当前位置:文档之家› 信息材料-基因芯片简介

信息材料-基因芯片简介

信息材料-基因芯片简介
信息材料-基因芯片简介

基因芯片

Gene Chip

羽【内容摘要】

基因芯片技术是生物芯片的一种,它是生命科学领域里兴起的一项高新技术,它集成了微电子制造技术、激光扫描技术、分子生物学、物理和化学等先进技术。本文简要阐述了基因芯片的定义、特点、分类、工作原理及应用,并提出了基因芯片进一步发展所存在的问题。

Gene chip technology is a kind of biological chip which is a new technology integrating the microelectronics manufacturing technology, laser scanning technology, molecular biology, physics and chemistry and other advanced technology. Gene chip used a large number of specific oligonucleotide fragment or gene fragment as a probe, and fixed wafer, glass sheet, plastic sheet or nylon substrate fixed on the support which combined with the device for photoelectric measurement regularly form a two-dimensional array, and the probe will hybridize with the gene in labeled sample lead to the change electrical signal.

The article describes the definition and characteristics of gene chip as well as the classification, working principle and application briefly. And put forward some existing problems for the further development of gene chip in the end.

【关键词】

Gene Chip DNA mRNA蛋白质遗传疾病核苷酸序列蚀刻打印【正文】

一、生物芯片

生物芯片是指将成千上万的靶分子(比如DNA、RNA或蛋白质等)经过一定的方法有序地固化在面积较小的支持物(如玻璃片、硅片、尼龙膜等)上,组成密集分子排列,然后将已经标记的样品与支持物上的靶分子进行杂交,经洗脱、激光扫描后,运用计算机将所得的信号进行自动化分析。

这种方法不仅节约了试剂与样品,而且节省了大量的人力、物力与时间,使检测更为快速、准确、敏感,是目前生物检测中效率高、最为敏感和最具前途的

技术。根据在支持物上所固定的靶分子的种类可将生物芯片分为基因芯片、蛋白质芯片、组织芯片和芯片实验室等。目前,技术比较成熟、应用最广泛的是基因芯片技术,其在基因组的表达分析、药物筛选、模拟生物的基因表达及功能研究、遗传疾病基因诊断、病原微生物的诊断等方面都有广泛的应用,是一种高效、大规模获取相关生物信息的重要手段。

二、基因芯片的定义

基因芯片采用大量特定的寡核苷酸片段或基因片段作为探针,有规律地固定于与光电测量装置相结合的硅片、玻璃片、塑料片或尼龙基底等固体支持物上,形成二维阵列,与待测的标记样品的基因按碱基对配对原理进行杂交,从而检测特定基因。如图1即为一种基因芯片器件的构造。

图1 基因芯片的结构

基因探针利用核糖双链的互补碱基之间的氢键作用形成稳定的双键结构,通过测量目的基因上的光电信号来实现对样品的检测,从而使基因芯片技术成为高效的大规模获取相关生物信息的重要手段。

三、基因芯片的特点

1)高通量、多参数同步分析。目前基因芯片制作工艺可达到在1cm2的载体平面上固定数万至数十万的探针,可对样品中数量巨大的相关基因,甚至整个基因组及信息进行同步检测和分析。

2)快速全自动分析。在一定的条件下使样品中的靶基因片段同时与芯片的

多个探针进行杂交,并采用扫描仪器测量杂交信号和分析处理数据。从而,从根本上提高了测量工作的速度和效率,也极大降低了测量工作的强度和难度。

3)高精确度分析。由于芯片上的每一点,即每个探针都可以精确定位和选址,加上每个探针都可以精确设计及制备,因此可以精确检测出不同的靶基因、同一靶基因不同的状态以及在一个碱基上的差别。

4)高精密度分析。商品化芯片制作上的精密及检测试剂和方法上的统一在一定程度上保证了芯片检测的高精密度和重现性,使不同批次乃至不同实验室之间的检测结果,可以进行有效比对及分析。

5)高灵敏度分析。基因芯片选用了不易产生扩散作用的载体,探针及样品靶基因的的杂交点非常集中,加上杂交前样品靶基因的扩增和杂交后检测信号的扩张,极大地提高了检测的灵敏度,可以检测出1个细胞中低至1个拷贝的靶基因,从而使检测所需的样品量大幅度减少,一般只需要10~20μL样品。

四、基因芯片的分类

基因芯片的原理并不复杂,但其类型较为繁多,可以依据不同的分类方法进行分类,一般可分为以下几种:

1)按照载体上所添加DNA种类的不同,基因芯片可分为寡核苷酸芯片和cDNA芯片两种。寡核苷酸芯片一般以原位合成的方法固定到载体上,具有密集程度高、可合成任意系列的寡核苷酸等优点,适用于DNA序列测定、突变检测、SNP分析等;其缺点是合成寡核苷酸的长度有限,因而特异性较差,而且随着长度的增加,合成错误率增加。寡核苷酸芯片也可通过预合成点样制备,但固定率不如cDNA芯片高,寡核苷酸芯片主要用于点突变检测和测序,也可用作表达谱研究。cDNA芯片是将微量的cDNA片段在玻璃等载体上按矩阵密集排列并固化,其基因点样密度虽不及原位合成寡核苷酸芯片高,但比用传统载体的点样密度要高得多,cDNA芯片最大的优点是靶基因检测特异性非常好,主要用于表达谱研究。

2)按照载体材料分类。载体材料可分为无机材料和有机材料两种,无机材料有玻璃、硅片、陶瓷等,有机材料由有机膜、凝胶等。膜芯片的介质主要采用的是尼龙膜,其阵列密度比较低,用到的探针量较大,检测的方法主要是用放射性同位素的方法,检测的结果是一种单色的结果。而以玻璃为介质的芯片,阵列

密度高,所用的探针量少,检测方法具有多样性,所得结果是一种彩色的结果,与膜芯片相比,结果分辨率更高一些,分析的灵活性更强。

3)按照点样方式的不同可以分为原位合成芯片、微矩阵芯片、电定位芯片三种。原位合成法有三种制备方法:

①将光蚀刻技术运用到DNA的合成化学中,以单核苷酸或其他生物大分子为底物,在玻璃晶片上原位合成寡核苷酸,每次循环都有特定的核苷酸结合上去,直到达到设定的寡核苷酸长度,每个寡核苷酸片段代表了一种特定的基因,存在于DNA芯片的特定位置上,可合成任意系列的15~25个碱基长度的片段。

