次固结沉降:是指超静孔隙水压力基本消散后,主要由土粒表面结合水膜发生蠕变等引起的,它将随时间极其缓慢地沉降。(徐变沉降) 因此:建筑物基础的总沉降量应为上述三部分之和,即 s c s s s s s ++= 计算地基最终沉降量的目的:(1)在于确定建筑物最大沉降量;(2)沉降差;(3)倾斜以及局部倾斜;(4)判断是否超过容许值,以便为建筑物设计值采取相应的措施提供依据,保证建筑物的安全。 1、 点荷载作用下地表沉降

Er Q y x E Q s πνπν)1() 1(22 22-+-= = 2、 绝对柔性基础沉降 ?? ----=A y x d d p E y x s 2 202 )()(),(1),(ηξηξηξπν 0) 1(2bp s c E c ων-= 3、 绝对刚性基础沉降 (1) 中心荷载作用下,地基各点的沉降相等。 圆形基础:0)1(2dp s c E c ων-= 矩形基础:0)1(2bp s r E c ων-= (2) 偏心荷载作用下,基础要产生沉降和倾斜。 二、分层总和法计算最终沉降 分层总和法都是以无側向变形条件下的压缩量公式为基础,它们的基本假设是: 1.土的压缩完全是由于孔隙体积减少导致骨架变形的结果,而土粒本身的压缩可不计; 2.土体仅产生竖向压缩,而无测向变形; 3.在土层高度范围内,压力是均匀分布的。 目前在工程中广泛采用的方法是以无测向变形条件下的压缩量计算基础的分层总和法。具体分为e-p 曲线和e -lgp 曲线为已知条件的总和法。 1.以e~p 曲线为已知条件的分层总和法 计算步骤: (1)选择沉降计算剖面,在每一个剖面上选择若干计算点。 1)根据建筑物基础的尺寸,判断在计算其底压力和地基中附加应力时是属于空间问题还是采用平面问题; 2)再按作用在基础上的荷载的性质(中心、偏心或倾斜等情况)求出基底压力的大小和分布; 3)然后结合地基中土层性状,选择沉降计算点的位置。 (2)将地基分层:在分层时天然土层的交界面和地下水位应为分层面,同时在同一类土层中分层的厚度不宜过大。分层厚度h 小于0.4b ;或h=2~4m 。

常用的地基沉降计算方法

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量, 目前常用的计算方法有:弹性力学法、分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq课题的位移解为依据的。在弹性半空间表面作用着一个竖向集中力P时,见图6-5,表面位移w(x, y, o)就是地基表面的沉降量s: E r P s 2 1μ π - ? = (6-8) 式中μ—地基土的泊松比; E—地基土的弹性模量(或变形模量E ); r—为地基表面任意点到集中力P作用点的距离,2 2y x r+ =。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6所示,设荷载面积A内N(ξ,η)点处的分布荷载为p0(ξ,η),则该点微面积上的分布荷载可为集中力P= p0(ξ,η)dξdη代替。于是,地面上与N点距离r =2 2) ( ) (η ξ- + -y x的M(x, y)点的沉降s(x, y),可由式(6-8)积分求得: ?? - + - - = A y x d d p E y x s 2 2 2 ) ( ) ( ) , ( 1 ) , ( η ξ η ξ η ξ μ (6-9) 从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若 沉降已知又可以反算出应力分布。 对均布矩形荷载p0(ξ,η)= p0=常数,其角点C的沉降按上式积分的结果为: 图6-5 集中力作用下地基表面的沉降曲线图6-6 局部荷载下的地面沉降 (a)任意荷载面;(b)矩形荷载面

