当前位置:文档之家› 八年级数学上册全等三角形单元测试卷 (word版,含解析)

八年级数学上册全等三角形单元测试卷 (word版,含解析)

八年级数学上册全等三角形单元测试卷 (word版,含解析)
八年级数学上册全等三角形单元测试卷 (word版,含解析)

八年级数学上册全等三角形单元测试卷 (word 版,含解析)

一、八年级数学轴对称三角形填空题(难)

1.如图,在菱形ABCD 中,∠ABC=120°,AB=10cm ,点P 是这个菱形内部或边上的一点.若以P ,B ,C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为______cm .

【答案】10310-

【解析】

解:连接BD ,在菱形ABCD 中,

∵∠ABC =120°,AB =BC =AD =CD =10,∴∠A =∠C =60°,∴△ABD ,△BCD 都是等边三角形,分三种情况讨论:

①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P 与点D 重合时,PA 最小,最小值PA =10;

②若以边PB 为底,∠PCB 为顶角时,以点C 为圆心,BC 长为半径作圆,与AC 相交于一点,则弧BD (除点B 外)上的所有点都满足△PBC 是等腰三角形,当点P 在AC 上时,AP 最小,最小值为10310-;

③若以边PC 为底,∠PBC 为顶角,以点B 为圆心,BC 为半径作圆,则弧AC 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点A 重合时,PA 最小,显然不满足题意,故此种情况不存在;

综上所述,PA 的最小值为10310-(cm ).

故答案为:10310-.

点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.

2.在ABC ?中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=?,

则BAC ∠=______°.

【答案】80或100

【解析】

【分析】

根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,

,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=?,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=?,联立即可求得.

【详解】

由题意可分如下两种情况:

(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,

1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠

(等边对等角),

两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,

又12DAE BAC ∠+∠+∠=∠

20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+?

由三角形内角和定理得180B C BAC ∠+∠+∠=?,

20180BAC BAC ∴∠+?+∠=?

80BAC ∴∠=?

(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,

3,4B C ∴∠=∠∠=∠

(等边对等角),

两式相加得34B C ∠+∠=∠+∠,

又34DAE BAC ∠+∠+∠=∠,

3420BAC DAE BAC ∴∠+∠=∠-∠=∠-?

20B C BAC ∴∠+∠=∠-?

由三角形内角和定理得180B C BAC ∠+∠+∠=?,

20180BAC BAC ∴∠-?+∠=?

100BAC ∴∠=?

.

故答案为80或100.

【点睛】

本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.

3.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.

【答案】4

【解析】

【分析】

过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据32ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.

【详解】

解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,

∵BC=32,∠ABC=45°,BD平分∠ABC,

∴△BCE是等腰直角三角形,

∴CE=BC?cos45°=32×2

=4.

∴CM+MN的最小值为4.

【点睛】

本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.

4.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作

DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.

【答案】14.

【解析】

【分析】

先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.

【详解】

∵BF平分∠ABC,

∴∠DBF=∠CBF,

∵DE∥BC,

∴∠CBF=∠DFB,

∴∠DBF=∠DFB,

∴BD=DF,

同理FE=EC,

∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.

故答案为:14.

【点睛】

此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.

5.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

【答案】8

【解析】

【分析】

分别以A、B点为圆心,AB为半径作圆,找到格点即可(A、B、C共线除外);此外加上在AB的垂直平分线上有两个格点,即可得到答案.

【详解】

解:以A点为圆心,AB为半径作圆,找到格点即可,(A、B、C共线除外);以B点为圆心,AB为半径作圆,在⊙B上的格点为C点;在AB的垂直平分线上有两个格点.故使△ABC是等腰三角形的格点C有8个.

【点睛】

本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.

6.如图,在△ABC中,AB=AC,点D、E在BC的延长线上,G是AC上一点,且CG=CD,F是GD上一点,且DF=DE.若∠A=100°,则∠E的大小为_____度.

【答案】10

【解析】

【分析】

由DF=DE ,CG=CD 可得∠E=∠DFE ,∠CDG=∠CGD ,再由三角形的外角的意义可得

∠GDC=∠E+∠DFE=2∠E ,∠ACB=∠CDG+∠CGD=2∠CD G ,进而可得∠ACB=4∠E ,最后代入数据即可解答.

【详解】

解:∵DF =DE ,CG =CD ,

∴∠E =∠DFE ,∠CDG =∠CGD ,

∵GDC =∠E +∠DFE ,∠ACB =∠CDG +∠CGD ,

∴GDC =2∠E ,∠ACB =2∠CDG ,

∴∠ACB =4∠E ,

∵△ABC 中,AB =AC ,∠A =100°,

∴∠ACB =40°,

∴∠E =40°÷4=10°.

故答案为10.

【点睛】

本题考查等腰三角形的性质以及三角形外角的定义,解题的关键是灵活运用等腰三角形的性质和三角形的外角的定义确定各角之间的关系.

7.如图,ABC ?中,AB AC =,点D 是ABC ?内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°

【答案】80

【解析】

【分析】

根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.

【详解】

∵CD平分∠ACE,

∴∠ACE=2∠ACD=2∠ECD,

∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,

∵∠AEC=100°,

∴∠ABC+∠ECB=100°,

∴∠ABC+∠ACB-2∠ACD=100°,

∵AB=AC,

∴∠ABC=∠ACB,

∴2∠ACB-2∠ACD=100°,

∴∠ACB-∠ACD=50°,即∠DCB=50°,

∵DB=DC,

∴∠DBC=∠DCB,

∴∠BDC=180°-2∠DCB=180°-2×50°=80°.

【点睛】

本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.

8.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。连接EC,过点 E 作 EF⊥EC 交射线 BA 于点 F,EF、AC 交于点 G。若 DE=3,△EGC 与△AFG 面积的差是 2,则 BD=_____.

【答案】5

【解析】

【分析】

在DC上取点M,使DM=DE,连接EM,通过证明?FAE??EMC,根据△EGC 与△AFG 面积的差是 2,推出△EAC 与△EMC 面积的差是 2,然后设MC=x,则AE=x,AD=x+3,利用面积差即可求出x,即可求出BD.