②利用喷墨原理,将单核苷酸前体喷到预设定的位置。这种方法类似于喷墨打印机,其将合成试剂滴在含有化学活性的氢氧基团的疏水表面,定位合成寡核苷酸。喷墨方法合成速度更快,较容易建立新的阵列。

③用物理方法限定前体物质的位置。即将前体物通过正交管道,就能合成选定长度的所有序列矩阵。

微矩阵芯片是将PCR(聚合酶链式反应)得到的cDNA、寡核苷酸片段等用针点或喷点的方法直接排列到玻璃片等介质上,从而制成芯片。其优点是成本低、容易操作,而且其样点密度通常能满足需要。电定位芯片是利用静电吸引的原理将DNA快速定位到硅基质或导电玻璃上,其优点是在电力推动下可使杂交快速进行,但制作工艺复杂、点样密度低。

4)按照基因芯片的用途可以分为基因表达芯片和DNA测序芯片,基因表达芯片可以将克隆到成千上万的基因探针或cDNA片段固定到一块DNA芯片上,对来源不同的个体、组织、细胞周期、发育阶段、分化阶段、不同的病变、不同的刺激下的细胞内的mRNA或反录后产生的c DNA进行检测,从而对这些基因表达的个体异性、病变特异性、刺激特异性进行综合分析和判断,迅速将某个或某几个基因与疾病联系起来,尽快确定这些基因的功能。同时,可进一步研究基因与基因的互相作用关系。DNA测序芯片则是对大量的基因进行序列分析。

五、基因芯片的工作原理

基因芯片技术的研究过程,包括以下四个基本步骤,

1)DNA探针的大量收集和纯化,基因芯片探针制备方法可以是根据基因设计特异性的PCR引物,对基因进行特异性地扩张,也可以是建立均一化的cDNA

文库,通过克隆鉴定、筛选、扩增产生;

2)将纯化后的探针固定在片基上,首先要将基片(主要用的是玻璃片)进行特殊的化学处理,使玻璃片醛基化或氨基化,然后将纯化的探针通过显微打印或喷打在基片上,再将打印好的玻璃片进行后处理,如水合化、加热或紫外交联等;

3)样品的标记,标记的方法一般是采用逆转录法或随机引物延伸法等;

4)杂交后芯片的扫描、图像处理的采集和数据分析。

六、基因芯片制备技术

6.1 传统制备技术

由于芯片种类较多,其制备方法也不尽相同,传统的制备方法基本可分为两类:一类是原位合成,另一类是直接点样。原位合成是用于寡氨基酸,直接点样多用于大片段DNA,有时也用于寡核苷酸甚至mRNA。原位合成主要有光刻法和压电打印法两种途径。

1. 原味光刻合成。其利用固相化学、光敏保护基及光刻技术得到位置确定、高度多样化的化合物集合。合成的第一步是利用光照射,使固体表面上的羟基脱保护,然后固体表面与光敏保护基保护的、亚磷酰胺活化的碱基单体接触,使一个核苷酸单体连接上去,合成只在那些脱去保护基的地方发生,这个过程反复进行直至合成完毕。这个方法最大的优点就是在一个较小的区域,可制造大量不同的探针。但是这种制备方法需要预选设计,制造一系列掩盖物,造价较高,制造过程中采用光脱保护方法,掩盖物孔径较小时会发生光衍射现象,制约了探针密度的进一步提高。

2. 原味打印合成。此原理与油墨打印类似,不过芯片喷印头和墨盒有多个,墨盒中装的是四种碱基的液体而不是碳粉,喷印头可在整个芯片上移动,并根据芯片上不同位点探针序列的需要,将特定的碱基喷印在芯片上的特定位置。该技术采用的化学原理与传统的DNA固相合成一致,因此不需要特殊制备的化学试剂。

3. 分子印章原位合成。其合成原理类似于传统的印章,其表面按照阵列合成的要求制作成凹凸不平的平面,依此将不同的核酸或多肽合成试剂按印到芯片片基特定的位点,然后进行合成反应。

4. 点样法。与原位合成法比较,点样法较为简单,只需将预先制备好的寡核苷酸或cDNA等样品通过自动点样装置点样于经原位特殊处理的玻璃片或其他材料上。即其样品可以事先纯化,交联的方式多样;而且可以通过调节探针的浓度使不同碱基组成的探针杂交信号一致,研究者可以方便地设计、制备符合自己需要的基因芯片。但是芯片的这种制备过程中,样品浪费较为严重,对寡核苷酸的化学修饰也会增加合成成本,而且芯片制备前需要储存大量样品。

6.2 三种新的制备技术

1. 微电子芯片

利用微电子工业常用的光刻技术,芯片被设计构建在硅/二氧化硅等基底材料上,如图2所示,经热氧化,制成1mm×1mm的阵列,每个阵列含有多个微电极,在每个电极上通过氧化硅沉积和蚀刻制备出样品池。将连接链亲和素的琼脂糖覆盖在电极上,在电场作用下生物素标记的探针即可结合在特定电极上。电子芯片最大特点是杂交速度快,可大大缩短分析时间,但制备复杂、成本高。

图2 电子基因芯片

2. 三维生物芯片

这种芯片技术主要是利用官能团化的聚丙酰氨凝胶块作为基质来固定寡氨基酸。通常的制备方法是将有活性基团的物质或丙烯酰胺衍生物与丙烯酰胺单体在玻璃板上聚合,机械切割出三维凝胶微块,使每块玻璃片上有10 000个微小的聚乙烯酰胺凝胶条,每个凝胶条可用于靶DNA、RNA或蛋白质的分析,光刻或激光蒸发除去凝胶块之间的凝胶,再将带有活性基团(氨基、醛基等)的DNA 点,加到凝胶上进行交联,再将DNA样品转移到凝胶块上。

3. 流过式芯片

即在芯片片基上制成格栅状微通道,设计及合成特定的寡氨基酸探针,结合

于微通道内芯片特定区域。从待检测样品中分离DNA或RNA,并对其进行荧光标记,然后该样品流过芯片,固定的寡氨基酸探针捕获与之相互补的核酸,再用信号检测系统分析结果。其特点是敏感度高、速度快、价格较低。