地基沉降的计算方法

地基沉降的计算方法 地基在荷载作用下,沉降将随时间发展,其发展规律可以通过土体固结原理进行数值分析来估算。但是由于固结理论的假定条件和确定计算指标的试验技术上的问题,使得实测地基沉降过程数据在某种意义上较理论计算更为重要。通过大量的沉降观测资料的积累,可以找出地基沉降过程的具有一定实际应用价值的变形规律,还可以根据路基施工时的实测沉降资料和已取得的经验进行估算,是工程中最为常用的方法。根据经验沉降预测一般要经过3~6个月恒载(或预压)的观测才能建立。曲线回归法法是变形预测最常用的方法,德国无碴轨道的经验,认为当曲线回归的相关系数不低于0.92时,所确定的沉降变形趋势是可靠的;当预测的6个月以后的沉降与实际沉降的偏差小于8mm 时,说明预测是稳定的,但要达到准确的预测还要求最终建立沉降预测的时间t 应满足下列条件 s(t)/s(t=∞)≥75% 式中: s(t): t 时间的沉降观测值; s(t=∞): 预测的总沉降。 通常利用沉降资料进行预测路堤沉降随时间发展的常用方法有以下几种: 1 双曲线法 双曲线方程为: bt a t S S t ++=0 (3.3.2-1) b S S f 10+= (3.3.2-2) 式中:t S ——时间t 时的沉降量; f S ——最终沉降量(t =∞); S 0——初期沉降量(t =0);

a、b——将荷载不再变化后的3组早期实测数据代入上式组成方程组求得的系数。 沉降计算的具体顺序: (1)确定起点时间(t=0),可取填方施工结束日为t=0; (2)就各实测计算t/(S t-S0),见图3.3.2-1; (3)绘制t与t/(S t-S0)的关系图,并确定系数a,b见图3.3.2-2; (4)计算S t; (5)由双曲线关系推算出沉降S~时间t曲线。 图3.3.2-1用实测值推算最终沉降的方法 图3.3.2-2求a,b方法 双曲线法是假定下沉平均速率以双曲线形式减少的经验推导法,要求恒载开始实测沉降时间至少半年以上。 2 固结度对数配合法(三点法) 由于固结度的理论解普遍表达式为:

地基沉降量计算

在今年史佩栋教授赠寄给我的,他主编的《浙江隧道与地下工程》刊物上,我看到一篇高大钊先生谈差异沉降的文章,觉得非常好。里面的内容很实用,对我们正确认识和理解差异沉降问题有很高的指导性,故将其推荐给大家。但采用照片或扫描版,不便于大家阅读和下载,而我的工作又很忙,没有时间,只好请一位技术人员将其打成word文档,发在下面。需要说明的是,由于同样原因,我没时间对打成的文章做仔细的校核,如有个别错漏,还请大家谅解。 同时在此向史佩栋教授、高大钊先生和《浙江隧道与地下工程》杂志社表示诚挚的感谢! 土力学若干问题的讨论 (网络讨论笔记整理)之四怎样计算差异沉降? ——沉降计算中的是是非非 本刊特邀顾问同济大学教授 全国注册土木工程师(岩土)高大钊 执业之格考试专家组副组长 进20年来,地基基础设计的变形控制问题日益引起人们的重视。最近5年来,由于地基基础设计规范所规定的必须计算沉降的建筑物范围扩大了,除了丙级建筑物中的一小部分之外,几乎所有的建筑物都要求计算建筑物地基的变形,沉降计算就成为普遍关注的问题。特别在岩土工程勘察阶段,提出了对建筑物的沉降和不均匀沉降进行评价的要求,再加上审图要求在勘察阶段计算和不均匀沉降,沉降计算的一些是是非非就浮出水面,在网络讨论中也成为一个十分活跃的课题。这些问题反应了对土力学中的一些基本概念的漠视,也反映了工程勘察中的一些最基本方法的失落,看来是人们在关注更高的精度,而实际上却在总体上失去了对建筑物沉降的总体控制。 1、在我工作地区,对于多层建筑(层数低于6层),由于相连建筑物的层数差而出现过墙体裂缝的现象,因此当地审图中心要求在正常沉积土的区域,对有层数错的建筑应进行变行验算。 我想问的问题是:在假定地基土为正常沉积土,其层位、特征指标等的变化均不是很大的情况下,差异沉降最大的两个点应该是两建筑物的接触部位点角点及较低建筑物的另一边的角点,也就是说,应该验算这两个点之间的差异沉降而按规范要求,则应该验算基宽方向两个角点下的差异沉降(或者倾斜)。考虑计算沉降量最大的两个点,则应验算相连两建筑物接触部位的两个角点县的差异沉降(或者倾斜),而按上述条件,这两个点之间的差异沉降应该不大,那么这种验算还有什么意义呢? 不知道我的理解偏差在那里望给予指教! 答复:你对这种情况的沉降计算和差异沉降的计算,在理解上存在一定的偏差,主要表现为下列两个问题。 1)对于如土所示的有层数的建筑物,根据规范的规定,应当计算存在高差处的角点b和与其相距1~2个开间处点d之间的沉降差,用以计算b~d之间的局部倾斜。而不是如你所说的计算存在高差处的角点b与高度较低的建筑物的另一端点c之间的沉降差。 2)第2个理解偏差是从你说的“应验算相连两建筑物接触部位的两个角点(a~b)下的差异沉降(或者倾斜)”这句话中看出的。为什么只能计算宽度方向两个点的差异沉降呢?规范从来没有规定只能计算建筑物横向两个角点的沉降差,而不能计算纵向两个角点的沉降差,横向和纵向的倾斜都可能进行计算。