【详解】

解:在DC上取点M,使DM=DE,连接EM

∵Rt △ABC ,AB=AC ,AD ⊥ BC

∴BD=CD=AD ,∠EAF=135°

同理∠EMC=135°

∴AE=CM

∠AEF+∠CED=∠ECM+∠CED=90°

∴∠AEF=∠ECM

∴?FAE ??EMC

∵S △EGC -S △AFG =2

∴S △EAC -S △FAE =2

∴S △EAC -S △EMC =2

设MC=x ,则AE=x ,AD=x+3

∵S △EAC =

()132x x ??+ ,S △MEC =132x ?? ∴()132x x ??+-132

x ??=2 解得x=2(x>0,负值舍去),

∴AD=2+3=5

∴BD=AD=5

故答案为:5.

【点睛】

本题主要考查了三角形全等的性质与判定,等腰直角三角形的性质以及三角形面积计算,熟练掌握各知识点,学会综合应用,正确添加辅助线是关键.

9.如图,在四边形ABCD 中,∠A +∠C =180°,E 、F 分别在BC 、CD 上,且AB =BE ,AD =DF ,M 为EF 的中点,DM =3,BM =4,则五边形ABEFD 的面积是_____.

【答案】12

【解析】

【分析】

延长BM至G,使MG=BM,连接FG、DG,证明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,证出AB=FG,证明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性质即可得DM⊥BM,由五边形ABEFD的面积=△DBG的面积,可求解.

【详解】

延长BM至G,使MG=BM=4,连接FG、DG,如图所示:

∵M为EF中点,

∴ME=MF,

在△BME和△GMF中,

BM MG

BME GMF

ME MF

=

?

?

∠=∠

?

?=

?

∴△BME≌△GMF(SAS),

∴FG=BE,∠MBE=∠MGF,S△BEM=S△GFM,

∴FG∥BE,

∴∠C=∠GFC,

∵∠A+∠C=180°,∠DFG+∠GFC=180°,

∴∠A=∠DFG,

∵AB=BE,

∴AB=FG,

在△DAB和△DFG中,

AB FG

A DFG

AD DF

=

?

?

∠=∠

?

?=

?

∴△DAB≌△DFG(SAS),

∴DB=DG,S△DAB=S△DFG,

∵MG =BM ,

∴DM ⊥BM ,

∴五边形ABEFD 的面积=△DBG 的面积=

12×BG ×DM =12

×8×3=12, 故答案为:12.

【点睛】

本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.

10.如图,已知30AOB ∠=?,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.

【答案】18

【解析】

【分析】

由30°角我们经常想到作垂线,那么我们可以作DM 垂直于OA 于M ,作PN 垂直于OB 于点N ,证明△PMD ≌△PND ,进而求出DF 长度,从而求出OF 的长度.

【详解】

如图所示,作DM 垂直于OA 于M ,作PN 垂直于OB 于点N.

∵∠AOB=30°,∠DMO=90°,PD=DO=14,

∴DM=7,∠NPO=60°,∠DPO=30°,

∴∠NPD=∠DPO=30°,

∵DP=DP ,∠PND=∠PMD=90°,

∴△PND ≌△PMD ,

∴ND=7,

∵EF=6,

∴DF=ND-NF=7-3=4,

∴OF=DF+OD=14+4=18.

【点睛】

本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键. 二、八年级数学轴对称三角形选择题(难)

11.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,

按此规律作下去,若11A B O α∠=,则1010A B O ∠=

( )

A .102a

B .92a

C .20a

D .18

a 【答案】B

【解析】

【分析】 根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.

【详解】

解:1212B A B B =,11A B O α∠=,

2212

A B O α∴∠=, 同理332111222

A B O αα∠=?=, 443

12A B O α∠=, 112n n n A B O α-∴∠=

, 101092A B O α

∴∠=,

故选:B .

【点睛】

本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.

12.如图,坐标平面内一点A(2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )

A .2

B .3

C .4

D .5

【答案】C

【解析】 以O 点为圆心,OA 为半径作圆与x 轴有两交点,这两点显然符合题意.以A 点为圆心,OA 为半径作圆与x 轴交与两点(O 点除外).以OA 中点为圆心OA 长一半为半径作圆与x 轴有一交点.共4个点符合,

13.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )

A .1

B .2

C .3

D .4

【答案】C

【解析】

【分析】 根据等边三角形的性质证出△BAE ≌△DAC ,可得BE =CD ,从而得出①正确;

过A 作AM ⊥BF 于M ,过A 作AN ⊥DC 于N ,由△BAE ≌△DAC 得出∠BEA =∠ACD ,由等角的补角相等得出∠AEM =∠CAN ,由AAS 可证△AME ≌△ANC ,得到AM =AN ,由角平分线的判定定理得到FA 平分∠EFC ,从而得出②正确;

在FA 上截取FG ,使FG =FE ,根据全等三角形的判定与性质得出△AGE ≌△CFE ,可得AG =CF ,即可求得AF =CF +EF ,从而得出④正确;

根据CF +EF =AF ,CF +DF =CD ,得出CD ≠AF ,从而得出FE ≠FD ,即可得出③错误.

【详解】

∵△ABD 和△ACE 是等边三角形,

∴∠BAD =∠EAC =60°,AE =AC =EC .

∵∠BAE +∠DAE =60°,∠CAD +∠DAE =60°,

∴∠BAE =∠DAC ,

在△BAE 和△DAC 中,

AB AD

BAE DAC

AE AC

=

?

?

∠=∠

?

?=

?

∴△BAE≌△DAC(SAS),

∴BE=CD,①正确;

过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.

∵△BAE≌△DAC,

∴∠BEA=∠ACD,

∴∠AEM=∠ACN.

∵AM⊥BF,AN⊥DC,

∴∠AME=∠ANC.

在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,

∴AM=AN.

∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;

在FA上截取FG,使FG=FE,如图2.