七、基因芯片的应用

1)基因表达检测。基因表达谱可直接地反映出基因组中各基因间的相互关系以及在不同状态和条件下基因的转录调控水平,从而可以通过基因组转录效率来获得共同表达的基因及其调控信息,为探索基因调控的机理提供一条有效的途径。

2)寻找新基因。基因表达水平的定量检测在阐述基因功能、探索疾病原因及机理、发现可能的诊断及治疗靶等方面是很有价值的。

3)DNA测序。人类基因组计划的实施促进了更高效率、能够自动化操作的测序方法的发展。芯片技术中杂交测序技术和邻堆杂交技术都是新的高效快速测序方法。

4)突变体和多态性的检测。基因芯片技术还可规模的检测和分析DNA的变异及多态性。随着遗传病和癌症相关基因发现数量的增加,变异和多态性分析将越来越重要。

5)传染性病原体的检测。该技术的制作方法是针对传染性病原体的特异基因,将特异基因片段或者寡氨基酸探针固定于芯片上,利用核酸分子之间碱基互补配对原理,使其与待测的样品核酸分子杂交。通过检测每个探针分子杂交信号,获得样品核酸分子的数量和序列信号,从而对一份生物样品进行检测,也可同时检测多种病原体是否存在。

6)遗传病的诊断。利用基因芯片技术,通过分析和检测患者某一特定基因气可判断遗传病患者,也可诊断有遗传病风险的胎儿,甚至是着床前的胚胎。

7)药物筛选。药物作用前后,某些基因表达的mRNA及水平都会有所变化,分别得到药物作用前后不同的mRNA,标记后作为靶序列与芯片上的探针杂交,然后通过分析杂交结果,可得到mRNA的表达情况。确定哪些基因在药品作用后表达了,哪些表达停止了,以及哪些表达升高了,哪些表达降低了,使得人们在分子水平上了解药物作用的靶点、作用方式以及代谢途径。

8)在环境科学和食品卫生领域上的应用。可以用基因芯片对环境污染物,

如有机化学污染物、无机污染物、微生物及毒素等进行测量、监测与评价,研究环境污染物对人体健康的影响、环境污染物的致癌机理、环境污染物对人体敏感基因的作用等。

【小结】

基因芯片的进一步发展存在以下问题:

1.基因芯片的生产工艺复杂、难度较大,如微流控芯片,其需要尖端的微加工、计算机及化学等技术,现阶段一般生物专业实验室根本没有能力研发这些芯片。所以各专业间的合作应增加,机械、软件、材料、化工和生物等方向的发展息息相关。

2.制备芯片所需设备及耗材价格昂贵。一直以来,生物芯片生产所需的设备如点样仪扫描仪的价格居高不下,一些普通研究机构没有能力购置这些设备。开发新型的制作设备和新的制备方法是进一步发展基因芯片的前提。

3.芯片相关的数据扫描及数据分析软件缺乏。生物芯片是一个多学科交叉技术,图像扫描及数据分析处理尤其是图像数据分析的相关软件很少。

4.实际应用芯片时方法繁琐,重复性差。由于设备不一致,样品规格不一致,实验的重复性不是很理想。所以应设计一套完善的基因芯片样品制备及测试的标准。

5.由于基因表达最终产物是产生相应的酶和蛋白质,以实现其各项生理功能。但经与蛋白质功能并非完全平行,因此基因芯片技术还需要与其他检测蛋白质与酶的实验方法相结合才能发挥最佳的作用。增加了实验的成本,延长了实验的时间。

【参考文献】

1.司士辉. 生物传感器[M]. 北京:司士辉, 2003.

2.王明华, 王剑平. 分子模拟在生物传感器研究中的应用[J]. 化学进展, 2010,

22(5): 845-851

3.赵常志, 孙伟. 化学与生物传感器[M]. 北京:赵常志,孙伟, 2012.

4.严广斌. 基因芯片[J]. 中华关节外科杂志:电子版, 2010, (4): 37-37

5.夏俊芳, 刘箐. 生物芯片应用概述[J]. 生物技术通报, 2010, (7): 46-48

6.Maryam, Mohamadi, Ali, Mostafavi. Electrochemical determination of biophenol

oleuropein using a simple label-free DNA biosensor[J]. Bioelectrochemistry, 2014, (101): 52-57

信息材料-基因芯片简介

基因芯片 Gene Chip 羽【内容摘要】 基因芯片技术是生物芯片的一种,它是生命科学领域里兴起的一项高新技术,它集成了微电子制造技术、激光扫描技术、分子生物学、物理和化学等先进技术。本文简要阐述了基因芯片的定义、特点、分类、工作原理及应用,并提出了基因芯片进一步发展所存在的问题。 Gene chip technology is a kind of biological chip which is a new technology integrating the microelectronics manufacturing technology, laser scanning technology, molecular biology, physics and chemistry and other advanced technology. Gene chip used a large number of specific oligonucleotide fragment or gene fragment as a probe, and fixed wafer, glass sheet, plastic sheet or nylon substrate fixed on the support which combined with the device for photoelectric measurement regularly form a two-dimensional array, and the probe will hybridize with the gene in labeled sample lead to the change electrical signal. The article describes the definition and characteristics of gene chip as well as the classification, working principle and application briefly. And put forward some existing problems for the further development of gene chip in the end. 【关键词】 Gene Chip DNA mRNA蛋白质遗传疾病核苷酸序列蚀刻打印【正文】 一、生物芯片 生物芯片是指将成千上万的靶分子(比如DNA、RNA或蛋白质等)经过一定的方法有序地固化在面积较小的支持物(如玻璃片、硅片、尼龙膜等)上,组成密集分子排列,然后将已经标记的样品与支持物上的靶分子进行杂交,经洗脱、激光扫描后,运用计算机将所得的信号进行自动化分析。 这种方法不仅节约了试剂与样品,而且节省了大量的人力、物力与时间,使检测更为快速、准确、敏感,是目前生物检测中效率高、最为敏感和最具前途的

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

生物芯片及应用简介

生物芯片及应用简介 简介 生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量

基因芯片技术基础知识(概念、制备、杂交、应用及发展方向)