沉降计算例题(试题学习)

地基沉降量计算 地基变形在其表面形成的垂直变形量称为建筑物的沉降量。 在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。 一、分层总和法计算地基最终沉降量 计算地基的最终沉降量,目前最常用的就是分层总和法。 (一)基本原理 该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。地基的最终沉降量可用室内压缩试验确定的参数(e i、E s、a)进行计算,有: 变换后得: 或 式中:S--地基最终沉降量(mm); e --地基受荷前(自重应力作用下)的孔隙比; 1 e --地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比; 2 H--土层的厚度。 计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。然后按式(4-9)或(4-10)计算各分层的沉降量S 。最后将各分层的沉降量总和起来即为地基的最终沉降量: i

(二)计算步骤 1)划分土层 如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足H i≤0.4B(B为基底宽度)。 2)计算基底附加压力p0 3)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。 4)确定压缩层厚度 满足σz=0.2σsz的深度点可作为压缩层的下限; 对于软土则应满足σz=0.1σsz; 对一般建筑物可按下式计算z n=B(2.5-0.4ln B)。 5)计算各分层加载前后的平均垂直应力 p =σsz; p2=σsz+σz 1 6)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、E s等其它压缩性指标 7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量 S i 8)按公式(4-11)计算总沉降量S。

常用的地基沉降计算方法汇总

常用的地基沉降计算方法汇总

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性力学法、分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据的。在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s : E r P s 2 1μπ-? = (6-8) 式中 μ—地基土的泊松比; E —地基土的弹性模量(或变形模量E 0); r —为地基表面任意点到集中力 P 作用点的距离,2 2y x r +=。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6所示,设荷载面积A 内N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为集中力P= p 0(ξ,η)d ξd η代替。于是,地面上与N 点 距离r =2 2)()(ηξ-+-y x 的M (x, y )点的沉降s (x, y ),可由式(6-8)积 分求得: ?? -+--= A y x d d p E y x s 2200 2 )()(),(1),(ηξη ξηξμ (6-9) 图6-5 集中力作用下地基表面的沉降曲线 图6-6 局部荷载下的地面沉降 (a )任意荷载面;(b ) 矩形荷载面