∵∠BEA=∠ACD,∠BEA+∠AEF=180°,

∴∠AEF+∠ACD=180°,

∴∠EAC+∠EFC=180°.

∵∠EAC=60°,

∴∠EFC=120°.

∵FA平分∠EFC,

∴∠EFA=∠CFA=60°.

∵EF=FG,∠EFA=60°,

∴△EFG是等边三角形,

∴EF=EG.

∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,

∴∠AEG=∠CEF,

在△AGE和△CFE中,

AE AC

AEG CEF

EG EF

=

?

?

∠=∠

?

?=

?

∴△AGE ≌△CFE (SAS ),

∴AG =CF .

∵AF =AG +FG ,

∴AF =CF +EF ,④正确;

∵CF +EF =AF ,CF +DF =CD ,CD ≠AF ,

∴FE ≠FD ,③错误,

∴正确的结论有3个.

故选C .

【点睛】

本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.

14.如图,在四边形ABCD 中,AB AC =,60ABD ∠=,75ADB ∠=,

30BDC ∠=,则DBC ∠=( )°

A .15

B .18

C .20

D .25

【答案】A

【解析】

【分析】 延长BD 到M 使得DM =DC ,由△ADM ≌△ADC ,得AM =AC =AB ,得△AMB 是等边三角形,得∠ACD =∠M =60°,再求出∠BAO 即可解决问题.

【详解】

如图,延长BD 到M 使得DM =DC.

∵∠ADB =75°,

∴∠ADM =180°﹣∠ADB =105°.

∵∠ADB =75°,∠BDC =30°,

∴∠ADC =∠ADB +∠BDC =105°,

∴∠ADM =∠ADC.

在△ADM 和△ADC 中,

AD AD

ADM ADC

DM DC

=

?

?

∠=∠

?

?=

?

∴△ADM≌△ADC,

∴AM=AC.

∵AC=AB,

∴AM=AC=AB,∠ABC=∠ACB.

∵∠ABD=60°,

∴△AMB

是等边三角形,

∴∠M=∠DCA=60°.

∵∠DOC=∠AOB,∠DCO=∠ABO=60°,

∴∠BAO=∠ODC=30°.

∵∠CAB+∠ABC+∠ACB=180°,

∴30°+2(60°+∠CBD)=180°,

∴∠CBD=15°.

故选:A.

【点睛】

本题考查了等边三角形的判定和性质、全等三角形的判定和性质等知识,解决问题的关键是添加辅助线构造全等三角形,题目有一定难度.

15.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①AP⊥BC;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有( )

A.1个B.2个C.3个D.4个

【答案】D

【解析】

【分析】

根据到角的两边的距离相等的点在角的平分线上可得AP 平分∠BAC ,根据等腰三角形“三线合一”的性质判断出①正确;根据HL 证明Rt △APR ≌Rt △APS ,即可判断②正确;根据等边对等角的性质可得∠APQ =∠PAQ ,根据三角形外角的性质得到然后得到

∠PQC =2∠PAC =60°=∠BAC ,然后根据同位角相等两直线平行可得QP ∥AB ,从而判断出③正确,④由③易证△QPC 是等边三角形,得到PQ =PC ,等量代换得到BP =PQ ,用HL 证明Rt △BRP ≌Rt △QSP ,即可得到④正确.

【详解】

∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上.

∵AB =AC ,∴AP ⊥BC ,故①正确;

∵PA =PA ,PR =PS ,∴Rt △APR ≌Rt △APS ,∴AS =AR ,故②正确;

∵AQ =PQ ,∴∠APQ =∠PAQ ,∴∠PQC =2∠PAC =60°=∠BAC ,∴PQ ∥AR ,故③正确; 由③得:△PQC 是等边三角形,∴△PQS ≌△PCS ,∴PQ =PC .

又∵AB =AC ,AP ⊥BC ,∴BP =PC ,∴BP =PQ .

∵PR =PS ,∴Rt △BRP ≌Rt △QSP ,故④也正确.

∵①②③④都正确.

故选D .

【点睛】

本题考查了等腰三角形的性质、全等三角形的判定与性质以及等边三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.

16.如图,Rt ABC ?中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )

A .52

B .125

C .4

D .53

【答案】B

【解析】

【分析】

先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =

12AC?BC=12

AB?CE ,求出CE 进而得出答案即可. 【详解】

根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,

∵∠ACB=90°,

∴∠ECF=45°,

又∵CE ⊥AB ,

∴△ECF 是等腰直角三角形,

∴EF=CE ,

又∵S △ABC =

12AC?BC=12

AB?CE , ∴AC?BC=AB?CE , ∵3AC =,4BC =,5AB =,

∴125CE =

, ∴EF 125

=. 所以答案为B 选项.

【点睛】

本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.

17.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于( )

A .108°

B .114°

C .126°

D .129°

【答案】C

【解析】

【分析】 按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC 和∠DOC 的度数,利用三角形的内角和定理可得∠OCD 的度数.

【详解】

解:展开如图,五角星的每个角的度数是,

1805

=36°. ∵∠COD =360°÷10=36°,∠ODC=36°÷2=18°,

∴∠OCD =180°-36°-18°=126°,故选C .

【点睛】

本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.

18.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()

A.35°B.40°C.45°D.50°

【答案】A

【解析】

【分析】

作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.

【详解】

作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,

∵PP1关于OA对称,∠MPN=110°

∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,

同理可得:∠P2OP=2∠NOP,OP=OP2,

∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,

∴△P1OP2是等腰三角形.

∴∠OP2N=∠OP1M,

∴∠P1OP2=180°-110°=70°,

∴∠AOB=35°,

故选A.

【点睛】

考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.

19.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:

①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )

A.1 B.2 C.3 D.4

【答案】D

【解析】

【分析】

根据题意,结合图形,对选项一一求证,即可得出正确选项.

【详解】

(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线

上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.

在△BCD和△ACE中,∵

AC BC

BCD ACE

CD CE

=

?

?

∠=∠

?

?=

?

,∴△BCD≌△ACE,∴AE=BD,故结论①正

确;

(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.

又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;

(3)∵△ACG≌△BCF,∴CG=CF.

∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角

形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;

(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.

∵△ACE≌△BCD,∴∠CDZ=∠CEN.

在△

CDZ和△CEN中,

CZD CNE

CDZ CEN

CD CE

∠=∠

?

?

∠=∠

?

?=

?

,∴△CDZ≌△CEN,∴CZ=CN.

∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.

综上所述:四个结论均正确.

故选D.

【点睛】

本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.

20.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )

A.1 B.2 C.3 D.4

【答案】D

【解析】

【分析】

由点A、B的坐标可得到AB=22,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.

【详解】

∵点A、B的坐标分别为(2,2)、B(4,0).

∴AB=22,

如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),

∴满足△ABC是等腰三角形的C点有1个;

②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;

③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;

综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.

故选D.

【点睛】

八年级数学上册全册全套试卷测试卷附答案

八年级数学上册全册全套试卷测试卷附答案 一、八年级数学三角形填空题(难) 1.如图,在ABC ?中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠; ;2019A BC ∠与2019A CD ∠的平分线 相交于点2020A ,得2020A ∠,则2020A ∠=________________. 【答案】2020 2 α 【解析】 【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知 21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】 解:∵∠ABC 与∠ACD 的平分线交于点A 1, ∴111 18022 A ACD AC B AB C ∠=?- ∠-∠-∠ 11 18018022ABC A A ABC ABC =?-∠+∠-?-∠-∠-∠()() 1122 a A = ∠=, 同理可得221122 a A A ∠=∠=, … ∴2020A ∠=2020 2α . 故答案为:2020 2α . 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义. 2.如图,ABC ?的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ?与EFH ?关于直线EF 对称,若 60,84,A BEH HFG n ???∠=∠=∠=,则n =__________.

【答案】78. 【解析】 【分析】 利用ABC ?的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=1 2 (∠A+∠ABC),根据三角形的内角和得到∠D= 1 2 ∠A=30?,利用外角定理得到∠DEH=96?,由EFD ?与EFH ?关于直线EF 对称得到∠DEG=∠HEG=48?,根据外角定理即可得到∠DFG=∠D+∠DEG=78?. 【详解】 ∵ABC ?的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ∴∠DBC= 12∠ABC ,∠ACD=1 2 (∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180?,∠A+∠ABC+∠ACB=180?, ∴∠D= 1 2 ∠A=30?, ∵84BEH ?∠=, ∴∠DEH=96?, ∵EFD ?与EFH ?关于直线EF 对称, ∴∠DEG=∠HEG=48?,∠DFG=∠HFG n ?=, ∵∠DFG=∠D+∠DEG=78?, ∴n=78. 故答案为:78. 【点睛】 此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D= 1 2 ∠A=30?是解题的关键. 3.△ABC 的两边长为4和3,则第三边上的中线长m 的取值范围是_______. 【答案】 1722 m << 【解析】 【分析】 作出草图,延长AD 到E ,使DE=AD ,连接CE ,利用“边角边”证明△ABD 和△ECD 全

人教版八年级上册数学各单元知识点归纳总结

第十一章三角形 一、知识框架: 二、知识概念: 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边. 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形 的高. 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线. 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间 的线段叫做三角形的角平分线. 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性. 7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 8.多边形的内角:多边形相邻两边组成的角叫做它的内角. 9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线. 11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质: ⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. n-·180° ⑶多边形内角和公式:n边形的内角和等于(2) ⑷多边形的外角和:多边形的外角和为360°. n-条对角 ⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)

线,把多边形分成(2)n -个三角形.②n 边形共有(3)2 n n -条对角线. 第十二章 全等三角形 一、知识框架: 二、知识概念: 1.基本定义: ⑴全等形:能够完全重合的两个图形叫做全等形. ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质: ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性. ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理: ⑴边边边(SSS ):三边对应相等的两个三角形全等. ⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法: ⑵性质定理:角平分线上的点到角的两边的距离相等. ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法: ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

人教版八年级数学上册全册综合测试题

人教版八年级数学上册全册综合测试题 一、选择题(本大题共7小题,每小题3分,共21分.在每小题列出的四个选项中,只有一项符合题意) 1.计算(-12)0 -4的结果是( ) A .-1 B .-32 C .-2 D .-5 2 2.下列长度的三条线段,不能组成三角形的是( ) A .9,15,8 B .4,9,6 C .15,20,8 D .3,8,4 3.下列计算正确的是( ) A .(-x 3)2 =x 5 B .(-3x 2)2 =6x 4 C .(-x )-2=1x 2 D .x 8÷x 4=x 2 4.衡阳市某生态示范园计划种植一批梨树,原计划总产量为30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克设原来平均每亩产量为x 万千克,根据题意,列方程为( ) -错误!=10 -错误!=10 -30 x =10 +错误!=10 5.如图1,在△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,有下列结论:①BD =DC ;②DE =DF ;③AD 上任意一点到AB ,AC 的距离相等;④AD 上任意一点到点B 与点C 的距离不等.其中正确的是( ) A .①② B .③④ C .①②③ D .①②③④ 图1 6.如图2①是长方形纸带,∠DEF =30°,将纸带沿EF 折叠成图②,再沿BF 折叠成图③,则图③中∠CFE 的度数为( ) A .60° B .90°

C .120° D .150° 图2 7.如图3,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,当△AMN 的周长最小时,∠AMN +∠ANM 的度数为( ) A .130° B .120° C .110° D .100° 图3 二、填空题(本大题共7小题,每小题3分,共21分) 8.用科学记数法表示为__________. 9.在平面直角坐标系中,将点A (-1,2)向右平移3个单位长度得到点B ,则点B 关于 x 轴的对称点C 的坐标是________. 10.已知a +b =3 2 ,ab =1,则(a -2)(b -2)=________. 11.一个多边形的内角和是四边形内角和的4倍,则这个多边形的边数是________. 12.如图4,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数为________. 4 13.如图5,在△ABC 中,∠C =90°,∠ABC =60°,BD 平分∠ABC ,若AD =6,则CD =________.