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP (human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学)[1],涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术[2]。 一.什么是基因芯片 生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。 基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。

基因芯片的数据分析

基因表达谱芯片的数据分析 基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。然而每次实验都产生海量数据,如何解读芯片上成千上万个基因点的杂交信息,将无机的信息数据与有机的生命活动联系起来,阐释生命特征和规律以及基因的功能,是生物信息学研究的重要课题[1]。基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析,假如分类还没有形成,非监督分析和聚类方法是恰当的分析方法;假如分类已经存在,则监督分析和判别方法就比非监督分析和聚类方法更有效率。根据研究目的的不同[2,3],我们对基因芯片数据分析方法分类如下。(1)差异基因表达分析:基因芯片可用于监测基因在不同组织样品中的表达差异,例如在正常细胞和肿瘤细胞中;(2)聚类分析:分析基因或样本之间的相互关系,使用的统计方法主要是聚类分析;(3)判别分析:以某些在不同样品中表达差异显著的基因作为模版,通过判别分析就可建立有效的疾病诊断方法。 1 差异基因表达分析(difference expression, DE) 对于使用参照实验设计进行的重复实验,可以对2样本的基因表达数据进行差异基因表达分析,具体方法包括倍数分析、t检验、方差分析等。 1.1倍数变化(fold change, FC) 倍数分析是最早应用于基因芯片数据分析的方法[4],该方法是通过对基因芯片的ratio值从大到小排序,ratio 是cy3/cy5的比值,又称R/G值。一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。由于实验条件的不同,此阈值范围会根据可信区间应有所调整[5,6]。处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图等。该方法的优点是需要的芯片少,节约研究成本;缺点是结论过于简单,很难发现更高层次功能的线索;除了有非常显著的倍数变化的基因外,其它变化小的基因的可靠性就值得怀疑了;这种方法对于预实验或实验初筛是可行的[7]。此外倍数取值是任意的,而且可能是不恰当的,例如,假如以2倍为标准筛选差异表达基因,有可能没有1条入选,结果敏感性为0,同样也可能出现很多差异表达基因,结果使人认为倍数筛选法是在盲目的推测[8,9]。 1.2 t检验(t-test) 差异基因表达分析的另一种方法是t检验[10],当t超过根据可信度选择的标准时,比较

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.doczj.com/doc/09291939.html,/geo/)和ArryExpress (http:// ;https://www.doczj.com/doc/09291939.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

基因芯片技术及其应用简介(精)

基因芯片技术及其应用简介 生物科学学院杨汝琪 摘要:随着基因芯片技术的发展,基因芯片越来越多的被人们利用,它可应用于生活中的方方面面,如:它可以应用于医学、环境科学、微生物学和农业等多个方面,基因技术的发展将有利于社会进一步的发展。 关键词:基因芯片;技术;应用 基因(gene是载有生物体遗传信息的基本单位,存在于细胞的染色体(chromosome上。将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片(又称DNA 芯片、生物芯片。在一块1 平方厘米大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,实现对千万个基因的同步检测。基因芯片技术是近年来兴起的生物高新技术,把数以万计的基因片段以显微点阵的方式排列在固体介质表面,可以实现基因检测的快速、高通量、敏感和高效率检测,将可能为临床疾病诊断和健康监测等领域,带来全新的技术并开拓广阔的市场。 1 基因芯片技术原理及其分类 1.1基因芯片的原理: 基因芯片属于生物芯片的一种"其工作原理是:经过标记的待测样本通过与芯片上特定位置的探针杂交,可根据碱基互补配对的原则确定靶序列[1],经激光共聚集显微镜扫描,以计算机系统对荧光信号进行比较和检测,并迅速得出所需的信息"基因芯片技术比常规方法效率高几十到几千倍,可在一次试验中间平行分析成千上万个基因,是一种进行序列分析及基因表达信息分析的强有力工具。 1.2基因芯片分类: 1.2.1根据其制造方法可分原位合成法和合成后点样法;

1.2.2根据所用载体材料不同分为玻璃芯片!硅芯片等; 1.2.3根据载体上所固定的种类可分为和寡核苷酸芯片两种; 1.2.4根据其用途可分测序芯片!表达谱芯片!诊断芯片等 2 基因芯片技术常规流程 2.1 芯片设计根据需要解决的问题设计拟采用的芯片,包括探针种类、点阵数目、片基种类等。 2.2 芯片制备将DNA, cDNA或寡核昔酸探针固定在片基上的过程。从本质上可分为两大类fz} ,一类是在片基上直接原位合成,有光蚀刻法、压电印刷法和分子印章多次压印法三种;另一类是将预先合成的探针固定于片基表面即合成点样法。 2.3 样品制备常规方法提取样品总RNA,质检控制。再逆转录为。DNAo 2.4 样品标记在逆转录过程中标记荧光素等。 2.5 芯片杂交标记的cDNA溶于杂交液中,与芯片杂交。 2.6 芯片扫描一用激光扫描仪扫描芯片。 2.7 图像采集和数据分析专用软件分析芯片图像,然后对数据进行归一化,最后以差异为两倍的标准来确定差异表达基因。 2.8 验证用定量PCR或原位杂交验证芯片结果的可信性。 3基因芯片合成的主要方法 目前已有多种方法可以将基因片段(寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种: 3.1原位合成:

基因芯片技术的研究进展与前景

基因芯片技术的研究进展与前景 摘要 关键词基因芯片,遗传性疾病,基因组计划, 一、基因芯片技术的产生背景 基因芯片技术是伴随着人类基因组计划而出现的一项高新生物技术。2001年6月公布了人类基因组测序工作草图;2002年出发飙了较高精确度和经过详细注解的人类基因组研究结果;2004年10月发表了已填补基因组中许多Gap片段的更精确的人类全基因组序列,标志人类基因组计划的完成和新时代的开始。随着人类基因组计划的开展,也同时进行了模式生物基因组测序工作。动物、植物、细菌及病毒基因组等测序工作都已取得重大进展。 随着各种基因组计划的实施和完成(有的即将完成),一个庞大的基因数据库已经建成。怎样从海量的基因信息中发掘基因功能。如何研究成千上万基因在生命过程中所担负的角色;如何开发利用各种基因组的研究成果,将基因的序列与功能关联起来,认识基因在表达调控、机体分化等方面的生物学意义;解释人类遗传进化、生长发育、分化衰老等许多生命现象的奥秘;深入了解疾病的物质基础及发生、发展过程;开发基因诊断、治疗和基因工程药物并用来预防诊断和治疗人类几千种遗传性疾病……这些都将成为现代生物学面临的最大挑战。这样的背景促使人们研究和开发新的技术手段来解决后基因组时代面临的一系列关键问题。20世纪90年代初,为适应“后基因组时代”的到来,产生了一项新的技术,即以基因芯片为先导的生物芯片技术。 二、基因芯片的概念 基因芯片(又称DNA芯片、DNA微阵列)技术是基于核酸互补杂交原理研制的。该技术指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于支持物上后与有荧光素等发光物质标记的样品DNA或RNA分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息,从而对基因表达的量及其特性进行分析。通俗地说,就是通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,只是在固相基质上古高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,所以被称为基因芯片。 三、基因芯片技术的分类 1 根据功能分类:基因表达谱芯片和DNA测序芯片两类。基因表达图谱芯片可以将克隆的成千上万个基因特异的探针或其cDNA片段固定在一块DNA芯片上,对于来源不同的个体、组织、细胞周期、发育阶段、分化阶段、病变、刺激(包括不同诱导、不同治疗手段)下的细胞内mRNA或反转录后产生的cDNA进行检测,从而对这个基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或某几个基因与疾病联系起来,极大地加快这些基因功能的确定,同时可进一步研究基因与基因间相互作用的关系,DNA测序芯片则是基于杂交测序发展起来的。其原理是任何线状的单链DNA或RNA序列均可裂解成一系列碱基数固定、错落而重叠的寡核苷酸,如能把原序列所有这些错落重叠的寡核苷酸序列全部检测出来,就可据此重新组建出新序列。 2 根据基因芯片所用基因探针的类型不同,可分为cDNA微阵列和寡核苷酸微阵

基因芯片数据功能分析

生物信息学在基因芯片数据功能分析中的应用 2009-4-29 随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。生物信息学在基因组学中发挥着重大的作用, 而另一项崭新的技术——基因芯片已经成为大规模探索和提取生物分子信息的强有力手段,将在后基因组研究中发挥突出的作用。基因芯片与生物信息学是相辅相成的,基因芯片技术本身是为了解决如何快速获得庞大遗传信息而发展起来的,可以为生物信息学研究提供必需的数据库,同时基因芯片的数据分析也极大地依赖于生物信息学,因此两者的结合给分子生物学研究提供了一条快捷通道。 本文介绍了几种常用的基因功能分析方法和工具: 一、GO基因本体论分类法 最先出现的芯片数据基因功能分析法是GO分类法。Gene Ontology(GO,即基因本体论)数据库是一个较大的公开的生物分类学网络资源的一部分,它包含38675 个Entrez Gene注释基因中的17348个,并把它们的功能分为三类:分子功能,生物学过程和细胞组分。在每一个分类中,都提供一个描述功能信息的分级结构。这样,GO中每一个分类术语都以一种被称为定向非循环图表(DAGs)的结构组织起来。研究者可以通过GO分类号和各种GO数据库相关分析工具将分类与具体基因联系起来,从而对这个基因的功能进行描述。在芯片的数据分析中,研究者可以找出哪些变化基因属于一个共同的GO功能分支,并用统计学方法检定结果是否具有统计学意义,从而得出变化基因主要参与了哪些生物功能。 EASE(Expressing Analysis Systematic Explorer)是比较早的用于芯片功能分析的网络平台。由美国国立卫生研究院(NIH)的研究人员开发。研究者可以用多种不同的格式将芯片中得到的基因导入EASE 进行分析,EASE会找出这一系列的基因都存在于哪些GO分类中。其最主要特点是提供了一些统计学选项以判断得到的GO分类是否符合统计学标准。EASE 能进行的统计学检验主要包括Fisher 精确概率检验,或是对Fisher精确概率检验进行了修饰的EASE 得分(EASE score)。 由于进行统计学检验的GO分类的数量很多,所以EASE采取了一系列方法对“多重检验”的结果进行校正。这些方法包括弗朗尼校正法(Bonferroni),本杰明假阳性率法(Benjamini falsediscovery rate)和靴带法(bootstraping)。同年出现的基于GO分类的芯片基因功能分析平台还有底特律韦恩大学开发的Onto-Express。2002年,挪威大学和乌普萨拉大学联合推出的Rosetta 系统将GO分类与基因表达数据相联系,引入了“最小决定法则”(minimal decision rules)的概念。它的基本思想是在对多张芯片结果进行聚类分析之后,与表达模式

基因芯片数据处理流程与分析介绍

基因芯片数据处理流程与分析介绍 关键词:基因芯片数据处理 当人类基因体定序计划的重要里程碑完成之后,生命科学正式迈入了一个后基因体时代,基因芯片(microarray) 的出现让研究人员得以宏观的视野来探讨分子机转。不过分析是相当复杂的学问,正因为基因芯片成千上万的信息使得分析数据量庞大,更需要应用到生物统计与生物信息相关软件的协助。要取得一完整的数据结果,除了前端的实验设计与操作的无暇外,如何以精确的分析取得可信数据,运筹帷幄于方寸之间,更是画龙点睛的关键。 基因芯片的应用 基因芯片可以同时针对生物体内数以千计的基因进行表现量分析,对于科学研究者而言,不论是细胞的生命周期、生化调控路径、蛋白质交互作用关系等等研究,或是药物研发中对于药物作用目标基因的筛选,到临床的疾病诊断预测,都为基因芯片可以发挥功用的范畴。 基因表现图谱抓取了时间点当下所有的动态基因表现情形,将所有的探针所代表的基因与荧光强度转换成基本数据(raw data) 后,仿如尚未解密前的达文西密码,隐藏的奥秘由丝丝的线索串联绵延,有待专家抽丝剥茧,如剥洋葱般从外而内层层解析出数千数万数据下的隐晦含义。 要获得有意义的分析结果,恐怕不能如泼墨画般洒脱随兴所致。从raw data 取得后,需要一连贯的分析流程(图一),经过许多统计方法,才能条清理明的将raw data 整理出一初步的分析数据,当处理到取得实验组除以对照组的对数值后(log2 ratio),大约完成初步的统计工作,可进展到下一步的进阶分析阶段。