第三章 土的压缩性与地基沉降计算

第三章土的压缩性与地基沉降计算 地基在荷载作用下会产生附加应力,从而引起地基(主要是竖向变形),建筑物基础亦随之沉降。如果沉降超过容许范围,就会导致建筑物发裂或影响其正常使用,严重者还会威胁建筑物的安全。因此,在地基基础设计与施工时,必须重视地基变形问题;如果地基不均匀或上部结构荷载差异较大,还应考虑不均匀沉降对建筑物的影响。 为了计算地基的变形量,必须了解土的压缩性。通过室内或现场试验,求出土的压缩性指标,可计算基础的最终沉降量(地基稳定后的沉降量);并可研究地基变形与时间的关系,以便了解建筑物使用期间某一时刻的的变形量。因此,研究地基的变形,对于保证建筑物的经济性和安全具有重要意义。 导致地基变形的因素很多.但大多数情况下主要是建筑物荷载引起的。本章主要介绍土的压缩性、压缩性指标及由建筑物荷载引起的地基最终沉降量的计算。 第一节土的压缩性 一、基本概念 (一)压缩性 土在压力作用下体积缩小的特性称为土的压缩性。土体积缩小的原因,从土的三相组成来看不外乎有以下三个方面:①土颗粒本身的压缩;②土孔隙中不同形态的水和气体的压缩;③孔隙中部分水和气体被挤出,土颗粒相互移动靠拢使孔隙体积减小。试验研究表明,在一般建筑物压力100~600KPa作用下,土颗粒及水的压缩变形量不到全部土体压缩变形量的1/400,可以忽略不计。气体的压缩性较大,密闭系统中,土的压缩是气体压缩的结果,但在压力消失后,土的体积基本恢复,即土呈弹性。而自然界中土是一个开放系统,孔隙中的水和气体在压力作用下不可能被压缩而是被挤出,由此,土的压缩变形主要是由于孔隙中水和气体被挤出,致使土孔隙体积减小而引起的。 土体压缩变形的快慢与土中水渗透速度有关。对透水性大的砂土,建筑物施工完毕时,可认为压缩变形已基本结束;对于高压缩性的饱和粘性土,由于渗透速度慢,施工完毕时一般只达到总变形量的5%~20%。在相同压力条件下,不同土的压缩变形量差别很大,可通过室内压缩试验或现场载荷试验测定。 粘性与无粘性土变形与渗透性关系 (二)固结与固结度 土的压缩需要一定的时间才能完成,对于无黏性土,压缩过程所需的时间较短。对于饱和黏性土,由于水被挤出的速度较慢,压缩过程所需的时间就相当长,需几年甚至几十年才能压缩稳定。

土的压缩性

研究土压缩性的意义 从工程意义上来说,地基沉降有均匀沉降和不均匀沉降之分。当建筑物基础均匀下沉时,从结构安全的角度来看,不致有什么影响,但过大的沉降将会严重影响建筑物的使用与美观,如造成设备管道排水倒流,甚至断裂等;当建筑物基础发生不均匀沉降时,建筑物可能发生裂缝、扭曲和倾斜,影响使用和安全,严重时甚至使建筑物倒塌。因此,在不均匀或软弱地基上修建建筑物时,必须考虑土的压缩性和地基变形等方面的问题。 对于道路和桥梁工程,一般来说,均匀沉降对路桥工程的上部结构危害也较小,但过量的均匀沉降也会导致路面标高降低、桥下净空的减少而影响正常使用;不均匀沉降则会造成路堤开裂、路面不平,对超静定结构桥梁产生较大附加应力等工程问题,甚至影响其正常和安全使用。因此,为了确保路桥工程的安全和正常使用,既需要确定地基土的最终沉降量,也需要了解和估计沉降量随时间的发展及其趋于稳定的可能性。 在工程设计和施工中,如能事先预估并妥善考虑地基的变形而加以控制或利用,是可以防止地基变形所带来的不利影响的。如某高炉,地基上层是可压缩土层,下层为倾斜岩层,在基础底面积范围内,土层厚薄不均,在修建时有意使高炉向土层薄的一侧倾斜,建成后由于土层较厚的一侧产生较大的变形,结果使高炉恰好恢复其竖向位置,保证了安全生产,节约了投资。 回弹曲线和再压缩曲线 上面在室内侧限压缩试验中连续递增加压,得到了常规的压缩曲线。现在如果加压到某一值(相应于下图曲线上的P点)后不再加压,而是逐级进行卸载直至为零,并且测得各卸载等级下土样回弹稳定后土样高度,进而换算得到相应的孔隙比,即可绘制出卸载阶段的关系曲线,如图中bc曲线所示,称为回弹曲线(或膨胀曲线)。可以看到不同于一般的弹性材料的是,回弹曲线不和初始加载的曲线ab重合,卸载至零时,土样的孔隙比没有恢复到初始压力为零时的孔隙比e0。这就表明土在荷载作用下残留了一部分压缩变形,称之为残余变形(或塑性变形),但也恢复了一部分压缩变形,称之为弹性变形