最新人教版八年级数学上册单元测试题全套带答案

最新人教版八年级数学上册单元测试题全套带答案 本文档包含5章的单元测试题及期中期末测试题,共7套,带答案 第十一章创优检测卷 一、选择题.(每小题3分,共30分) 1已知三角形两边的长分别是4和10,则此三角形第三边的长可能是() A.5 B.6 C.11 D.16 2若一个多边形的内角和为1080°,则这个多边形的边数为() A.6 B.7 C.8 D.9 3.在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为() A.40° B.45° C.59° D.55° 4如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是() A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能确定 5一个三角形的两个内角分别是55°和65°,这个三角形的外角不可能是() A.115° B.120° C.125° D.130° 6.如图,在△ABC中,D、E分别是BC上两点,且BD=DE=EC,则图中面积相等的三角形 有() A.4对 B.5对 C.6对 D.7对 第6题图第7题图第8题图 7如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是() A.150° B.130° C.120° D.100° 8如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为() A.50° B.60° C.70° D.80° 9.如图所示是D,E,F,G四点在△ABC边上的位置图.根据图中符号和数据,则x+y的

值为() A.110 B.120 C.160 D.165 第9题图第10题图 10.如图,∠A,∠B,∠C,∠D,∠E的和等于() A.90° B.180° C.360° D.540° 二、填空题.(每小题3分,共24分) 11.如图所示,AB∥CD,CE平分∠ACD,并且交AB于E,∠A=118°,则∠AEC等于. 第11题图第12题图 12.如图,三条直线两两相交,交点分别为A、B、C,若∠CAB=50°,∠CBA=60°,则∠1+∠2=度. 13.五边形的5个内角的度数之比为2∶3∶4∶5∶6,则最大内角的外角度数是. 14.一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是. 15.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为. 第15题图第16题图 16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.

八年级数学上册 全册全套试卷测试卷(含答案解析)

八年级数学上册 全册全套试卷测试卷(含答案解析) 一、八年级数学三角形填空题(难) 1.如图,ABC ?的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使 111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ?;第二次操作:分别 延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ?,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作. 【答案】4 【解析】 【分析】 连接111,,AC B A C B ,根据两个三角形等底同高可得 111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作: 11177A B C ABC S S ??==<2020;同理可得第二次操作22211127749A B C A B C S S ??===< 2020……直至第四次操作4443334 772401A B C A B C S S ??===>2020,即可得出结论. 【详解】 解:连接111,,AC B A C B ∵111,,A B AB B C BC C A CA === 根据等底同高可得: 111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S S S S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ====== ∴第一次操作:11177A B C ABC S S ??==<2020

新人教版八年级数学上册单元教学目标

新人教版八年级数学上册单元教学目标 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

八年级上册单元教学目标 第十一章:三角形 一、教材内容 本章主要内容有与三角形的有关线段、角,多边形及内角和,镶嵌等;三角形的高、中线和角平分线是三角形中的主要线段;与三角形有关的角有内角、外角;教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于0 180的基础上,进行推理论证,从而得出三角形外角的性质;接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 二、单元学习目标 (一)、知识与技能 1、了解与三角形有关的线段(边、高、中线、角平分线)。理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形。会画出任意三角形的高、中线、角平分线。了解三角形的稳定性及其应用。 2、了解与三角形有关的角(内角、外角),会用平行线的性质与平角的定义说明三角形内角和等于180°,探索并了解三角形的一个外角等于与它不相邻的两个内角的和以及三角形的一个外角大于与它不相邻的任何一个内角。 3、了解与多边形的有关概念(边、内角、外角、对角线、正多边形)探索并了解多边形的内角和、外角和公式。 4、通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。 (二)、过程与方法 1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。如:

华师大版八年级数学上册单元试卷全套

华师大版数学八年级上册 第一单元检测题 一、选择题:(本题共10小题,每小题3分,共30分) 1.若一个数的平方根为2a+3和a-15,则这个数是( ) A -18 B 3 2- C 121 D 以上结论都不是 2、若73-x 有意义,则x 的取值范围是( )。 A 、x >37- B 、x ≥ 37- C 、x >37 D 、x ≥3 7 3下列各式中正确的是( ) A. 2008)2008(2-=- B.2008)2008(2=-- C.2008)2008(2±=- D.2008)2008(2±=-± 4、下列说法中,错误的是( )。 A 、4的算术平方根是2 B 、81的平方根是±3 C 、8的立方根是±2 D、立方根等于-1的实数是-1 5、16的算术平方根是( )。 A 、±4 B 、4 C 、-4 D 、2 6、已知04)3(2=-+-b a ,则 b a 3的值是( )。 A 、 41 B 、- 41 C 、433 D 、4 3 7、计算33841627-+-+的值是( )。 A 、1 B 、±1 C 、2 D 、7 8、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。 A 、-1 B 、1 C 、0 D 、±1 9、下列命题中,正确的是( )。 A 、无理数包括正无理数、0和负无理数 B 、无理数不是实数 C 、无理数是带根号的数 D 、无理数是无限不循环小数 10.一个正数的算术平方根是a ,那么比这个正数大2的数的算术平方根是………( ) A .a 2+2 B .±a 2+2 C .a 2 +2 D .a+2 二.填空(每小题2分,共20分) 11、()26-的算术平方根是__________。 12、ππ-+-43= _____________。 13、2的平方根是__________。 14、实数a ,b ,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。 15、若m 、n 互为相反数,则 n m +-5=_________。 16、若 2)2(1-+-n m =0,则m =________,n =_________。 17、在3325,8,2,4 1.......,8080080008.0,94,3,1.3,2--π ,其中是无理数的是_____ 18、12-的相反数是_________。

人教版八年级数学上册 全册全套试卷测试卷(解析版)