图一、整体分析流程。基本上raw data 取得后,将经过从最上到下的一连串分析流程。(1) Rosetta 软件会透过统计的model,给予不同的权重来评估数据的可信度,譬如一些实验操作的误差或是样品制备与处理上的瑕疵等,可已经过Rosetta error model 的修正而提高数据的可信值;(2) 移除重复出现的探针数据;(3) 移除flagged 数据,并以中位数对荧光强度的数据进行标准化(Normalized) 的校正;(4) Pearson correlation coefficient (得到R 值) 目的在比较技术性重复下的相似性,R 值越高表示两芯片结果越近似。当R 值超过0.975,我们才将此次的实验结果视为可信,才继续后面的分析流程;(5) 将技术性重复芯片间的数据进行平均,取得一平均之后的数据;(6) 将实验组除以对照组的荧光表现强度差异数据,取对数值(log2 ratio) 进行计算。 找寻差异表现基因 实验组与对照组比较后的数据,最重要的就是要找出显著的差异表现基因,因为这些正是条件改变后而受到调控的目标基因,透过差异表现基因的加以分析,背后所隐藏的生物意义才能如拨云见日般的被发掘出来。 一般根据以下两种条件来筛选出差异表现基因:(i) 荧光表现强度差异达2 倍变化(fold change 增加2 倍或减少2倍) 的基因。而我们通常会取对数(log2) 来做fold change 数值的转换,所以看的是log2 ≧1 或≦-1 的差异表现基因;(ii) 显著值低于0.05 (p 值< 0.05) 的基因。当这两种条件都符合的情况下所交集出来的基因群,才是显著性高且稳定的差异表现基因。

基因芯片相关图像技术的简单介绍

本科课程论文 基因芯片相关图像技术的简单介绍 张大力 201330200125 指导教师邓继忠 学院名称生命科学学院专业名称14生物科学2班论文提交日期2017年6月9日

摘要 生物芯片是一种高效快速地生物学检测手段,以探针和底物的特异性结合为基本原理。其反应结果常常显示为荧光点阵列,往往具有信息量大,信息密度大的特点,人工难以识别和处理,因此多采用自动化手段进行处理,包括图像技术和计算机技术。本文简单介绍现有的几天芯片图像处理过程中所用到的图像技术。 关键词:图像技术、生物芯片、基因芯片。

1 生物芯片简介 生物芯片是20世纪90年代出现的一种将分子生物学/基因工程和芯片结合的一项技术,根据性能可分为功能芯片和信息芯片两大类。 功能芯片是指在芯片上集成一系列反应所需的试剂和条件,在一块芯片生完成固定的,程序化的,复杂的反应,从而大大减少检测人员的劳动强度,并使检测过程快速方便。 信息芯片又可以根据芯片探针和探测目标的不同分为基因芯片、蛋白芯片、细胞芯片、组织芯片等。[1]信息芯片是现在广泛使用的一类芯片,是在芯片基质材料上安装许多,基质可以是玻璃、金属、尼龙或者其他材料。基因芯片又是信息芯片中最常使用的。 生物芯片上探针可与样品液体中的目标的特异性结合,结合的产物可以经过处理,在激光的照射下发出特定波长的荧光,如果没有发生结合的探针或者目标不会发出荧光。 用特定的光照射反应后的芯片,使其上面发生特异性结合的部位发出荧光,再用技术手段取得此时芯片的图像。通过对芯片图像中荧光的位置,颜色、强弱进行分析可以推测基因芯片上探针发生反应的情况。进而得知样品中待测目标的情况,包括样品中某同可以和探针特异性结合的目标是否存在,含量、浓度是多少等,这些信息可以作为进一步判断的依据。 2 生物芯片图像信息的采集 反应后经光源照射发出荧光的芯片包含我们所需要的信息,所谓基因芯片的扫描就是指将含有大量的以微阵列方式排列的生物杂交反应样点的基因芯片以图像的方式读取出来,且在保证样点信息的能够准确描述前提下,扫描图像转变成可供计算机处理的数字图像[2]。基因芯片以外的生物芯片的与基因芯片类似。 常见的生物芯片扫描仪有两种分别是:CCD 系统扫描仪和激光共聚焦扫描仪,中CCD 扫描仪的应用较为广泛。[3]

电子信息材料发展趋势

电子信息材料发展趋势

————————————————————————————————作者:————————————————————————————————日期: 2

电子信息材料发展趋势 电子信息材料发展趋势 电子信息材料及产品支撑着现代通信、计算机、信息网络技术、微机械智能系统、工业自动化和家电等现代高技术产业。电子信息材料产业的发展规模和技术水平,已经成为衡量一个国家经济发展、科技进步和国防实力的重要标志,在国民经济中具有重要战略地位,是科技创新和国际竞争最为激烈的材料领域。 随着电子学向光电子学、光子学迈进,微电子材料在未来10~15年仍是最基本的信息材料,光电子材料、光子材料将成为发展最快和最有前途的信息材料。电子、光电子功能单晶将向着大尺寸、高均匀性、晶格高完整性以及元器件向薄膜化、多功能化、片式化、超高集成度和低能耗方向发展。一、集成电路和半导体器件用材料由单片集成向系统集成发展。微电子技术发展的主要途径是通过不断缩小器件的特征尺寸,增加芯片面积以提高集成度和信息处理速度,由单片集成向系统集成发展。 1.Si、GaAs、InP等半导体单晶材料向着大尺寸、高均质、晶格高完整性方向发展。椎8英吋硅芯片是目前国际的主流产品,椎12英吋芯片已开始上市,GaAs芯片椎4英吋已进入大批量生产阶段,并且正在向椎6英吋生产线过渡;对单晶电阻率的均匀性、杂质含量、微缺陷、位错密度、芯片平整度、表面洁净度等都提出了更加苛刻的要求。 2.在以Si、GaAs为代表的第一代、第二代半导体材料继续发展的同时,加速发展第三代半导体材料———宽禁带半导体材料SiC、GaN、ZnSe、金刚石材料和用SiGe/Si、SOI等新型硅基材料大幅度提高原有硅集成电路的性能是未来半导体材料的重要发展方向。 3.继经典半导体的同质结、异质结之后,基于量子阱、量子线、量子点的器件设计、制造和集成技术在未来5~15年间,将在信息材料和元器件制造中占据主导地位,分子束外延MBE 和金属有机化合物化学汽相外延 MOCVD 技术将得到进一步发展和更加广泛的应用。 4.高纯化学试剂和特种电子气体的纯度要求将分别达到lppb~0.1ppb和6N级以上,0.5μm以上的杂质颗粒必须控制在5个/毫升以下,金属杂质含量控制在ppt级,并将开发替代有毒气体的新品种电子气体。 二、光电子材料向纳米结构、非均值、非线性和非平衡态发展。光电集成将是21世纪光电子技术发展的一个重要方向。光电子材料是发展光电信息技术的先导和基础。材料尺度逐步低维化———由体材料向薄层、超薄层和纳米结构材料的方向发展,材料系统由均质到非均质、工作特性由线性向非线性,由平衡态向非平衡态发展是其最明显的特征。发展重点将主要集中在激光材料、红外探测器材料、液晶显示材料、高亮度发光二极管材料、光纤材料。 1.激光晶体材料:向着大尺寸、高功率、LD泵浦、宽带可调谐以及新波长、多功能应用方向发展。 2.红外探测器材料:大面积高均匀性HgCdTe外延薄膜及大尺寸ZnCdTe衬底材料仍是2010年前红外探测器所用的主要材料。 3.液晶材料:研究发展超扭曲向列型 STN 和薄膜晶体管型 TFT 显示器所用混合液晶,提高性能,降低成本。 4.高亮度发光二极管材料:继规模生产发红、橙、黄色的GaAs基、GaP基外延材料之后,拓宽发光波段,开发发蓝光的GaN基、ZnSe基外延材料将成为研究热点。