地基沉降的计算方法及计算要点

CENTRAL SOUTH UNIVERSITY 课外研习论文 学生姓名刘振林、靳颜宁、唐雯钰 学号 020*******、020*******、020******* 学院资源与安全工程学院 专业城市地下空间工程1001班 指导老师李江腾 2012.09

目录 引言 (2) 1.地基沉降 (2) 1.1地基沉降的基本概念 (2) 1.2地基沉降的原因 (2) 1.3地基沉降的基本类型 (2) 1.3.1按照沉降产生机理 (2) 1.3.2按照沉降的表示方法 (2) 1.3.3按照沉降发生的时间 (3) 2.地基沉降的计算 (3) 2.1地基沉降计算的目的 (3) 2.2地基沉降计算的原则 (3) 2.3地基沉降的计算方法 (3) 2.3.1分层总和法 (3) 2.3.2应力面积法 (6) 2.3.3弹性力学方法 (13) 2.3.4斯肯普顿—比伦法(变形发展三分法) (15) 2.3.5应力历史法(e-lgp曲线法) (17) 2.3.6应力路径法 (18) 3.计算要点 (19) 3.1分层总结法计算要点 (19) 3.2应力面积法计算要点 (19) 3.3弹性理论法计算要点 (20) 3.4斯肯普顿—比伦法计算要点 (20) 3.5应力历史法计算要点 (20) 3.6应力路径法计算要点 (20) 4.总结 (20) 参考文献: (21)

地基沉降的计算方法及计算要点 城市地下空间工程专业学生刘振林,唐雯钰,靳颜宁 指导教师李江腾 [摘要]:本文介绍了六种地基沉降量的计算方法:分层总和法、应力面积法、弹性理论法、斯肯普顿—比伦法、应力历史法以及应力路径法,并讨论了各种方法的计算要点。 关键词:分层总和法;规范法;弹性理论;斯肯普顿—比伦;应力历史;应力路径 ABSTRACT:This thesis introduces six kinds of foundation settlement calculation methods:layerwise summation method,Stress area method,elasticity-thoery method, Si Ken Compton ancient method,Stress history method,stress path method,and discusses the main points of the six methods. KEY WORD:layerwise summation method;Specification Approach;elastic theory;stress history; A.W.Skempton—L.Bjerrum;stress path 引言 基础沉降计算从来就是地基基础工程中三大难题之一,在进行基础设计时,不仅要满足强度要求,还要把基础的沉降和沉降差控制在一定范围内。地基沉降的计算在建筑物的施工和使用阶段都非常重要。地基沉降量是指地基土在建筑荷载作用下达到压缩稳定时地基表面的最大沉降量。目前计算地基沉降的常用方法有分层总和法、规范法、还有弹性理论法、应力历史法(e-lgp曲线法)以及斯肯普顿—比伦法(变形发展三分法)、应力路径法。 中图分类号:TU478 文献标识码:A 1.地基沉降 1.1地基沉降的基本概念 建筑物和土工建筑物修建前,地基中早已存在着由土体自身重力引起的自重应力。建筑物和土工建筑物荷载通过基础或路堤的底面传递给地基,使天然土层原有的应力状态发生变化,在附加的三向应力分量作用下,地基中产生了竖向、侧向和剪切变形,导致各点的竖向和侧向位移。地基表面的竖向变形称为地基沉降,或基础沉降。 1.2地基沉降的原因 由于建筑物荷载差异和地基不均匀等原因,基础或路堤各部分的沉降或多或少总是不均匀的,使得上部结构或路面结构之中相应地产生额外的应力和变形。地基不均匀沉降超过了一定的限度,将导致建筑物的开裂、歪斜甚至破坏,例如砖墙出现裂缝、吊车轮子出现卡轨或滑轨、高耸构筑物倾斜、机器转轴偏斜、与建筑物连接管道断裂以及桥梁偏离墩台、梁面或路面开裂等。 1.3地基沉降的基本类型 1.3.1按照沉降产生机理 (1)荷载沉降:外部荷载作用下产生的沉降。 (2)地层损失沉降:采空区、隧道、地下工程和基坑开挖等产生的沉降。 (3)自重沉降:土体在自重应力作用下产生的沉降。 (4)水文沉降:由于地下水的水位上升或下降产生的沉降。 1.3.2按照沉降的表示方法