人教版八年级数学上册 全册全套试卷测试卷(解析版) 一、八年级数学三角形填空题(难) 1.如图,ABC ?的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在 线段BD 、CD 上,点G 在EF 的延长线上,EFD ?与EFH ?关于直线EF 对称,若 60,84,A BEH HFG n ???∠=∠=∠=,则n =__________. 【答案】78. 【解析】 【分析】 利用ABC ?的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=1 2 (∠A+∠ABC),根据三角形的内角和得到∠D= 1 2 ∠A=30?,利用外角定理得到∠DEH=96?,由EFD ?与EFH ?关于直线EF 对称得到∠DEG=∠HEG=48?,根据外角定理即可得到∠DFG=∠D+∠DEG=78?. 【详解】 ∵ABC ?的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ∴∠DBC= 12∠ABC ,∠ACD=1 2 (∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180?,∠A+∠ABC+∠ACB=180?, ∴∠D= 1 2 ∠A=30?, ∵84BEH ?∠=, ∴∠DEH=96?, ∵EFD ?与EFH ?关于直线EF 对称, ∴∠DEG=∠HEG=48?,∠DFG=∠HFG n ?=, ∵∠DFG=∠D+∠DEG=78?, ∴n=78. 故答案为:78. 【点睛】 此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D= 1 2 ∠A=30?是解题的关键.

2.直角三角形中,两锐角的角平分线所夹的锐角是_____度. 【答案】45 【解析】 【分析】 根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可. 【详解】 如图所示 △ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F. ∵∠ACB=90°, ∴∠CAB+∠ABC=90° ∵AD,BE,分别是∠CAB和∠ABC的角平分线, ∴∠FAB+∠FBA=1 2∠CAB+1 2 ∠ABC=45°. 故答案为45. 【点睛】 此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解. 3.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s. 【答案】160. 【解析】 试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间. 试题解析:360÷45=8, 则所走的路程是:6×8=48m, 则所用时间是:48÷0.3=160s. 考点:多边形内角与外角.

八年级数学上册测试试题及答案

数学测评题(八年级上册) 本试卷分第Ⅰ卷和第Ⅱ卷两部分。第Ⅰ卷微选择题,满分50分。第Ⅱ卷为填空题和解答题,满分50分。本试卷共20道题,满分100分,考试时间70分。 第Ⅰ卷选择题(共50分) 一、选择题:(每题5分,共10分) 1.下列能构成直角三角形三边长的是() A. 1、2、3 B. 2、3、4 C. 3、4、5 D. 4、5、6 2. 在下列各数中是无理数的有( ) -0.333…, 4, 5, π -, 3π, 3.1415, 2.010101…(相邻两个1之间有1 个0),76.0123456…(小数部分由相继的正整数组成). A. 3个 B. 4个 C. 5个 D. 6个 3. 若规定误差小于1,那么50的估算值是( ) A. 7; B. 7.07; C. 7或8; D. 7和8. 4.10名初中毕业生的中考体育考试成绩如下:25,26,26,27,26,30,29,26,28,29,这些成绩的中位数是() A. 25 B. 26 C. 26.5 D. 30 5. 一个多边形每个外角都等于300, 这个多边形是( ) A.六边形; B.正八边形; C.正十边形; D.正十二边形. 6.以下五家银行行标中,既是中心对称图形又是轴对称图形的有()

A. 1个 B. 2个 C. 3个 D. 4个 7.下列说法错误的是( ) A. 1)1(2=- B. ()1133 -=- C. 2的平方根是2± D. ()232)3(-?-=-?- 8.一根蜡烛长20cm ,点燃后每时燃烧5cm ,燃烧时剩下的高度h (厘米)与时间t (时)之间的关系图是( ) h h h h 0 t 0 t 0 t 0 t A. B. C. D. 9.已知:如图1,梯形ABCD 中,AD ∥BC ,AB=CD ,对角线AC 与BD 相交于点O ,则图中全等三角形共有( ) A. 1对 B. 2对 C. 3对 D. 4对 10.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图2)。如果大正方形的面积是13,小正方形的面积是1,直角三角形较短直角边为a ,较长直角边为b ,那么(a+b )2的值为( ) A. 13 B. 19 C. 25 D. 169 图1 图2 O D C B A

八年级数学上册各单元单元试卷含答案

八年级数学第十三章《全等三角形》单元试卷 考试时间100分钟满分100分 一、选择题(每题3分共30分) 1、如图1,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是() A、∠E=∠B B、ED=BC C、AB=EF D、AF=CD 2、如图2在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为() A、15° B、20° C、25° D、30° 3、如图3所示,在△ABC中,∠B=∠C,AD为△ABC的中线,那么下列结论错误的是() A、△ABD≌△ACD B、AB=A C、AD是△ACD的高 D、△ABC是等边三角形 图1图2图3 4、如图4,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是() A、甲和乙 B、乙和丙 C、只有乙 D、只有丙 4 5、如 图5,AO=BO,CO=DO,AD与BC交于E,则图中全等三角形的对数为() A、2对 B、3对 C、4对 D、5对 6、如图6,已知∠1=∠2,欲证△ABD≌△ACD,还必须从下列选项中补选一个,则错误的选项是() A、∠ADB=∠ADC B、∠B=∠C C、BD=CD D、AB=AC 图5图6 7、下列说法正确的有() ①角平分线上任意一点到角两边的距离相等 ②到一个角两边的距离相等的点在这个角的平分线上 ③三角形三个角平分线的交点到三个顶点的距离相等 ④三角形三条角平分线的交点到三边的距离相等 A、1个 B、2个 C、3个 D、4个