基因芯片技术及其应用(精)

基因芯片技术及其应用 李家兴1001080728 园艺107 基因芯片( gene chip, DNA chip, DNA microarray 又被称为DNA芯片、DNA微阵列和生物芯片, 是指以大量人工合成的或应用常规分子生物学技术获得的核酸片段作为探针, 按照特定的排列方式和特定的手段固定在硅片、载玻片或塑料片上, 一个指甲盖大小的芯片上排列的探针可以多达上万个[1- 3]。在使用时,先将所研究的样品标记, 然后与芯片上的寡聚核苷酸探针杂交,再用激光共聚焦显微镜等设备对芯片进行扫描, 配合计算机软件系统检测杂交信号的强弱, 从而高效且大规模地获得相关的生物信息。此项技术将大量的核酸分子同时固定在载体上, 一次可检测分析大量的DNA和RNA, 解决了传统核酸印迹杂交技术复杂、自动化程度低、检测目标分子数量少、成本高、效率低等的缺点[4]。此外, 通过设计不同的探针阵列( array , 利用杂交谱重建DNA序列, 还可实现杂交测序( sequencing by hybridization,SBH [5]。目前, 该技术在基因表达研究、基因组研究、序列分析及基因诊断等领域已显示出重要的理论和应用价值[6]。 1 基因芯片技术的产生和发展 21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[7,8]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP 的研究密不可分[9]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。基因芯片技术的理论基础是核酸杂交理论, Southern 印迹可以看作是生物芯片的雏形; 其后, 人们又发明了一个以膜片为介质基础的克隆库扫描

全球新材料产业发展特征与趋势

全球新材料产业发展特征与趋势 内容来源:互联网浏览次数:1248 更新时间:2018-04-08 新材料是指新出现的具有优异性能或特殊功能的材料,或是传统材料改进后性能明显提高或具有新功能的材料。融入了当代众多学科先进成果的新材料产业是支撑国民经济发展的基础产业,是高技术产业的发展先导和重要内涵,逐渐成为促进经济快速增长和提升企业及地区竞争力的源动力。 我国新材料产业细分产业导向 作为《中国制造2025》制造强国战略提出的十大重点领域之一,新材料产业承担着引领材料工业升级换代,支撑战略性新兴产业发展,保障国民经济和国防军工建设等重要使命。 一、国外新材料产业发展特征与趋势 1、各国新材料产业发展现状 新材料产业的发展水平已成为衡量一个国家经济社会发展、科技进步和国防实力的重要标志,因此世界各国纷纷在新材料领域制定出台相应的规划,竭力抢占新材料产业的制高点。

目前,发达国家仍在国际新材料产业中占据领先地位,世界上新材料龙头企业主要集中在美国、欧洲和日本,其中,日、美、德6家企业占全球碳纤维产能70%以上,日、美5家企业占全球12寸晶圆产量的90%以上,日本3家企业占全球液晶背光源发光材料产量的90%以上。 世界各国新材料领域相关发展计划 2、各国新材料产业发展趋势