地基土压缩性的判定,土的变形模量与压缩模量的关系

地基土压缩性的判定,土的变形模量与压缩模量的关系默认分类2009-12-06 20:55:31 阅读484 评论1 字号:大中小订阅 1.压缩系数a 值与土所受的荷载大小有关。工程中一般采用100 ~200 kPa 压力区 间内对应的压缩系数 a 1-2 来评价土的压缩性。即 a 1-2 <0.1/ MPa 属低压缩性土; 0.1 /MPa ≤ a 1-2 <0.5/ MPa 属中压缩性土; a 1-2 ≥ 0.5/ MPa 属高压缩性土。 压缩模量是另一种表示土的压缩模量的指标,Es越小,土的压缩性越高。 Es<4MPa 高压缩性土 4MPa

当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构 性;另一方面就是土的结构影响;三是两种试验的要求不同; μ、β的理论换算值 土的种类μβ 碎石土0.15~0.20 0.95~0.90 砂土0.20~0.25 0.90~0.83 粉土0.23~0.31 0.86~0.72 粉质粘土0.25~0.35 0.83~0.62 粘土0.25~0.40 0.83~0.47 注:E0与Es之间的关系是理论关系,实际上,由于各种因素的影响,E0值可能是βEs值的几倍,一般来说,土愈坚硬则倍数愈大,而软土的E0值与βEs值比较

桩基沉降计算

桩基沉降计算 一、目前桩基沉降计算方法及存在的问题 1、目前桩基的计算方法 对于群桩基础(桩距小于和等于6倍桩径),在正常使用状态下的沉降计算方法,目前有两大类。一类是按实体深基础计算模型,采用弹性半空间表面荷载下Boussinesq应力解计算附加应力,用分层总和法计算沉降;另一类是以半无限弹性体内部集中作用下的Mindlin解为基础计算沉降。后者主要分为两种:一是Poulos提出的相互作用因子法;第二种是Gedes对Mindlin公式积分而导出集中力作用于弹性半空间内部的应力解,按叠加原理,求得群桩桩端平面下各单桩附加应力和,按分层总和法计算群桩沉降(如《上海地基基础设计规范》DGJ08-11-1999,《建筑地基基础设计规范》GB50007-2002)。 上述方法存在如下一些些问题: (1)实体深基础法,其附加应力按Boussinesq解计算与实际不符(计算应力偏大),且实体深基础模型不能反映桩的距径比、长径比等的影响; (2)相互作用因子法不能反映压缩层范围土的成层性; (3)Geddes应力叠加-分层总和法要求假定侧阻力分布,并给出桩端荷载分担比; (4)-所有的计算方法都依赖经验参数,以上计算方法均是以弹性力学的基本原理为基础,计算的可靠性与经验系数关系密切;