8、如果△ABC ≌△DEF ,△DEF 的周长为13,DE=3,EF=4,则AC 的长() A 、13B 、3C 、4D 、6 9、已知如图7,AC ⊥BC ,DE⊥AB,AD 平分∠BAC,下面结论错误的是() A 、BD+ED=BCB 、DE 平分∠ADBC、AD 平分∠EDC D 、ED+AC>AD 10、如图8,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是() A 、带①去 B 、带②去 C 、带③去 D 、带①②③去 图7图8 二、填空(每题3分,共15分) 11、如图9已知△OA`B`是△AOB 绕点O 旋转60°得到的,那么△OA`B`与△OAB 的 关系是,如果∠AOB=40°,∠B=50°, 则∠A`OB`=∠AOB`=。图9 12、△ABC 中,AD⊥BC 于D ,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定。 13、如图10,在△ABC 中,∠C=90°AD 平分∠BAC,BC=12cm ,BD=8cm 则点D 到AB 的距离为。 14、如图11,∠1=∠2,要使△ABE≌△ACE 还要添加一个条件是。 15、如图12,已知相交直线AB 和CD ,及另一直线MN ,如果要在MN 上找出与AB 、CD 距离相等的点,则这样的点至少有个,最多有个。 图10图11图12 三、解答题 16、(7分)如图所示,太阳光线AC 和A`C`是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么 建筑物是否一样高?说明理由。 17、(7分)雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=31 AB ,AF=3 1AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理 由。 18、(8分)画图,如图是三条交叉公路,请你设计一个方案,要建一个购物中心,使它到三条公路的距离相等,这样 的地址有几处?请你画出来 19、(8分)如图,直线a//b ,点A 、B 分别在a 、b 上,连结AB ,O 是AB 中点,过点O 任意画一条直线与a 、b 分别相交于点P 、Q ,观察线段PQ 与点O 的关系,你能发现什么规律吗?

八年级数学上册全册全套试卷测试卷(解析版)

八年级数学上册全册全套试卷测试卷(解析版) 一、八年级数学全等三角形解答题压轴题(难) 1.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12. (1)求m 和n 的值. (2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE . (3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值. 【答案】(1)4 2 m n =-?? =?(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的 延长线上运动时,NB ﹣HB 的值不会发生变化. 【解析】 【分析】 (1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证; (3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明△ABH ≌△CAN ,即可得到结论. 【详解】 解:(1)由题意()()218122 m n n m m --=?? ?++-=?? 解得4 2m n =-??=? ; (2)如图2中, 由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),

人教版八年级上册数学单元测试卷(全册)

第十一章全等三角形(一) 一、选择题 1、如图1,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是() A、∠E=∠B B、ED=BC C、AB=EF D、AF=CD 2、如图2在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为() A、15° B、20° C、25° D、30° 3、如图3所示,在△ABC中,∠B=∠C,AD为△ABC的中线,那么下列结论错误的是() A、△ABD≌△ACD B、AB=AC C、AD是△ACD的高 D、△ABC是等边三角形 4、已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是() A 、甲和 乙 B、乙 和丙C、只有乙 D、只有丙5、AO=BO,CO=DO,AD与BC交于E,则图中全等三角形的对数为() A、2对 B、3对 C、4对 D、5对 6、如图6,已知∠1=∠2,欲证△ABD≌△ACD,还必须从下列选项中补选一个,则错误的选项是() A、∠ADB=∠ADC B、∠B=∠C C、BD=CD D、AB=AC 7、下列说法正确的有() ①角平分线上任意一点到角两边的距离相等 ②到一个角两边的距离相等的点在这个角的平分线上 ③三角形三个角平分线的交点到三个顶点的距离相等 ④三角形三条角平分线的交点到三边的距离相等 A、1个 B、2个 C、3个 D、4个 8、如果△ABC≌△D EF,△DEF的周长为13,DE=3,EF=4,则AC的长() A、13 B、3 C、4 D、6 9、已知如图7,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是() A、BD+ED=BC B、DE平分∠ADB C、AD平分∠EDC D、ED+AC>AD

新人教版八年级数学上册知识点总结归纳

新人教版八年级上册数学 知识点总结归纳 1 第十一章三角形 第十二章全等三角形 第十三章轴对称 第十四章整式乘法和因式分解 第十五章分式 第十一章三角形

1、三角形的概念 由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 3、三角形的稳定性 三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。 4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段 (2)三条线段不在同一直线上三角形是封闭图形 (3)首尾顺次相接 三角形用符号“?”表示,顶点是A、B、C的三角形记作“?ABC”,读作“三角形ABC”。 5、三角形的分类 三角形按边的关系分类如下: 不等边三角形 三角形底和腰不相等的等腰三角形 等腰三角形 等边三角形 三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形) 三角形锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 6、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。 ③证明线段不等关系。 7、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。 推论: ①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。8、三角形的面积=2 1 ×底×高 多边形知识要点梳理 定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。 凸多边形 分类1: 凹多边形 正多边形:各边相等,各角也相等的多边形叫做正多边形。 分类2: 多边形 非正多边形: 1、n 边形的内角和等于180°(n-2)。 多边形的定理 2、任意凸形多边形的外角和等于360°。

人教版八年级数学上册全册综合测试卷

八年级上册期末检测卷 一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题 各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若分式x -3x +4 有意义,则x 的取值应满足( ) A .x ≠3 B .x ≠4 C .x ≠-4 D .x ≠-3 2.涞水的文化底蕴深厚,涞水人民的生活健康向上.下面的四幅简笔画是从涞水的文化活动中抽象出来的,其中是轴对称图形的是( ) 3.下列二次三项式是完全平方式的是( ) A .x 2-8x -16 B .x 2+8x +16 C .x 2-4x -16 D .x 2+4x +16 4.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( ) A .125° B .120° C .140° D .130° 5.若等腰三角形的两边长分别为4和8,则它的周长为( ) A .12 B .16 C .20 D .16或20 6.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中,能使△ABC ≌△DEF 的条件共有( ) A .1组 B .2组 C .3组 D .4组 7.化简x -y x +y ÷(y -x )·1x -y 的结果是( ) A.1x 2-y 2 B.y -x x +y C.1y 2-x 2 D.x -y x +y 8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .60° B .72° C .90° D .108° 9.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,直线m 为∠ABC 的平分线,l 与m 相交于P 点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为( ) A .24° B .30° C .32° D .36° 10.若a -b =12,且a 2-b 2=14 ,则a +b 的值为( ) A .-12 B.12 C .1 D .2 11.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别 交直线l 1,l 2于点B ,C ,连接AC ,BC .若∠ABC =67°,则∠1=( ) A .23° B .46° C .67° D .78° 12.如图,在等腰△ABC 中,∠BAC =120°,DE 是AC 的垂直平分线,线段