(1)、高新技术发展促使材料不断更新换代 高新技术的快速发展对关键基础材料提出新的挑战和需求,同时材料更新换代又促进了高技术成果的产业化。 如微电子芯片集成度及信息处理速度大幅提高,成本不断降低,硅材料发挥了重要作用;新兴产业如氮化镓等化合物半导体材料的发展,催生了半导体照明技术;LED灯的光效给照明工业带来革命性变化;太阳能电池转换效率不断提高,极大推动了新能源产业发展。镁钛合金等高性能结构材料的加工技术取得突破,成本不断降低,研究与应用重点由航空、航天以及军工扩展到高附加值民用领域。 (2)、绿色、低碳成为新材料发展的重要趋势 新能源产业崛起,拉动上游产业如风机制造、光伏组件、多晶硅等一系列制造业和资源加工业的发展,促进智能电网、电动汽车等输送与终端产品的开发和生产。 欧美等发达国家已经通过立法,促进节能建筑和光伏发电建筑的发展,功能材料向微型化、多功能化、模块集成化、智能化等方向发展以提升材料的性能;纳米技术与先进制造技术的融合将产生体积更小、集成度更高、更加智能化、功能更优异的产品。绿色、低碳的新材料技术及产业化将成为未来发展的主要方向。 (3)、跨国集团在新材料产业中仍占据主导地位 目前,世界著名企业集团凭借其技术研发、资金和人才等优势不断向新材料领域拓展,在高附加值新材料产品中占据主导地位。 尤尼明几乎垄断着国际市场上4N8及以上高端石英砂产品;信越、SUMCO、Siltronic、SunEdison等企业占据国际半导体硅材料市场份额的80%以上。半绝缘砷化镓市场90%以上被日本日立电工、住友电工、三菱化学和德国FCM所占有。 DuPont、Daikin、Hoechst、3M、Ausimont、ATO和ICI等7家公司拥有全球90%的有机氟材料生产能力。美国科锐(Cree)公司的碳化硅衬底制备技术具有很强市场竞争力,飞利浦(Philips)控股的美国Lumileds公司的功率型白光LED国际领先,美、日、德等国企业拥有70%LED外延生长和芯片制备核心专利。 小丝束碳纤维的制造基本被日本的东丽纤维公司、东邦公司、三菱公司和美国的Hexel 公司所垄断,而大丝束碳纤维市场则几乎由美国的Fortafil公司、Zoltek公司、Aldila公司和德国的SGL公司4家所占据。美铝、德铝、法铝等世界先进企业在高强高韧铝合金材料的研制生产领域居世界主导地位。美国的Timet、RMI和Allegen Teledyne等三大钛生产企业的总产量占美国钛加工总量的90%,是世界航空级钛材的主要供应商。 (4)、新材料研发模式变革成为关注的重点 21世纪以来,发达国家逐渐意识到依赖于直觉与试错的传统材料研究方法已跟不上工业快速发展的步伐,甚至可能成为制约技术进步的瓶颈。因此,亟需革新材料研发方法,加速材料从研发到应用的进程。 例如,美国政府“材料基因组计划”(MGI),其新材料从发现到应用的速度至少提高一倍,

基因芯片技术及其应用

基因芯片技术及其应用摘要: DNA芯片技术是指在固相支持物上原位合成寡核苷酸,或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。 关键词 DNA芯片制备检测应用 随着人类基因组计划的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组测序得以测定,基因序列数据正在以前所未有的速度迅速增长。DNA芯片的出现是科学发展的必然产物。本文就DNA芯片的制备及其在医学领域的应用予以阐述。 1 基因芯片的制备及检测技术[1-4] 1.1 基因芯片的制备方法 1.1.1 原位合成法其中最具代表的是原位光刻合成法。该法是利用分子生物学、微电光刻技术及计算机技术等直接在基片上合成所需的DNA探针。除原位光刻合成法外,原位合成法还包括原位喷印合成和分子印章在片合成法。 1.1.2 直接点样法该法是将制备好的DNA(cDNA)片段直接点在芯片上。近来有人提出用电定位捕获法和选择性沉淀法制备芯片。 1.1.3 电定位捕获法是将生物素标记的探针在电场的作用下快速地固定在含有链霉素亲和素的琼脂糖凝胶膜上。由于生物素与链霉素亲和素的强亲合力,使得探针的固定更加容易和牢固。在电场的作用下,靶基因能快速地在杂交部位积聚,大大缩短了杂交时间,提高了杂交的效率,且改变电场电极的方向可以除去未杂交或低效率杂交的靶基因。 1.1.4 选择性沉淀法该技术是用金属纳米粒标记探针的方法来制备微阵列,靶基因在芯片上与探针杂交后发生选择性沉淀,通过检测沉淀物的电化学值等来获取相应的生物信息。

Bioconductor基因芯片数据分析系列(一):数据的读取

Bioconductor基因芯片数据分析系列(一):R包中数据的读取 R软件的Bioconductor包是分析芯片数据的神器,今天小编打算推出芯片数据的系列教程。首先讲数据读取,以CLL数据包中的数据为例。 打开R studio。 #安装所需的R包以及CLL包,注意大小写,一般函数都是小写的 source("https://www.doczj.com/doc/09291939.html,/biocLite.R"); biocLite(“CLL”) 图1.显示已经安装好Bioconductor了,版本为3.4 #打开CLL包 library(CLL)

图2.显示打开CLL成功

图3.右侧栏内可见看到目前载入的程序包 data(CLLbatch) #调用RMA算法对数据预处理 CLLrma<-rma(CLLbatch) #读取处理后所有样品的基因表达值 e<- exprs(CLLrma) #查看数据 e 我们可以看到,CLL数据集中共有24个样品(CLL10.CEL, CLL11.CEL, CLL12.CEL, 等),此数据集的病人分为两组:稳定组和进展组,采用的设计为两组之间的对照试验(Control Test)。从上面的结果可知,Bioconductor具有强大的数据预处理能力和调用能力,仅仅用了6行代码就完成了数据的读取及预处理。

Bioconductor基因芯片数据分析系列(二):GEO下载数据CEL的读取首先得下载一个数据,读取GEO的CEL文件采用如下命令: 登陆pubmed,找到一个你感兴趣的数据库

在底下栏目下载CEL文件 打开R软件 #安装所需的R包以及CLL包,注意大小写,一般函数都是小写的 source("https://www.doczj.com/doc/09291939.html,/biocLite.R"); biocLite(“CLL”) >library(affy) >affybatch<- ReadAffy(celfile.path = "GSE36376_RAW") 请注意目录的路径,在window下,反斜杠‘\’要用转义字符“\\”表示。 然后可以使用RMA或者MAS5等方法对数据进行background.correction, normaliztion, pm.correct等等一系列处理。如果你一切用默认参数,则可以使用如下命令: >eset<- rma(affybatch),or eset<- mas5(affybatch) >exp<- exprs(eset) exp就是数字化的表达谱矩阵了 请注意,rma只使用匹配探针(PM)信号,exp数据已经进行log2处理。mas5综合考虑PM和错配探针(MM)信号,exp数据没有取对数。 下一期就得等到2017年春节期间啦,敬请期待~ 另外一种是直接利用GEO上面的GEO2R按钮里面的R script下载文件: # Version info: R 3.2.3, Biobase 2.30.0, GEOquery 2.40.0, limma 3.26.8 # R scripts generated Mon Dec 26 06:54:42 EST 2016 Server: https://www.doczj.com/doc/09291939.html, Query: acc=GSE36376&platform=GPL10558&type=txt&groups=&color s=&selection=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX&padj=fdr&logtransform=auto&col umns=ID&columns=adj.P.Val&columns=P.Value&columns=F&c

相关主题
文本预览
相关文档 最新文档