(5)不能考虑上部结构刚度对变形的影响。 2、旧规范沉降计算方法存在的问题 旧规范的沉降计算方法——等效作用分层总和法的一个科学、实用的计算方法,能反映群桩基础的各因素对沉降的影响,如桩的距径比、长径比、桩数等。其存在的问题是对于长桩,特别是桩侧土较好的长桩基础,计算沉降量与实测值误差较大,统计结果发现计算值大,而实测值小。造成这种现象的原因是上部结构的荷载借助于侧摩阻力传至承台投影面积以外,使桩端平面的计算附加应力远小于实际受力。而旧规范的经验系数依据局限于上海地区的资料,当时的超高层建筑很少,对应的长桩基础很少,经验系数存在一定的局限性。 二、调整的内容 新规范维持了旧规范的基本计算方法,针对旧规范沉降计算中存在的问题进行了调整。 1、对于桩中心距不大于6倍桩径的桩基,调整了沉降经验系数。 2、桩的沉降计算考虑施工工艺的影响,原因是群桩基础的变形是桩基影响范围内土的变形,而不同的施工工艺对土的影响不同。 3、增加了单桩、单排桩、疏桩基础基础沉降计算。 三、规范推荐的计算方法 对于桩中心距不大于6倍桩径的桩基础计算,新规范维持了旧规范的基本计算方法,规范共涉及8条,即规范5.5.6至5.5.13条,具体详见规范。

地基沉降计算.

1.某正常固结土层厚2.0m ,其下为不可压缩层,平均自重应力100cz a p kP =;压缩试验数据见表,建筑物平均附加应力0200a p kP =,求该土层最终沉降量。 【解】土层厚度为2.0m ,其下为不可压缩层,当土层厚度H 小于基础宽度b 的1/2时,由于基础底面和不可压缩层顶面的摩阻力对土层的限制作用,土层压缩时只出现很少的侧向变形,因而认为它和固结仪中土样的受力和变形很相似,其沉降量可用下式计算: 12 1 1e e s H e -= + 式中,H ——土层厚度; 1e ——土层顶、底处自重应力平均值c σ,即原始压应力1c p σ=,从e p -曲线上得到的孔隙比e ; 2e ——土层顶、底处自重应力平均值c σ与附加应力平均值z σ之和 2c z p σσ=+,从e p -曲线上得到的孔隙比e ; 1100c a p kP σ==时,10.828e =; 2100200300c z a p kP σσ=+=+=时,20.710e = 1210.8280.710 2000129.1110.828 e e s H mm e --= =?=++ 2.超固结黏土层厚度为4.0m ,前期固结压力400c a p kP =,压缩指数0.3c C =,

再压缩曲线上回弹指数0.1e C =,平均自重压力200cz a p kP =,天然孔隙比00.8e =,建筑物平均附加应力在该土层中为0300a p kP =,求该土层最终沉降量。 【解】超固结土的沉降计算公式为: 当c cz p p p ?>-时(300400200200a c cz a p kP p p kP ?=>-=-=)时, 10lg lg 1n i ci li i cn ei ci i i li ci H p p p s C C e p p =??????+?=+?? ? ?+????? ?∑ 式中,i H ——第i 层土的厚度; 0i e ——第i 层土的初始孔隙比; ei C 、ci C ——第i 层土的回弹指数和压缩指数; ci p ——第i 层土的先期固结压力; li p ——第i 层土自重应力平均值,()12c i li ci p σσ-??=+?? ; i p ?——第i 层土附加应力平均值,有效应力增量()12z i i zi p σσ-???=+?? 。 ()10lg lg 140004002003000.1lg 0.3lg 10.82004002222.20.10.30.30.0969131.3n i ci li i cn ei ci i i li ci H p p p s C C e p p mm =?? ????+?=+?? ? ?+????? ??+?????=??+? ? ???+??????=??+?=∑ 3.某采用筏基的高层建筑,地下室2层,按分层总和法计算出的地基变形量为 160mm ,沉降计算经验系数取1.2,计算的地基回弹变形量为18mm ,试求地基最终沉降量。 【解】根据《高层建筑箱形与筏形基础技术规范》(TGJ6-1999),当采用土的压

地基土压缩性的判定

地基土压缩性的判定,土的变形模量与压缩模量的关系1.压缩系数a 值与土所受的荷载大小有关。工程中一般采用100 ~200 kPa 压力区 间内对应的压缩系数 a 1-2 来评价土的压缩性。即 a 1-2 <0.1/ MPa 属低压缩性土; 0.1 /MPa ≤ a 1-2 <0.5/ MPa 属中压缩性土; a 1-2 ≥ 0.5/ MPa 属高压缩性土。 压缩模量是另一种表示土的压缩模量的指标,Es越小,土的压缩性越高。 Es<4MPa 高压缩性土 4MPa