最新人教版八年级数学上册单元章节测试题-附答案全册

八年级数学上册 《第十一章全等三角形》单元测试题 一、选择题: *1. 如图,在①AB=AC,②AD=AE,③∠B=∠C,④BD=CE四个条件中,能根据“SSS”证明△ABD与△ACE全等的条件顺序是() A. ①②③ B. ②③④ C. ①②④ D. ①③④ *2. 如图,AC、BD交于点O,BO=DO,AO=CO,那么下列判断中正确的是() A. 只能证明△AOB≌△COD B. 只能证明△AOD≌△COB C. 只能证明△ABD≌△CBD D. 能证明四对三角形全等 3. 在下列条件中,不能判定直角三角形全等的是() A. 两条直角边分别对应相等 B. 斜边和一个锐角分别对应相等 C. 两个锐角分别对应相等 D. 斜边和一条直角边分别对应相等 4. 如图,已知AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,则图中的全等三角形有() A. 1对 B. 2对 C. 3对 D. 4对 5. 如图18,已知△ABC的六个元素如图所示,则甲、乙、丙三个三角形中和△ABC全等的是()

A. 甲、乙 B. 乙、丙 C. 只有乙 D. 只有丙 二、填空题: 6. 如图,AB=AC ,BE=CD ,要使△ABE ≌△ACD ,依据“SSS ”,则还需添加条件: 。 **7. 如图,AD 和A ’D ’分别是锐角△ABC 和锐角△A ’B ’C ’中BC 和B ’C ’边上的高,且BC=B ’C ’,AD=A ’D ’,若使△ABC ≌△A ’B ’C ’,请你补充条件 。(填一个你认为适当的条件) **8. 如图,△ABC 是不等边三角形,DE =BC ,以D 、E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个。 三、解答题: 9. 已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,。求证:(1)△OAB ≌△OCD ;(2)AB CD =。

人教版八年级数学上册 全册全套试卷培优测试卷

人教版八年级数学上册全册全套试卷培优测试卷 一、八年级数学三角形填空题(难) 1.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是_____. 【答案】92°. 【解析】 【分析】 由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数. 【详解】 由折叠的性质得:∠C'=∠C=46°, 根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠C', 则∠1=∠2+∠C+∠C'=∠2+2∠C=∠2+92°, 则∠1﹣∠2=92°. 故答案为:92°. 【点睛】 考查翻折变换(折叠问题),三角形内角和定理,熟练掌握折叠的性质是解题的关键. 2.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____. 【答案】5 【解析】 【分析】 根据多边形的内角和公式(n﹣2)?180°与外角和定理列式求解即可 【详解】 解:设这个多边形的边数是n, 则(n﹣2)?180°﹣360°=180°, 解得n=5. 故答案为5.

【点睛】 本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关. 3.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______. 【答案】22 【解析】 【分析】 先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可. 【详解】 解:根据题意得,a-4=0,b-9=0, 解得a=4,b=9, ①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形, ②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长 =9+9+4=22. 【点睛】 本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系. 4.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度. 【答案】40. 【解析】 【分析】 利用三角形的内角和和四边形的内角和即可求得. 【详解】 ∵△ABC沿着DE翻折, ∴∠1+2∠BED=180°,∠2+2∠BDE=180°, ∴∠1+∠2+2(∠BED+∠BDE)=360°, 而∠1+∠2=80°,∠B+∠BED+∠BDE=180°, ∴80°+2(180°﹣∠B)=360°, ∴∠B=40°. 故答案为:40°. 【点睛】 本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它

八年级数学上册单元备课

1、单元名称:第十一章三角形。 2、单元教学内容及教材分析: 本章主要内容有三角形的有关线段、角,多边形及内角和。三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 3.教学重点和教学难点 三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。 4.教学目标 知识与技能: 理解三角形及有关概念,会画任意三角形的高、中线、角平分线;会证明三角形内角和等于180°,了解三角形外角的性质。 过程与方法: 在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 情感、态度与价值观: 会应用数学知识解决一些简单的实际问题,增强应用意识; 5、主要教学方法、手段、选用的教学媒体 讲授法、练习法;小黑板,班班通。 6、单元课时划分:本章教学约需13课时,具体分配如下: 11.1与三角形有关的线段 3课时 11.2与三角形有关的角 3课时 11.3多边形及其内角和 2课时 数学活动1课时 小结1课时 复习1课时 单元测试题选讲2课时

1、单元名称:第十二章全等三角形。 2、单元教学内容及教材分析: 学生已经学过线段、角、相交线、平行线以及三角形的有关知识,这些为学习全等三角形的有关内容做了准备。通过本章的学习,可以丰富和加深学生对已学图形的认识。全等三角形是研究图形的重要工具,学生只有掌握了全等三角形的相关知识,并且能够灵活的运用它,才能学好后面的四边形。在本章中,全等三角形的判定既是重点,也是难点,同时也是中考时常考的热点。全等三角形在中考中主要考察三角形的判定;并会将有关知识应用到综合题的解题过程中,如把某些问题转化为三角形的问题求解;能够从复杂的图形中寻求全等三角形获得自己需要的信息也是中考的要点。] 3、单元教学重点和教学难点 三角形全等的性质(重点)和判定方法(包括直角三角形全等的特殊条件)(重点、难点)及角平分线的性质和判定及其应用(重点、难点)。 4、教学目标 知识与技能 了解全等三角形的概念,探索并掌握两个三角形全等的条件;掌握两个三角形全等对应边相等,对应角相等的性质;能够画已知角的平分线并掌握角平分线性质。 过程与方法 在教学中,注重所学内容与现实生活的联系;注重学生经历观察、操作、推理、想象等探索过程。 情感、态度与价值观 通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。 5、主要教学方法、手段、选用的教学媒体 讲授法、练习法;小黑板,班班通。 6、单元课时划分:本章教学约需12课时,具体分配如下: 12.1全等三角形 1课时 12.2全等三角形的判定 5课时 12.3角的平行线的性质 2课时 小结 2课时 单元测试题选讲2课时

相关主题
文本预览
相关文档 最新文档