当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo 小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹 性体,并具有结构 性;另一方面就是土的结构影响;三是两种试验的要求不同; μ、β的理论换算值 土的种类μβ 碎石土0.15~0.20 0.95~0.90 砂土0.20~0.25 0.90~0.83 粉土0.23~0.31 0.86~0.72 粉质粘土0.25~0.35 0.83~0.62 粘土0.25~0.40 0.83~0.47 注:E0与Es之间的关系是理论关系,实际上,由于各种因素的影响,E0值可能是βEs值的几倍,一般来说,土愈坚硬则倍数愈大,而软土的E0值与βEs 值比较

地基土压缩性的判定,土的变形模量与压缩模量的关系

地基土压缩性的判定,土的变形模量与压缩模量的关系 默认分类2009-12-06 20:55:31 阅读484 评论1 字号:大中小订阅 1. 压缩系数a 值与土所受的荷载大小有关。工程中一般采用100 ~200 kPa 压力区 间内对应的压缩系数a 1-2 来评价土的压缩性。即 a 1-2 <0.1/ MPa 属低压缩性土; 0.1 /MPa ≤a 1-2 <0.5/ MPa 属中压缩性土; a 1-2 ≥0.5/ MPa 属高压缩性土。 压缩模量是另一种表示土的压缩模量的指标,Es越小,土的压缩性越高。 Es<4MPa 高压缩性土 4MPa

土的压缩性与基础沉降

土的压缩性与基础沉降 [填空题] 1次固结沉降 参考答案:是指在荷载长期持续作用下,作用于土骨架上的有效压力使土结构矿物颗粒间接触点产生剪切蠕变,水膜进一步减薄,骨架进一步压缩,导致孔隙体积进一步压缩而产生的沉降 [填空题] 2简述用分层总和法计算固结沉降量的步骤。 参考答案:(1)选择沉降计算的剖面,计算地基中的自重应力和附加应力,绘制其分布曲线 (2)确定沉降量计算的深度(或称受压层的厚度) (3)将计算深度范围内土层划分为若干层 (4)确定每一层的附加应力和自重应力,以及先期固结应力 (5)计算各分层的压缩量 (6)计算最终固结沉降量 [填空题] 3固结度 参考答案:土层在固结过程中,某一时刻土层固结引起体积压缩的程度 [填空题] 4固结沉降 参考答案:是指荷载压力作用下,由于地基土的结构骨架受力压缩,使孔隙中水排出体积压缩引起的部分沉降,即由水固结引起的沉降 [填空题] 5瞬时沉降 参考答案:加荷后立即产生的沉降.固结沉降:荷载作用下,由于地基土结构骨架受力压缩,使孔隙中水排出体积压缩的部分沉降,即由水固结引起的沉降。次固结沉降:在荷载长期持续作用下,作用土骨架上的有效压力使土结构矿物颗粒间接触点产生剪切蠕动,水膜进一步减薄,骨架进一步压缩,导致孔隙体积进一步压缩而产生的沉降。

[填空题] 6引起土的压缩变形的因素。 参考答案: 1、土体组成部分的压缩(包括土固体颗粒及孔隙中水的压缩;空隙中气体的压缩;空隙中部分水和气被挤出引起空隙缩小) 2、土结构性的压缩。固结:土体的压缩是一个排水固结随时间变化的过程。固结度:土层在固结过程中,某一时刻土层固结引起体积压缩的程度 [填空题] 7压缩变形 参考答案:土体受外力作用后产生的体积缩小。有效应力与压缩变形变化的特性称为土的压缩性。 [填空题] 8沉降(基础沉降) 参考答案:在建筑物荷载作用下地基土产生应力和变形,从而引起建筑物基础的下沉的现象。

相关主题
文本预览
相关文档 最新文档